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(QUANTIFICATION DU SECOND-ORDRE ET POINTS FIXES EN
LOGIQUE
Realizability in bystem F and applications to strong normalization

Today:

- finish the proof of Strong normalization.

- consider some applications of realizabillity.

- back to second-order logic and second-order arithmetic.



Définition 2.4 (Pole)

Given a set of terms Ag containing the variables, a Ap-pole is a subsct of P satisiving tollowing two
properties ol closure by anii-reduclion with respecl to Ay:

I If (t{u/x},7) € L and u € Ay, then (Az.t,u-mw) € L.

2. If(t,u-m) € L then ({(t)u, 7)€ L

Définition 2.9 (I1y, Fu,)

Given a Ag-pole L, Iy denotes the set of stacks built from elements of Ag.
One shall write 5, for the set of non-empty subsets of Ilj.

D¢éfinition 2.10 ( Valuation)

Given a Ag-pole |l , a valuation v is a function from type variables to subsets of Tlj.
Given a valuation v, X a type variable and F C Ty, v[X := F]| is defined as the valuation equal to F
on X and equal to v on any other type variable.

Définition 2.11 (Interpretation of a type, falsity value)

Given a Ag-pole 1L and a valuation v, one defines inductively the interpretation | |, of F-types
(taking values in the subsets of Ily) as follows:

o |X]\=v(X);
e [A= Bl ={t-n|te Al e |Bl};

o |VX:A|, = JoC FCIIg ||A‘V[X5=F]'

||, will be called the falsity value of 7.




3 Adequation lemma (Adequacy lemma)

Définition 3.1 (weakly /well adapted valuations)

A valuation v is weakly adapted to a Ay-pole 1L if, for any tvpe T,

|{__.[h|.h,r C ﬁu.

A valuation v is adapted (or well-adapted) to a Ag-pole L if, for any type T,

V g |:th|1...r g ﬁfj-

Deéfinition 3.3 (Admassible set of terms)

A set Ap € A is admissible if there exists a Ag-pole 1L and a valuation v which is well-adapted for 1.

Lemme 3.4 (Adequation lemma)

Let v be a (weakly) adapted valuation for a pole 1L and let t be a term such that z, : Uy,...,x, : U, Fg t: T
& is derivable in Curry-Style F. Let (u;)1<i<n be realizers of the (U;)i<i<n (te. u; =, U; for 1 <1 < n),
then t {u;/x;;,1 <i<n}t,T.




Lemme 3.4 (Adequation lemma)

Let v be a (weakly) adapted valuation for a pole I and let t be a term such that x, : Uy,...,x,, : U, Fgt:
1" is derivable in Curry-Style F. Let (u;)1<ij<pn be realizers of the (U;)1<i<n (ie. u;l, U; for 1 <i <n),
then t{u;/x;,1 <i<n}t,T.

Démonstration: One proves the lemma by induction on a typing derivation d of x; : U; Fg & : T. (Note that
there may exist several such typing derivations since we work with Curry-Style System F...) One shall

write ' = a1 : Uy, ...,an : Up and t' =t {u; /i, 1 <1 < nl.
e If d is an axiom, the property trivialy holds since ' = wu; for some i which realizes U; = T by
hypothesis.

e If dends with — I, one has t = Ax.vo, T =U — V,and zy : Uy,...x, : U,z : UFrpov:V Let
v’ = v{ui/zi,1 <i<n}. We want to prove that t' realizes T for valuation v: one considers a
stack m € |T|,.

There are only two possibilities: either no such stack exists and then t' réalizes T trivially, or o
has form « - 7', with u =, U and =«" € |V|..

In the second case, we know by induction hypothesis that v’ {u/x} -, V from which (v {u/z},7") €
1 and by closure by KAM-anti-reduction of I (more precisely by property 1.) and since u € |U|, C
Ao by (weak) adaptation of v, one also has that (t{w/z},u-7") € L which shows that " +, T
since the stack was chosen arbitrarily.



Lemme 3.4 (Adeguation lemma)

Let v be a (weakly) adapted valuation for a pole I and let t be a term such that x : Uy,..., 2z, : U, Fgt:
T is derivable in Curry-Style F. Let (u;)1<i<, be realizers of the (U;)1<i<yn (ie. w; =, U; for 1 <i <n),

then t{u;/z;,1 <i<n}t,T. Nﬁ
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e If d ends with — FE, then we havd t = (u)v with =1 : Uy,...z,, : Uy Fg u : V — T and
zy:Us,...2pn : Uy b vV for some type V.

