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Introduction to system F

1 Definition of System F \fx E/

Définition 1.1 ( Types of system F)
Let us consider an infinte, countable set of type variables (or second-order tyvpe variables), Vg. Svstem F X @ ca é‘ ,..h).

tvpes are given by the grammar: A
N\_ — O -

T.UV =X |U +V|¥X.T

WX.T binds X in T, so that types are considered wiih the expecied notions of free and bound (tvpe)
variables, capture-free substitition of an F-type for a variable (written T{U /X }).
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Définition 1.2 ( Church-style System F)

variables fo(t) " {x});

Foltyu foelu));

r (with free variables fo(t));

variables fu(t}).

Gor ko T

g AN T

One considers, for cach tvpe T of F, an infinite countable set of variables for this type, V7.
Church-sivile System F terms are the least sel such that:

e [or any variable z in V7, 27 is a term of type T' (with free variables {z}):

o For any term v of type V and any variable x in VY, Aa% v is a term of type U — V' (with [ree
e hor any terms t %ﬂ 1 of respective tvpes U — T and U, (t)u is a term of type T (with free m;rmMQ

e For any tyvpe variable X and any term t of type T, AX.A is a term of tyvpe ¥X. T under the
condition that, for any free variable libre & of 7, X does not occur free in the type of

e For any term ¢ of type VX.T' and any type U of F, (£)U is a term of type T{U/X} (with free

Proposition 1.3

Ift is an F-term of tvpe T, x is a variable of type U and u is an F-term of type U, then t{u/x} is an
F-term of type T, having the free variables as (fo(t) '\ {x}) U feiu).

Proposition 1.4

Itt 15 an F term of type 1" and if X 15 a type variable that does not occur free in the free variables of t,
then for any F-tvpe U, t{U/ X} is an F-term of type T{U/ X}, having the same free variables as {.

The previous propositions ensure that the following definition is meaningful:

Définition 1.5 (Dynamics of F)

Church-stvle F-terms are equipped with two reduction rules:

(Ardtju  ——g Hu/x}
(AX.HU e HU/XY

The first rule is called j[-reduction, as usnal, while the second 1s called universal reduction.






Deéfinition 1.2 { Church-style System F)

Oree consicders, for each vvpe T ol B, an indinite countable sei ol variables Tor ihis (ype, V1
Chuareh-style System Foterms are the least sot such that:

: ' y T o . . ) . -

o For any variable v in V7, 2™ is a term of ope T (with free variables {z]) ); 0\ ‘ C i
o For anyv term v of tvpe Voand any variable @ in VY, Ae® o s a term of tvpe U7 3 1 {with free

varialides fol0) T )

el

o For any terins b and o of respective types [0 — Tand U, (L iz a terin of Lype T (with (ree variables . ‘
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condition that, for any free variable libre r of {, X does not occur free in the type of y >
x {with free varinbles fo(t))

e For any rerm & of type X7 and any tvpe I7 of F, (117 is a term of fype T{U7X ] (with free
variahles folt) ).

Proposition 1.3

If t is an F-term of type T, @ is a variable of type U and w is an F-term of type U, then t{u/x} is an
F-term of type T, having the free variables as (fv(t) \ {z}) U folu).

Proposition 1.4

It t is an F term of tvpe 1" and it X is a type variable that does not occur tree in the free variables of t,
then for any F-type U, t{U/X} is an F-term of iype T{U// X}, having ihe same [ree variables as {.

The previous propositions ensure that the following definition is meaningful:

Définition 1.5 (Dynamics of F)

Church-style F-terms are equipped with two reduction rules:

(Axt)u —y tH{u/x}
(AN U —y H{U/X}

The first rule is called [F-reduction, as usual, while the second is called universal reduction.



Curry-style System F ) i\x . 1:; </E}U

As for the simplv-typed case, Curry-style system F consists in the pure A-calculus together with a typing
relation given by a type system, inspired by second-order natural deduction. That is simply the type system
for simply-typed A-calculus exgtended with the two [ollowing typing rules:
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The judgement that a A-term ¢ appear in conclusion of a typing derivation with type 1" under context I
will be written I'g ¢ : T
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Relations between the two presentations

Définition 1.6 (forgetful map)

One defines inductively a type-forgetting map from Church-style F-terms to pure A-terms:

o [x1]” =x;

o [Nl .t = )sf}':[?z.] :
- . \J

o [(Du]l ={([t] )

o [AX.1] =[f]

o [(O)T]" =1

Proposition 1.7

Let £ : T be a Church-stvle F-term with free variables libres among (:f:_f"':]l.,:.;{“. Then xq : Ty.,...m1,, -

1o Fe [t] 7T is derivable in (Curry-style) F.

Proposition 1.8

A tvpe derivation d for a judgment T Fg ¢ T is isomorphic to a Church-style term v - T' the free variables
of which are among the variables of I (and typed according to U. In addition, u]™ = t.




Lemme 1.9

Universal reduction is strongly normalizing in (Church-style) syvstem F.

