Infinitary and non-wellfounded proof
systems for the mu-calculus

2 -- omega-rule, relations with
circular proofs
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Figure 2: Additional rules present in Koz ™. \__ ﬂ A,
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Proof. The proof proceeds by induction on A. We present the case A = wx Apxo, .o k1, % ).
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Example 3.1. Recall the valid sequent {vxuyB, vyuxB} from

vxuyB and D = vyuxB. The following derivation, which we denote 7y, is the Koz-proof «

of this sequent motivated by the semantic validity argument:
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Pre-proofs are unsound!!

AR

Non-Wellfounded Sequent Calculus

Consider your favourite logic . & add fixed points as in the u-calculus

Pre-proofs are the trees coinductively generated by:

CFXF/X]EA T VXX A
- - [a]
o ¢ inference rules MuX.FEA | FvX.FEA
@ inference for U, Vv: M- FluX.F/X]. A [ FlvX.F/X], A
e ux.FA M- vX.F.A

Circular (pre-)proofs: the regular fragment of infinite
(pre-)proofs, ie finitely many sub-(pre)proofs.
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Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

o F e FL(F);

@ G1xGyc FL(F)= G1,Gy € FL(F) for x € {V,A};

o cX.BeFL(F)= BlcX.B/X] € FL(F) forc € {u,v};
e mGe FL(F)= G e FL(F) for me {[a],(a)}.

Fact

FL(F) is a finite set for any formula F.

Example: F=vX.((aVa-)A(XAuY.X))

a
aVatr |
FL(F) = {F | (aVa' ) A(FARY.F). 2
| " FAUY.F, uY.F




Fischer-Ladner subformulas

FL(F) is the least set of formula occurrences such that:

o FcFL(F);

@ GixGy € FL(F)= G1,Go € FL(F) for x€ {V,N};

e 6 X.Bec FL(F)= BlcX.B/X]| € FL(F) for ¢ € {u,v};
@ mGe FL(F)= G e FL(F) for me {[a],(a)}.

Fact

FL(F) is a finite set for any formula F.

Example: F =vX.((aVat)A(XAuY.X))
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aVa = S
FL(F)=F —(aVa - ))A(FALY.F) d
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Infinite threads, validity D Ragulon mff::w;! I%‘&Mn%ﬂ»ﬁ

A thread on an infinite
branch (I';)jce is an infinite
sequence of formula occur-
rences (F;)i>, such that for
any 1 > k, Fiel;and Fj 1 is
an immediate ancestor of F;.
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e
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A thread is valid If it unfolds infinitely many v. More precisely, if the
minimal recurring principal formula of the thread is a v-formula.

A proof is valid if every infinite branch contains a valid thread.

F=vX.((aVa" )A(XAunY.X)). F=vX.((aVa )A(XAG))
G=uY.F

G=uY.vX.((aVa-)A(XAY))
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Examples of circular proofs \ ==

Y A=A
@ Inductive and coinductive definitions EM
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Examples of circular proofs

@ Inductive and coinductive definitions
N=uX.TvX S=vX.(NAX)

@ Proofs-programs over these data types

enum . N—>S
enum(n) = n: enum(succ(n))
HSUCC
(a0 NN
NEN T, . NN Y
Tsuce = orl — .
NETVN " enum N NAS
NN N
- NII|_ NAS
1P, NES




Circular & finitary proofs

From finitary to circular proofs

Theorem
Finitary proofs can be transformed to (valid) circular proofs. I

The key translation step is the following:
[F s vxE 3 \

[722]
m > S FLS] H{FIS) FIvX.F] ( }” \
-r,S  FS'.F[S -
HT F1S] o T [m] - St FlvX.F] @ /
-lvXF 1,5 ESLvXF]

(cut)
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Proof systems with the omega rule

(Language LI) Let @ be a countable set of atomic propositions
and their negations p, ~p,q, ~q.r, ~r, ..., let V be a set containing countably
many variables and their negations X, ~X. Y. ~Y,Z ~Z, ... lec T={T, L}
be a set containing svmbols for truth and falschood and M a set of indices.
Deline the formulae of the language £, inductively as [ollows:

1. If P is an clement of UV U T, then P is a formula of £,,.

2. If A and B are formulae of £,. then so are (AAB) and (AW ).

3. If Ais a formula of £, and 7 € M, then so are U, A and & A.

1. It A 1s a formula of £, and the negated variable ~X does not occur n
A, then (pX)A and (#X])A are also formulae of L.

5. 1T A is a formula of £F and the negated variable ~X does not occur in
A, then for every nalural number & > 0, (:u}‘:)(}A is also a formula of
£+