One can apply the induction hypothesis to both derivation d. and d., concluding z1 : U1, ... Tn :
U, Fru:V =T and x1 : Uy,... 2, : U, Fr v : V which ensures that v’ = w{u;/z;.1 <i<n}
and v’ = v{u;/xz;, 1 <i < n} realizes respectively V — T and V for valuation v.

To show that t’ realizes T, it is enough to consider an arbitrary stack 7 in |7, and to remark
that v' -7 € |V — T'| and thus that (u',v" -7) € L.

As before v" € Ap and, using the second closure property of the pole, one gets (t',7) € I, which
means, since 7 Is any stack in |T|,, that ¢" -, T



Lemme 3.4 (Adequation lemma)

Let v be a (weakly) adapted valuation for a pole . and let t be a term such that z, : Uy,...,x,, : U, Fgt:
T is derivable in Curry-Style F. Let (u;)1<i<n be realizers of the (U;)1<i<n (ie. u; =, U; for 1 <@ < n),
then t {u;/x;,1 <i<n}t,T.

e If d ends with ¥/, then one has T =VYX.U and 1 : Uy,... 2y : Un Fe t: U where X does not occur
free in the Uj.

To show that t' b, VX.U, let us consider 7 € |[VX.U|,. We know by definition of the realizability

interpretation that there exists F' € Fj, such that @ € |U|,/x.=F]- ';-s'

But since X is not free in the U; the interpretation of U; is the same in v and in v’ = viX := F|, In
particular, the lemma hypothesis tells us that u; =, U; if 1 <17 < n. One can therefore apply the

induction hypothesis to the subderivation of conclusion =1 : Uy,... 2z, : U, B¢ t @ U with respect
tov': t' b, U so that (t',7) € AL which proves that t' b, VX.U.

e If d ends with VE., then we have a derivation d" more elementary than d, which concludes with
z1:Uroooxn : Up bt VXU, with T' = U {V/X} for some V.

Let us consider m € |[U {V/X}|: we need to prove that (t,7) € L. The substitutivity lemma
ensures that m € |U|yix.=v|.)-

By applying induction hypothesis to d', we have t' t, YX.U so for any F' € F,,, we have that
t’ Fox:=r) U, and in particular when F' = |V|s.

We then deduce that (t',7) € I which allows to conclude the proof of the lemma.




Lemme 3.4 (Adequation lemma)

Let v be a (weakly) adapted valuation for a pole L and let t be a term such that x : Uy,...,x, : U, Fg t:
T is derivable in Curry-Style F. Let (u;)1<;<, be realizers of the (U;)1<i<n (ie. u; =, U; for 1 <i <mn),
then t {’HL/Tt 1 <1< n} =, .

Adequation lemma allows to deduce easily that a typed term realizes its type and that typable terms are
in the intersection of all admissible sets:
Théoréme 3.5

If Ag is admissible and I' Fgt : 1", then t € Ag.

Démonstration: Indeed, if Ag is admissible, then there exists a pole I and a valuation v adapted to Ag. The
adequation lemma can be applied to variables which are realizers of any type and t = t{z;/z;} € |T|, C

Ap.

[ ]

To prove strong normalization of F, it is therefore sufficient to prove that the set of strongly normalizing
terms is admissible, that we will do in the following.



4  Application of realizability to strong normalization of system F

One shall now build a Agn-pole L together with a well-adapted valuation v, that i1s such that for every
type T,
V C |T|~.r - ASN-

Lemme 4.2

For any A-terms t,u with u strongly normalizing and w a stack, then if t {u/x} m is SN, (Az.t) um 1s SN.

Démonstralion: Lel (, v, 7 as specilied in the leinma’s staternernt.
Let us consider t' = (Ax.¢) ur and t"” = (¢t {u/x}) 7.

Since t” i3 SN, it comes immediately that t € Asn and 7 € [Igx. Assume, aiming at a contradiction
& # § & & f | & &
that there exists an infinite reduction sequence from t'. Thanks to the ahove remark. this reduction

cannot be infinitely in ¢, v or In .