Reductions in Church-style and Curry-style system F can also be compared:

Proposition 1.10

1. The type-crasure of a (Church-style) normal form is a normal form.

2. If t reduces to u with a universal-step, then [I] = |u]
3. If t reduces to u with a 5-step, then [t]” reduces to [u]™ with a 3-step.
4. The previous statements show that if [t|~ is normal, reductions from t contain only universal sieps.

iy

. If [t]” reduces in one step to u, then ¢ reduces in at least one step to some v such that [v]” = w.

Finally, one can state the result we expected:
Théoréme 1.11

Weak (resp. strong) normalization of Church-style system F is equivalent to the weak (resp. strong)
normalization of Curry-stvle system F.




Finally, one can state the result we expected:

Théoréme 1.11

Weak (resp. strong) normalization of Church-style system F is equivalent to the weak (resp. strong)
normalization of Currv-style svstem F.

Démonstration : l'or weak normalization, the reasoning is direct and sumple: Assume F is weakly normalizing
and let £ be a A-term which is typable in Curry-style F. We know that there exists « such that [u]” = ¢

and that by hypothesis, 2 has a normal form 2. The previous propositions ensure that { —*[v|™ which
is normal. In the other direction, if every A-term which is typable in Curry-style F normalizes, let us
consider some term ¢ of Curry-style F. We know that [t]  normalizes to u and that there exists v in
F such that { —" v and [v] = u. Let us remark that v is not necessarily normal but that, by the
previous propositions. all its reductions are universal, which we know to be stronglyv normalizing.

For strong normalization, the reasoning is shightly less immediate. Assume that there exists a term ¢
typable in Curry-style system F from which an infinite reduction sequence can he drawn. We know that
there exists some (Church-style) F-term w such that [u|” = ¢ and the previous propositions ensure that
from this term. an infinite reduction sequence can also be build, By contraposition, strong normalization
of /" ensures that every pure terme that is typable in (Currv-style) system F strongly normalizes, Assuine
now that there exists some F-term ¢ having an inhnite reduction p. By strong normalization of universal
reduction, we know that p contains infinitely many J-reductions from which one conclude that [f]~ also
has an infinite reduction.



Définition 5.1 (Some data types in System F)

et us consider:

| = VXX

1 =1D =VX.(X - X);

Bool = VX.(X — (X — X));

Nat = VX (X — (X = X) — X);
TxU=VX(U>V X)) X);
T+U=VX.AT = X)—=(l/ 5 X)—= X);
DNE=¥vX.((X » 1)~ 1) > X;

List(T) =vX.X - (T — (X - X)) =+ X;
List =vYVX.X » (Y » (X + X)) » X;

Tree(T) = VXX = (T — X) = X) = X;
Tree = YY¥X.X — ((V = X) =+ X) - X.

Ceg. N
5r E - ~\](~Uj é
SR - U

VN T P e

N ch

O
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The is no closed term t such that b £ : L. H’ 5;,1
\

Proposition 5.3
It g t 1D, then t Y AL T, [/‘ﬂ

Proposition 5.4
It Fpt:Bool, thent ——% Aw. Ay ort —— 5 Ar. Ay. .

Proposition 5.5

[ t: Nat, then ihere exisis an natural n such that { —% Az. As. (s)"z.

Proposition 5.10

oxists

r"ul’[:. }\?

Let T he a rvpﬁ let B ¢ : List(T). Assuming that . and v are two variables of system F, there

and closed terms aq.,. ... 1, such that I—F ea; 4 for 1 < ¢ < n such that t b

nl({:*_, ag ... ({1, u.ﬂr,l[]}}.



2  Weak normalization of system F

2.1 Introducing reducibility candidates the natural extension of reducibility would be:

Tn order to extend the reducibility technigue from simple fmes to System Foome faces a difficalty, WN . }
REDYN {.X:l _ NDITI’I[..Y) : RED ["fXF ] = {Jf XU
— REDYWN(U/ 5 V) = {t: U — V:Vu € REDWN(U), (£) u € REDY™N(V)}.

for all type V, () V € REDWN(I7 {V/X)))

But this would be an ill-formed definition

To solve this problem, the idea will consist in avoiding to defline reducible terms for ecach tyvpe but,
rather to define an abstract notion of set of reducible terms, from hasic properties it should satisty, and to
axiomatise the notion of reducibility in some sense.

From there, one will define a notion of parametric reducibility from wvaluations which will associate
reducibilily candidates to cach type varlable.

To proceed, one shall therefore identily the characteristic of candidates which are given by the propertics WN _ ,
_ . . : C o the zets RED™"™(T") are closed by 3-expansion;
that we need for the theorem. There are actually two properties which are erucial to prove weak normalization

in the simply typed case: o the sets REDY™(T) are adapted.
Définition 2.1 (Reducibility candidate)

A reducibility candidate of type T is a set R of A-terms of type 1" which satisfies the following two

conditions: \{1 ~+ t: ~ s %&-}CQJ— teRMJuﬁ, M,“‘T",.,\’ M—h::bf[t:\, MGQ

e (CR1) R is closed by 3-expansion;

e (CR2) Neut(T) € R C Norm(T).

