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FIXES EN LOGIQUE
Second-order logic and arithmetics
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Introduction to system F



Deéfinition 1.1 ( Formulas of second-order logic)

1  Definition of second-order logic IQ} / - ‘“‘B_( - %haﬁl':' (ﬂ

Let us assume given as countable set of first-order variables (V'), a first-order signature(L) and the

associated set of terms T defined as usual: L |; \ C, %
t, 1

=2 flt, ... 1n)

where | is a function symbol of arity n. One also assumes that function symboles of arity n are in
bijection with primitive recursive functions of " — I (in particular, symbols 0 and S are available),

One considers a countable sot of second-order variables (X, Y, Z,--- € V?) structured by arity (V2 =
Uiew V?) and disjoint from £. One defines the set of second-order lormula by induction as follows;

ABRCu=t=u|Rty . b)) X )| A= B ¥e.A| ¥X.A

with ¢, w and the t; being first-order terms, R is a n-ary relational symbol from Land X < V‘E One ﬂhﬂn
also uuie (t1,...,ty) € X In place DfX{h ). '} ,\,i---'IL
(Juantifiers bmr:f respectively first- and .E.ecmld order variables, #\

Définition 1.2 (Second-order substitution)

One defines a substitution operation for second-order as follows:

If A and B are second-order formulas, X a n-ary sccond-order variable and x, ... x, first-order vari-

ables, one writes A{B/X (x),...,x,)} for the formula obtained by replacing, in A, every [ree occurrence
of X(t1,...,t,) with B{t1 /a1, ...t wn}.

Exemple 1.3 - E% / j}"‘ o "‘:S‘

For instance, 0 € X{(S0 = x)/X (x)} = (S0 = 0).







Définition 1.4 (Second-order natural deduction)

Second-order natural deduction, NK*, is obtained by considering the usual classical natural deduction
system for first-order logic, NK, over formulas of second-crder Iogique, extended with the two following

interence rules: H. EHC] {—[ [H:Snk

v,;/wﬂ) () B e

Ao

VXA ¥2e(B)) A=o0)
A{B/X(x1,...,7,)]}

(%) The inference rule Vi can only be applied if X does not occur free in the non-discharged hypotheses
of the deduction of conclusion A.

Remarque 1.5

Note then it is significant to write explicitely in the rule lable the formula B by which one instanciates
the variable in the second-order quantifier elimination rule. We shall come back to this point later.
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Exemple 1.6







A{B;’:X(iﬁ youo :iﬂﬂ-)}

(V2e(13))

(%) The inference rule ¥4i can only be applied if X does not occur free in the non-discharged hypotheses
of the deduction of conchision A.

N
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Let d be a universal cut, that is a deduction of formula A{B/X} of the form:

, /. (n
eI Z%/*(“ ,_q‘;kb A‘Z /7&

d A{B‘;@ffm a0

The reduct/contractum of this cut i1s the deduction:

-

o
!

where d’{ 3/ X} represents deduction d' in which every occurrence of variable X has been replaced by for-
mula 3. The deduction so obtained is a valid deduction precisely because X does not occur free in the
undischarged hypothese of d” and this also explains the need to make explicit the name of formula I3 in the
deduction.)



e
A\
Définition 1.7 (A=xioms of second-order arithmetics, HAq, PA;;) b/fj’
One considers the formula Int(2) =VX.0e X = (Vyye X = S(y)e X) =z e X, X (O\ )

The theory of second-order arithmetics (called HAs or PAs depending on whether one considers
intuitionistic of classical logic) is given by the following axioms:

B
e Fra Ly p = | | | | YX(S(/‘@\\
o Elciniz = Ve, yr=y=VZ(zc Z=yc Z) S(‘gﬁéx :

Vo« 7 (90 0\ u
o 72 Ini(z) \jﬁ: (SR =0\ =>,L. = \(/‘A\ ((S(/ﬁ:: G) QEWXD'

o a3 well as, for every svmbaol of primitive recursive fimetion, a universally closed tormula expressing
the definition of this function, this will be noted Ep;imgrec, the primitive recursive axiom schema.

Exemple 1.8 \V X X .
The following formulas are two examples of axioms in FprimRec: — ﬁb \v/e_ (@ ’
AN

e I, =Vz.S(z)#0

[I>110

e Vr.Pred(S(z)) =
o (Wrax+0=u)N VeNya+S(y)=S(x+y)). \\\ B




Proposition 1.9

The following formulas which are axioms of first-order arithmetics, are now provable from the other
AXIOINS:

o Py 2VaNyS(z)=S(y) =z =uy;

¢ Esym EVaVyr=y=y=ua;

p

1 Doy p
a J’_L'Trans —_— #I.HHHE,I —_— y — {‘-y = & _:'.:' T — E_'|;

A

L

o« B = VeVya =y = ul{x/z} =u{y/z}, lor any term u.

