Proof systems for the
(modal) mu-calculus
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- Kozen's proofs
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The set of p-formula is given by the grammar ? / N ? /1? ’
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Semantics for the modal pi-calenlus is a direct extension of Kripke semantics for (multi-
Imadal logic incorpaorating variables and guantifiers. A frame, or labelled fransition
system, is a tuple # = (K, R, A} whore It et — K < K and A: Prop — 2% The set
K is called the domain of . A wvaluation (over ) is a function v: Var — 24,

Given a frame % = {K, B, A}, p-formula A and valnation v over %, we define | A|:"
bv induction on A:
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Knaster-Tarski fixed-point theorem
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Let C be a complete lattice and F a monotonic operator on C.

F has a least fixed-point uF.
uF is the least prefixed-point:

F(WF)C uF\and ¢

—‘v’S FISYES = uFC

Theorem

F has a greatest fixed-point vVF.
VvF is the greatest postfixed-point:

— VFC F(VF) and
~VYS,SC F(S) = SCVF.

Proof by induction:
To prove that uF C P, it is
sufficient to find some $ C P and

-

Proof by coinduction:
To prove that P C vF, it is
sufficient to find some § O P and

 to prove that Vx € S, x € F(5).



Knaster-Tarski fixed-point theorem [ 2

| el ig/
Let C be a complete lattice and F a monotonic operator on C. E: /}
Proof by induction: -

Theorem To prove that uF C P, it is \_Y, 28

F has a least fixed-point uF. sufficient to find some S C P and —")L/?T
WF is the least prefixed-point: to prove that Vx € F(5), x € 5. \,Y‘ | \: /7(

- F(uF)C pF and HE FluX.F

uXx.F/X] FIS/X]F S ~
~VS,F(S)CS = uFCS. HEaxF — M 25 Frs W] T ok Y

Theorem

F has a greatest fixed-point VF.
VF is the greatest postfixed-point:

- vFC F(vF) and
-VS,SCF(S) = S

vF.

Proof by coinduction:
To prove that P C vF, it is
sufficient to find some S 2 P and
to prove that Vx € S5, x € F(S).

FIVX.F/X]FH . SEF[S/X]
rErA - M sryxE M

S




Kozen's axiomatization

Previous inferences plus the following (Koz- is the cut-free fragment):
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Figure 2: Additional rules present in Koz ™.

Theorem 3.1. Koz is sound and complele for lhe p-calculus,
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cut

Lemma 3.2, Let Alxg, ..., x5_1) be o formule with at most the designated variables free. ? \— B C o
2, 0

Alx, - %)

I B and O are closed formula for each @ <2k, then
(B Cibion Pior ABoe o, B 1), ACh, ... O 1)

Proof. The proof proceeds by induction on A. We present the case A = wx Apxo, .o k1, % ).
The remaining cases are straightforward. Let By = A(Bq, ..., Bix—1). As the sequent
B, By is an instance of Axz, the induction hypothesis implies

'{H" ('?i}i'-ﬂi*c l_}{gz E[H[]f -y -H*.,]:u Aﬂ‘:{ziﬂ-u e {:T,r';:—l-_ H_ﬁ]
whereby an application ol g vields
{B;= f_r?q_-}_;*-;,:r l_an By, AglCh, .o Gr_a;_L,B;._-:]

and an applivation of ind completes the proof, L
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Fixed-point logics and (co)induction
Some examples from (co)inductive predicates to u-calculus
o Nat(x) 2ihq (x = 0)Vdy.x — s(y)A Nat(y)
o ListNat(l)Zj,q (I=nil)V3h,t.I=h::tA(Nat(h)A ListNat(t))
@ StreamNat(l) = oing Fh, t.1 = h:: t A(Nat(h) A StreamNat(t))

o Nat(x) = uN.(x=0)VIy.x=s(y)AN(y)
o ListNat(l) = uL.(I=nil)Vv3h,t.l =h:tA(Nat(h)AL(t))
o StreamNat(/) = vS.3h,t.l=h:: tA(Nat(h)AS(t))

o Nat =2 uN.TVN = in the following,
o ListNat = ul. T Vv (NatAL) the propositional
o StreamNat = vS.Nat A S t-calculus only.

Interleavings of inductive/coinductives behaviours; eg. allowing to
express fairness properties:

vX.uY.(PANOX)VQOY. vX.uY.(PA{a)X)Vv(a)Y. -->P holds "infinitely often".

LY vX.(PANOX)VOY. LY vX.(PA(a)X)V(a)Y. --> P holds "almost always".



Example 3.1. Recall the valid sequent {vxuyB, vyuxB} from |[Example 2.1] Let C' =
vxuyB and D = vyuxB. The following derivation, which we denote 7y, is the Koz-proof
of this sequent motivated by the semantic validity argument:

c.C

Fl
=

|Lemma 3.2

nyB(C,y). vyB(Cy)

|Tlel'm'na 3-2
B(C,C),B(C,vyB(C,y))
B(C,C),vyB(C,y)
i — !
BC.o).C !
o ——ind
vxB(x,C),C

[Lemma 3.2

pyB(vxB(x,C),y), vyB(C,y)

S — p— — — i
vxB(x,C), uxB(x, C') Ly B(vxB(x,C),y),C ;
- [Lemma 3.2
B(vxB(x,C), nyB(vxB(x, C),y)), B(uxB(x,C),C) o

nyB(vxB(x, C),y), uxB(x,C)
C, uxB(x,C) . .
C.D 1]

ind




Circular & non-wellfounded proofs



Circular proofs: an old mathematical story

Back to Euclid's Elements (Book VII)

Root of Fermat'’s
infinite descent
proof method.