I
ID1), 1D2 —  (ID3).
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Embedding the omega-proof system in the circular proof system
Assume we are given the lollowing Tt prool ol (uX)OX, (rY)OY:

—r

(uX)OX, T
O((pX)0X), &

- (uX)OX, &T
(uX)OX, T (X)X, (vY) Y
O((X)OX), TS O((X)OX), O(('Y)OY)
X)OX, oT ¥ (uX)OX, O((11Y)<Y)

i

(X)X, (7'Y)OYY (1X)OX, (12Y)OY -
(X)0OX, (vY)OY X W
(uX)OX, T (XX
O((uX)OX), ST \S(QD(Q\DMO\F :
(pX)OX, OT (LXRAOXNOT (uX)OX, (rY)OY
(1X)EX, (1Y) Y . (X)EX, (VY)Y Q\h\ ((uX)OX), O((rY)OY)
O ((peX)0X), @((zle)QY) O((uX)OX), S ((rY)OY) Y,UIX) X:, O((UY)OY)

(1 X)OX, O ((r'Y)OY) (uX)OX, S((vY)RY)
(1X)OX, (12Y)OY (1X)OX, (1Y) OY ‘;_/ (uX)OX, (VY)Y
(pX)OX, (Y)OY (uX)OX, (rY)OY )



A crucial ingredient to this construction is a cardinality argument which
shows that after dropping the iteration mmmbers, there will be two identical
sequents with the same distingmished formula. The following function pro-
vides an upper bound on the munber of dillerent sequents (taking also into
acconnt the different possibilities for the distingunished formula) that may

occur in a proof of I' after dropping the iteration numbers.

Definition 6.1. Let £ the function assigning to cach £ sequent I a natural

number as follows:

where

FL(T )

f(T) i |FIL(T™)] - 2B 2

15 the cardinality of the Fischer-Ladner closure of T

1.

The pruned proof tree is a finite tree. When an instance of [1.w) is
treated, then a branch is selected and only that branch contributes to
the construction of the prmed proof tree. Therefore there 15 no infinite
branching i the pruned proof tree.

. In the construction of PPT (7). the end-sequent T, (#X)B has been

dropped. The pruned proof tree PP7T {m) ends with I, (#*X)B. There-
fore, at this point, (=) is not an instance of (A

K

- In the sequel we will construct a TP preprool from a given pruned

proot tree PPT. In the conrse of this construction we will drop all
the iteration numbers occurring in the sequents of PPT. Note that
dropping the iterations number in the above example makes (] an
instance of (Al

. If we had kept both the end-sequent I, (1X)B and its premise I, (X8

in PPT (), then dropping the iteration numbers would leave us with
an inference where the premise and the conclusion are equal. Thus we
can drop the end-sequent.

Example 6.3. If 7 is a T;.f.’_ proot, then we denote the pruned proof tree of T
by PPT (7). Assume we are given the following T;;, proot:

I (X8
I, A T, (XB
A A (rX)B

Let us now constract the corresponding pruned proof tree, In a first step we
obtali:

I (X5
I A s (wX)B

whore wp i the subproof derivine I, (22X, When we construct PP (w0,

then we gt
_— )}_/’_#_r
1'_"':"-'? |".'|:£|_I{ |
ra

L ¥8
T. A& {eX s

whoere &= (T, (2087, We make the following observations,



Theorem 6.6. For all closed £, formulae 1) we hove

T ' D > TPEL D

Ji—

Proof. Given the 17, proof of £, we can construct the corresponding primed
prool tree and [rom that a preprool of D according to the Delinitions 6.2 and
6.2, Il remains Lo show that every inlinite path ol the preprool contains a
p-thread. First, we notice that an infinite branch can only occur beeause of
Condition Ja in Definition 6.5, Aszsume that we are given an infinite branch,
Let By, Bs. ... be a thread of thas braneh that contains o Iormmla of the [orm
X)A for which Clondition 3a has heen applied. Suppose that this thread
contains the formula (@Y 5 infinitely often. Then this thread must be of the

TOTTN
e WZE Y B, (Z)C. ... (3

such that there is a loop becanse of Condition 3a for (¢#Z)C. Thus there must
b a thread of the [ornmn

e (uY)B, . (1 2)C, ...

K

i the original T, prool of 1Y (note that this thread need not be the same as

(3), there may be different formulae at the ... positions). Applving Lemma

411 to this thread vields that Z is higher than Y in D, Thus the infinite

branch contaims a - hread, »

Theorem 7.1. The system TP is sound.

Corollary 7.2. Lel A be an rrrvuda.

We have

A 15 valid.