Démonstration: Une proves that £ 1s provable in PA2:

FF"rﬂdl[E-f:jl_:l
- . Subst , ['?’Le‘|2 . ,
"'._.f';':.F'rEdES(EH —3 le" HEPFEd[S(Z” = ¥ {Il'jl,{:) S{.‘IT] —— S{y) = F’rede[:r)} —— F’red[S[y” / [S(EJI — S(H}Ir . P)
FEsym  Pred(S(z)) — a (= EW“ FTrans Pred(S{yl) =y Pred(S(x)) = Pred(S{y)) (o |
E'trans @ = Pred(S(x)) S Pred(S(x)) =y o L
T = ?_f . {: E]
L (= i)*
S(z) =Syl =z =y 7y’

VeNy.S(x) =Sy) ==y

The olher axioms are lelt as exercises.



Proposition 1.10

In the same way, the following rule is derivable in PAs:

t=u A{t/x}
Aujr]

o

(=e)

Démonstration: Equality elimination is actually derivable in PA, (as well as its symmetric rule):
£l cibniz
t=u= (YL.2(t) = Z(u))
NZZ(1) = A(uw)
i i {,\?HE) f
A{t/a} = A{ufx) Aftfa}
_ : : : (=

_ = e
AMu/z) = e)

vie)?
( ) t=u t
(= c)




2  Definability of other logical connectives

Définition 2.1 (Second-order encoding of logical connectives)

One defines the following formulas:
e L 2VX.X;
e ANBEVX. (A= (B= X)) = X;
e AVBE2VX.(A= X)= (B= X)= X;
e IX.A2VY.(YX.A=Y)=Y.
. EILQH:.\‘((V (\hﬂ-ﬂy):‘)’*

Démonstration: e The elimination rule for the absurdity is definable:

= (v¥e(4))

One thus has intuitionistic logic for {free from minimal logic.



e [ntroduction and elimination rules [or conjunctions

¢ ANBEYX.(A= (B= X)) = X

r r\ﬂ.'n..l'l.?'ll' A

' B= X)) = X;
are derivable:

[‘4]61 . 3
_ (= 1)
I d: AN B I (\"T,.rfgﬁ(;')‘ljl B _:"' A (:5 .{,jﬁu
(A= (B=A)=A A= (B=A)
v, (= e)
51 (= )"
(A= (B=B))=2~8 A= (B = B)
B (= e)
A= (B=X)" da:A .
B = X =€ 4B
Y (= e)
— = 1)
(A= (B= X)) =X ( *,.?J
| ) (7%)

ANB



¢ Introduction and elimination rules for disjunction are derivable:

A= X]* da: A
X
(B= X)= X
(A= X)=(B= X=X
AV B

(= ¢)

i "‘-.;‘_I
' tﬁ'“ ?-J'

(= )"
(v*i)

IB— X|" dg:B
X (s .Fﬁ"

(B— X)—= X =

(A= X)= (B> X)X

AV B

L da [A]7 ... [A)°
d . .:ﬂl W/ B S B {r__;'r ) : d
. ~ (V=e(C) — (= )" ; Wl
A=0)=>Bo0)so VA G55 D O
— (= ¢ L (=)
(B = () = C B=C"
" “ (= e)




Introduction to system F

1 Definition of System F

Définition 1.1 ( Types of system F)

Let us consider an infinte, countable set of type variables (or second-order tyvpe variables), Vg. Svstem F
Lvpes arc given by the grammar:

T.UV =X |U +V|¥X.T

WX.T binds X in T, so that types are considered wiih the expecied notions of free and bound (tvpe)
variables, capture-free substitition of an F-type for a variable (written T{U /X }).

Deélinition 1.2 { Cheerele-stiple Sipslenn F

Curry-style System F
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Définition 1.2 ( Church-style System F)

One considers, for each type T of F. an infinite countable set of variables for this tvpe, V7.
Church-style Svstem F oterms are the least set such that:

e [or any variable x in V7, 27 is a term of type T (with free variables {x});

o For any term v of type V and any variable x in V¥, Ae% v is a term of type U — V (with free

variables fo(t) " {x});

e Forany termst and u of respective types U — T and U7, (f)u is a term of tvpe T' (with free variables
Ju(t)y U folu));

e For any type variahle X and anyv term t of type T, AX .t 1s a term of type YX. T under the
condition that, for any free variable libre » of 1, X does not occur free in the type of
r (with free variables fo(t)):

e For any term t of type ¥X.T" and any type U of F. (1)U is a term of type T{U/X} (with free
variables fv(t)).