For any integer m, v/ m is either an mteger or |rrat|ona\

Another example of infinite descent | another

Proof
Let m € N and for the sake of contradiction, assume /m e Q\ N.

@ Choose q,ap,bp € Nst. 0</m—qg<1and/m=ay/bo.
One has bgy/m = ag € N and ag\/m = mbg € N.

@ Therefore by setting a; = mby — agg = ag(/m — q) and
b1 = ag — bog = by(/m — q), we have

@ ap,a; are integers,
o D< a1 <a, 0< by <byand

o \/E — 31/b1.
© In a similar way, one can build (aj);eny and (bj);eny infinite
sequences of integers, which are strictly decreasing.

@ This is impossible. Therefore /m is either integer or
irrational. [ ]




Non-Wellfounded Sequent Calculus

Consider your favourite logic . & add fixed points as in the u-calculus

Pre-proofs are the trees coinductively generated by:

M F[uX.F/X] - A FIvX.F/X]F A
: L] [vi]
o ¢ inference rules MuX.FEA | FvX.FEA |
@ inference for U, Vv: M- FluX.F/X]. A [ FlvX.F/X], A
rEaxFa M e yx FE A M

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs.

Pre-proofs are unsound!! Need for a validity condition
—uxx M Eyxx P M
axx M Suxx Y
' [Cut]
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

o F e FL(F);

@ G1xGyc FL(F)= G1,Gy € FL(F) for x € {V,A};

o cX.BeFL(F)= BlcX.B/X] € FL(F) forc € {u,v};
e mGe FL(F)= G e FL(F) for me {[a],(a)}.

Fact

FL(F) is a finite set for any formula F.

Example: F=vX.((aVa-)A(XAuY.X))

a
aVatr |
FL(F) = {F | (aVa' ) A(FARY.F). 2
| " FAUY.F, uY.F




Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

o FcFL(F);

@ GixGy € FL(F)= G1,Go € FL(F) for x€ {V,N};

e 6 X.Bec FL(F)= BlcX.B/X]| € FL(F) for ¢ € {u,v};
@ mGe FL(F)= G e FL(F) for me {[a],(a)}.

Fact

FL(F) is a finite set for any formula F.

Example: F =vX.((aVat)A(XAuY.X))

- d

aVa = S
FL(F)=F —(aVa - ))A(FALY.F) d
11 SEARY.F— pY.F




Infinite threads, validity

A thread on an infinite A thread is valid if it unfolds infinitely many v. More precisely, if the
branch (I';)jce is an infinite minimal recurring principal formula of the thread is a v-formula.
sequence of formula occur-

rences (F;)j~, such that for A proof is valid if every infinite branch contains a valid thread.

any 1 > k, Fiel;and Fj 1 is

an immediate ancestor of F;.

F=vX.((ava')A(XAunY.X)). F=vX.((ava‘)A(XAG))
G=uY.F G=uY.vX.((avVat)A(XA Y))
ax |‘Ffﬁ_ a dX
- a \F s (RN ~a,a" )
(A) | - (%)
~aVva' - FAG () —aVa
(aV at) A(FAG) = (aVa—) A

(V)

————+|—F-1L.L e "'l_F'*"“-—-_

e




Examples of circular proofs

@ Inductive and coinductive definitions
N=uX.14X S =vX.(1&(Nx2X))

@ Proofs-programs over these data types

double . N—=N
double(n) = 0 if n=20
— succ(succ(double(m))) if n= succ(m)
— double
. -1 (©1) R 1 NN (©2)
=F1aN - NF1oN
— N (1) S =l | ' ' (pj
g . F1oN NEN
T, double Yy (1) NEL1oN (B2)
M1 = (@ T NE N le
S W LoNEN



Examples of circular proofs

@ Inductive and coinductive definitions

N=uX.1oX

S —vX.1&(N®X)

@ Proofs-programs over these data types

Tsuce =N 1SN

enum
enum(n) =

[ enum —

N—S

n: enum(succ(n))

—1
s

1

HSLI CC
NEN
NEN T Mo
Nen P ven Q0 e
(7) _
INE N INES
(L NNFNos )
(w) !NIN@S{;“
mwl&mmS}w} |

INES

(cut)



Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs. I

The key translation step is the following: T T
7] - SL vXIF \
T 4. | SEF[S] | F[S]Y, FlvX.F] ) \
|_ F 5 R aF[S] (v) — [ﬂ-l] - SJ',F[VXF] (Cut]/;
=1, vx.r 7.5 CsluxFL

(cut)

FTLVX.F



Proof systems with the omega rule

Jager, Kretz and Studer

9

, drawing on this background, define a sound and complete

cut-free proof system for p-calculus by adding an infinitary rule characterising the
ercatest fixed point. For each n < w, define a new ‘quantifier’ " by xA = T, and

VI A(x) = A(v"xA). The v, inference rule is the following infinitary proof rule, the

premises to which is a derivation of I', v"xA for each n.

I 1%A T, vixA

[ vxA

V)