One shall denote by CR(T') the set of all reducibility candidates of type T'. Note that for any T, Norm(T') &
CR(T) so CR(T) is never empty-




2  Weak normalization of system F
Définition 2.1 (Reductbility candidate)

A reducibility candidate of type T is a set R of A-terms of type T which satisfics the following two
conditions:

e (CRI1) R is closed hy [-expansion;
e (CR2) Neut(T) € R C Norm(1).

One shall denote by CR(T') the set of all reducibility candidates of type T. Note that for any T, Norm(T") €
CR(T) so CR(T) is never empty.

If R is a reducibility candidate, there is a2 unique type T such that B ¢ CR{T], this type will be noted t ; U C’ &
Type(R).
A wm.hm.tim'@ﬁ a partial function from tvpe variables to reducibility candidates the domain of which., —r—%
i3

noted dom(g), is finite. One shall write p[X = K] for the valuation p’ of domain dom(p) U { X} such that:

PX)=R P =pY)siY # X
One shall say that a valuation p covers a type T (resp. a term t :T) it its domain contains all the free

tvpe variables of T (resp. of T' and of the types of the free variables of ).

Définition 2.3 (Initial valuation, pr)

Let T' = X5....,X,, one defines the initial valuation (or default valuation) on I', pr as the valuation

dedfined on I' such that p-{X;) = Norm{X;).



A valuation induces a tyvpe substitution:
Deéfinition 2.4 (T7, 1)

Let p be a valuation, one defines the type substitntion:

o XI'=X, if X & domp; U if X € domp and p(X) € CR(U)
o TP =T{XI/X;.1<i<n} if the free variables of T are the X,.... X,,.
One also defines a substitution on terms:

= t{ XX, 1 <i<n}.

Remarque 2.5

In particular, if the free type variables of T and t are all in I', one has T°" =1 and t"" =,

Définition 2.6 (REDYN ,(T))
REDWN (T} is defined by induction on T' (if p covers T):

e RED"M,(X) = p(X):
e RED"N (U » V) ={t: (U — V) /vu € REDWN (1), (t)u € RED™N,(V)};
e REDN (VX.U) = {t: (VX.U)"/VV ¢ Type,YR ¢ CR(V).(t)V ¢ RED""N | x._g(U)}




2.3 Proof of the normalization theorem

The normalization theorem relies on the following two lemmas:
Lemme 2.7

For any tvpe T and any valuation p covering T, REDYWN W(T) € CR{'R

Lemme 2.8 (Adequation lemma)

- . P A . ) .
Let t - 1" be a Church-style F-term of free variables (x,* |1 <i<,. then for any valuation p covering { and
for any wu; ¢ REDWNI}(U;_}? 1 << << n, one has: #° {u; /e, 1 <<i<<n} C REDWNP{T}.

Théoréeme 2.9

Every term of (Church-style) System  F (wealkly) normalises.

Démonstration of the normalization theorem : The proot is identical to the simply-typed case.

e i 7 \ i : i

Let £ : 1" be of free variables (x, " )1<.z. and let 1 be such that is contains all the free variables
occurring in T and in the T;. One has TP =T and 'T.I'_fi:'qu = T;. Since the HEDWMP[U] are candidates,
one has by (CR2) that 1 <4 < n, :'r.'?*' = REDH"VNP‘,(TE-} since (term) variables are neutral.

Adequation lemma ensures that ¢ {:.:‘?* fri, 1 << n} = ¢t ¢ RED"™ (1) € Norm(1").



Lemme 2.10

Ift VX T, and U is a type, then (1)U normalizable implies that t is itself normalizable.

Lemme 2.11 (substitution)

Let V. W be tvpes and p be a valuation covering V, W. One has:

RED™™,(V{W/Y}) = RED™ v _gepwn oy (V).

Démonstration of adequation lemma: The lemina is proved by induction on the structure of term, as usual.

The case for variable, lambda-abstraction and application are treated as in the simply typed case. One
only details the constructions which are specihec to F:

e [t = AXu, U = ¥X.U" and w : U'. One can assume that X is not in the domain of the
valuation, renaming the bound variable if needed. Let V' be a tvpe and [t € CLi(V) and let
w' = wP = Ly /) By induction hypothesis, one has »' € RED™M olx:— g (T) for any R € CR(V)
and because (t7{w;/z; })V — v{u /o H{V/ X} = pPlX=5 lug o} = w' © REDW”FJLH:;,_J[T}.
Finally, closure of candidates by anti-reduction ensures that (#7{u;/x; 1)V € REDYM pl X =Tt (7).

o If t = (u)V, with uw : YX.UU'. Let us set U'" = U{V/X} and v' = w{u;/z;}. We have, by
induction hypothesis that v’ ¢ RED™",(¥X.0/) so that (u')V* ¢ REDW”M x=n/(l/). But we

also have (u')V# = t"{u;/z;} and one can conclude, by using the lemma on substitutions, that
t"{u;fx;} € RED™N,(U".