Proposition 1.3

Ift iz an F-term of type T, » is a variable of type U and u is an F-term of type U, then {{u/r} is an
F-term of type T. having the free variables as (folf) ' {x}i U folu).

Proposition 1.4

If ¢ is an F olemn of tvpe T and £ X Is a vpe variable (hat does nol occur free In the (ree vartables of &,
then for any F-type [7, t{U7/ X} is an F-term of type T{U /X }, having the same free variables as t.

The previous propositions ensure that the following definition s meaningful:

Définition 1.5 (Dynamaecs of F)

Church-style F-terms are eguipped with two reduction rules:

[ At —+ t{uf.-"',?'.}
AXANU g U/ X)

T'he first rule is called F-reduction, as usual, while the second is callod universal reduction.




Curry-style System F

As for the simplv-typed case, Curry-style svstem F consists in the pure A-calculus together with a tvping
relation given by a type system, inspired by second-order natural deduction. That is simply the type system
for simply-tyvped A-calculus exgtended with the two following typing rules:

I'=t: 71

regavxr b )

Lk VXT
I'ki:T{U/X)

Ye(U)

() The inference rule ¥i can only be applied if X does not occur Iree in the type ol (the variables in) I'.
The judgement that a A-term ¢ appear in conclusion of a typing derivation with type 1" under context I
will be written I' =g ¢ : 7T



Relations between the two presentations

Définition 1.6 (forgetful map)

One defines inductively a type-forgetting map from Church-style F-terms to pure A-terms:

o [x1]” =x;

| | o AX.t] =11
° _Jxr::T.?‘__ — .t

o [()u]l = ([f] ) ]u

o [(O)T]" =1

Proposition 1.7

Let £ : T be a Church-stvle F-term with free variables libres among (:f:_f"':]l.,:.;{“. Then xq : Ty.,...m1,, -

1o Fe [t] 7T is derivable in (Curry-style) F.

Proposition 1.8

A tvpe derivation d for a judgment T Fg ¢ T is isomorphic to a Church-style term v - T' the free variables
of which are among the variables of I (and typed according to U. In addition, u]™ = t.




Lemme 1.9

Universal reduction is strongly normalizing in (Church-style) syvstem F.

Reductions in Church-style and Curry-style system F can also be compared:

Proposition 1.10

1. The type-crasure of a (Church-style) normal form is a normal form.

2. If t reduces to u with a universal-step, then [I] = |u]
3. If t reduces to u with a 5-step, then [t]” reduces to [u]™ with a 3-step.
4. The previous statements show that if [t|~ is normal, reductions from t contain only universal sieps.

iy

. If [t]” reduces in one step to u, then ¢ reduces in at least one step to some v such that [v]” = w.

Finally, one can state the result we expected:
Théoréme 1.11

Weak (resp. strong) normalization of Church-style system F is equivalent to the weak (resp. strong)
normalization of Curry-stvle system F.




Finally, one can state the result we expected:

Théoréme 1.11

Weak (resp. strong) normalization of Church-style system F is equivalent to the weak (resp. strong)
normalization of Currv-style svstem F.

Démonstration : l'or weak normalization, the reasoning is direct and sumple: Assume F is weakly normalizing
and let £ be a A-term which is typable in Curry-style F. We know that there exists « such that [u]” = ¢

and that by hypothesis, 2 has a normal form 2. The previous propositions ensure that { —*[v|™ which
is normal. In the other direction, if every A-term which is typable in Curry-style F normalizes, let us
consider some term ¢ of Curry-style F. We know that [t]  normalizes to u and that there exists v in
F such that { —" v and [v] = u. Let us remark that v is not necessarily normal but that, by the
previous propositions. all its reductions are universal, which we know to be stronglyv normalizing.

For strong normalization, the reasoning is shightly less immediate. Assume that there exists a term ¢
typable in Curry-style system F from which an infinite reduction sequence can he drawn. We know that
there exists some (Church-style) F-term w such that [u|” = ¢ and the previous propositions ensure that
from this term. an infinite reduction sequence can also be build, By contraposition, strong normalization
of /" ensures that every pure terme that is typable in (Currv-style) system F strongly normalizes, Assuine
now that there exists some F-term ¢ having an inhnite reduction p. By strong normalization of universal
reduction, we know that p contains infinitely many J-reductions from which one conclude that [f]~ also
has an infinite reduction.