Therefore one has t' —% (Az.t0) womn —p (to {uo/x})ma —5 ..., but we know that t" —}

(to {uo/z}) 7o —5 ... which contradicts strong normalization of ¢".



Définition 4.3 (Lgn)
Let L gy be {(t,7) € P

()7 € Agn ).

Proposition 4.4

1 gn is a Aepy-pole.

Démonstration : On shall verily both KAM-anti-reduction closure properties:

e the first is a direct consequence of the previous lemma.

e the second is trivial considering the definition of the pole since processes ((t)u,7) and (¢, u - )
correspond to the same A-term (¢) um.

Lemme 4.5
For any F' € F)\

«n: We have, for I gy orthogonality:

Yy C F+

IR
s
wp)
=

Démonstration: Let F' € Fa.,,.
If €V and w7 € F C Fa,,, then (z)7m € Asn so that € F-- and V C F—.

Oft e FJZ as F'is not empty, let m € F. We have (t) m € Agny and therefore it comes that t € Agn.
One deduce that F+ C Agy.

[]



Proposition 4.6

A g is admissible.

Démonstration : Consider pole L sy, one define the valuation vsy such that vsy(X) = Ilsy for any type

variable X.
[t is sufficient to show that for all type T, |T'|vs, € Fsn.

More precisely, one use a stronger induction hypothesis and prove that for any type 7',
as soon as vgy takes its values in Fgy by induction on type T

Tlv‘g‘h,r C FSN

¢ Case T = X. Then | X |, = vsn(X) € Fsn by hypothesis on vsn.

¢ Case T'— U — V. Then, by induction hypothesis, [U|vsy,s |V |vey € Fsn. By the previous lemma,
U ]vey = |U |, contains all variables so that |1'|vey, = [U|vsy * [V |lvsy 1§ non-empty and is a subset
of Mgy since |Uly,, € Asny (by the lemma) and |V, € Msy by induction hypothesis: one has
||T||vs;~.' € Fsn.

¢ Case T'=VX.U. Then |

induction hypothesis.

VXU gy = Urerep [Uvayix-=r) € Fsn since every |U|..,(x-=F) C Fsu by

-
The strong normalization theorem for System F is then a simple corollary of the previous result thanks
to adequation lemma for realizability:

Corollaire 4.7

Every typable tcrm in F is strongly normalizing.

Démonstration: We know hy the corollary of adequation lemma that typable terms are in the intersection of
all admissible sets, so that they are in Asy which 15 admissible by the previous lemma.

[]



5 Some more applications of realizability

LI LUpudliuiull J.a

There is no closed term t such that gt : | .~ “ X.%

Démonstration : Lel us apply realizability: there is Lo show a sel of terins Ag, a Ap-pole and a weakly adinissible
set for this pole, allowing to use adequation lemma and its consgquences.

A is of course an admissible set and we know that () and parc A-poles (this is a general fact) and
that every valuation is weakly admissible for these poles since Aqp = A as noted above.

Let us consider I = () We have then |[VX. X|, = Upep, F =11.

Let us reason bv contradiction and assume that there exists a term ¢ such that = ¢ : VX. X. By

the theory of realizability, we know that ¢ realize universally VX. X (¢, VX.X for any valuation) this
implies that for all # € II, we have (¢, #&lL... which is impossible since I is empty: as a conclusion,

such a term i cannot exist. - c ("d N ( X"“\?c\l
n3

Proposition 5.3 _ B \QX (X X}
If ¢ t ¢ ID, then t —% Az. . Y = > () \X—*X\ME,Q- =3
Démonstration: One shall again consider A as admissible set and consider 1, = {(¢,7) | ()7 —™ x}. This is

= E;.h
of course a pole since the closure properties are trivially met.

Let us consider #% = {0} (ie. the singleton made of the empty stack) and v = [X := £?]. We have
t-hercfﬂrei:r -, Ez (indeed, (z,0) € 1,;) and if =t : VX.(X — X) (so that in particular if it is a closed

term), we hamigt e X — XJSG (t,z - 0) € 1L, which ensures that (£)x —" = by definition du poéle of
the pole.

We have (t)r —" (Az.v)r —5 v —" x so that t —™ Az.v —™ Az.z, QED.



T =N (K= =)

Proposition 5.4 N/
If ¢ t : Bool, then t —*% Az. Ay. = or t —% Ax. \y. u. R
~ .
K- (K=o (=X
Démonstration: The set 1., = 1. U I, is a A-pole. Let us consider valuation v = [ X := {(}] as before.

We clearly have x =, X and y -, X and by adequation lemma, if F¢ ¢ : Bool, thent t, X —\X — X
so that (f)z b, X — X and (t)zy b, X, that is\(t)zy —"z or (t)zy —" y.\ Since t 1s closed,
we have: (t)ry—"(Az.v)zy — (v)y —"(\y-w)y — w—"2 € {x,y;. from which comes that
t —" A\z.v —* Az y.w —* Az A\y.z with z € {z,y}, QED.

L L o000 MR - )
Proposition 5.5 NV\&: TN D I San (X_‘ﬂz\_bx Q"T_Y}

Ift=¢ t : Nat, then there exists an natural n such that t —7 Az. As.(s)" 2

Démonstration: Let s and z be variables. Let us consider Iy, = {(t,7) | 3n > 0, ()7 —"(s5)"2}.

1 nat is a A-pole as before and we can consider the same valuation as before: v = [X := {(}].

We then have of course z -, X (trivial) eand s =, X — X. Indeed, if 7 € | X — X|,, we have
T=t 0 with s (s)" z for some k, so that ()t —*(s)*T12, that is (s,7) € Lnat and s, X — X.

Let then |—|: t : Nat, we have by the adequation lemma, after instanciation, that ¢t =, X — (X —
X) — X and then that (¢)zs F, X — X and (t)zs —*(s)"2. It comes that (t)zs —*(A\z.v)zs —
(v)s —*(As.w)s — w —*(s)¥z or otherwise said, that £ —* Az.\s.(s)¥z, what needed to be proved.

[]




Proposition 5.9

There is no closed term t such that g t : DNE. — \Y]X K&/X—;ﬁl } - 113'_——@ X

Démonstration: Le us reason by contradiction, assuming t is a closed term such that ¢ ¢ : DNE.
Consider A as admissible set and consider L, = {(¢t,7) | ({)mr —" =}. Remember also that every
valuation is weakly adapted wrt A, which is sufficient to apply adequacy lemma.
We know that ¢ realizes universally VX.(((X — L) — L) — X), that is ¢ -, @& ((X — 1) —
1) — X) for any valuation v. Consider in particular ¥ = {@} and ¢ = {z -0} and v; = X = F]
and vp = |X = ]. We have: (i) F,G are non empty; (ii) F,G are disjoint; (iii) F, G have non empty
orthogonal sets. We have { € |[((X — L) —» 1) — X|,, for i € {1,2}.
In particular, for any v € (X — L) — L|,,, (Hu € |X],, = vi(X)*.
For anyv v € X — _|,, and w & | X, (v)w € |L|,, = 0. Since [ X|,, # 0 (as 2 € | X|,, and Az.x &
Xly,) we have that | X — L|,, = @. It follows that |(X — L) — L|,, =0 and (X — 1) — L], =A.
Therefore, for any w € A, (t)u € F- and (t)u € G which means:

e (H)u —"* z (using (H)u e F):
o (t)uxr —* z (using (t)u € G).

But that would imply (2)x =5 « which is not, a contradiction.
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Reals can be represented as ternary relations in PAs using a variant ol Dedeking cuts:
Real| R| = Jitsdsr) A Ini|R| A Bounded|R| A Open|R)

together with: ‘J% %Jna R< J %J“&

S 7
e Infln,m,p,n ., m',p| = (?’L){p +m' )(p) (RIXP—I—m){p').

o [ni[X] = Vn,m,p, ﬂ'f-,l m/, P {X(ﬂa ., p) — Iﬂf[ﬂ‘r: m', p’, n,m, p] — X(ﬂ,: mfjpf)}‘
e Bounded X| = dn,m,pV¥n',m',p" {X(n',m',p") — Infln’,m’,p’, n,m, p|}

o Open] = —3In, m,p¥n’,m’,p {X(@',m',p) — Infln’,m', 9, n,m,p]}.

VR . Resd (R) =



