M2 LMFI – SOFIX # Quantification du second-ordre et points fixes en logique Realizability in System F and applications to strong normalization # Today: - finish the proof of Strong normalization. - consider some applications of realizability. - back to second-order logic and second-order arithmetic. #### Définition 2.4 (Pole) Given a set of terms Λ_0 containing the variables, a Λ_0 -pole is a subset of P satisfying following two properties of closure by anti-reduction with respect to Λ_0 : - 1. If $(t\{u/x\},\pi) \in \mathbb{L}$ and $u \in \Lambda_0$, then $(\lambda x. t, u \cdot \pi) \in \mathbb{L}$. - 2. If $(t, u \cdot \pi) \in \bot$ then $((t) u, \pi) \in \bot$. ## Définition 2.9 (Π_0, F_{Λ_0}) Given a Λ_0 -pole \perp , Π_0 denotes the set of stacks built from elements of Λ_0 . One shall write F_{Λ_0} for the set of **non-empty subsets** of Π_0 . # Définition 2.10 (Valuation) Given a Λ_0 -pole \perp , a valuation v is a function from type variables to subsets of Π_0 . Given a valuation v, X a type variable and $F \subseteq \Pi_0$, v[X := F] is defined as the valuation equal to F on X and equal to v on any other type variable. # Définition 2.11 (Interpretation of a type, falsity value) Given a Λ_0 -pole \bot and a valuation \vee , one defines inductively the interpretation $\|_\|_{\vee}$ of F-types (taking values in the subsets of Π_0) as follows: - $\bullet \ \|X\|_{\mathsf{v}} = \mathsf{v}(X);$ - $||A \Rightarrow B||_{\mathsf{v}} = \{t \cdot \pi \mid t \in ||A||_{\mathsf{v}}^{\perp}, \pi \in ||B||_{\mathsf{v}}\};$ - $\bullet \quad \|\forall X; A\|_{\mathsf{v}} = \cup_{\emptyset \subsetneq F \subseteq \Pi_0} \|A\|_{\mathsf{v}[X:=F]}.$ $||T||_{\rho}$ will be called **the falsity value** of T. # 3 Adequation lemma (Adequacy lemma) ### Définition 3.1 (weakly/well adapted valuations) A valuation v is weakly adapted to a Λ_0 -pole \perp if, for any type T, $$|T|_{\mathsf{v}} \subseteq \Lambda_0.$$ A valuation v is adapted (or well-adapted) to a Λ_0 -pole \perp if, for any type T, $$\mathcal{V} \subseteq |T|_{\mathsf{v}} \subseteq \Lambda_0.$$ ### Définition 3.3 (Admissible set of terms) A set $\Lambda_0 \subseteq \Lambda$ is admissible if there exists a Λ_0 -pole \bot and a valuation \lor which is well-adapted for \bot . # Lemme 3.4 (Adequation lemma) Let \vee be a (weakly) adapted valuation for a pole \bot and let t be a term such that $x_1: U_1, \ldots, x_n: U_n \vdash_{\mathsf{F}} t: \mathsf{T}$ is derivable in Curry-Style F . Let $(u_i)_{1 \leq i \leq n}$ be realizers of the $(U_i)_{1 \leq i \leq n}$ (ie. $u_i \Vdash_{\mathsf{V}} U_i$ for $1 \leq i \leq n$), then $t \{u_i/x_i, 1 \leq i \leq n\} \Vdash_{\mathsf{V}} T$. Let \vee be a (weakly) adapted valuation for a pole \bot and let t be a term such that $x_1: U_1, \ldots, x_n: U_n \vdash_{\mathsf{F}} t: T$ is derivable in Curry-Style F . Let $(u_i)_{1 \le i \le n}$ be realizers of the $(U_i)_{1 \le i \le n}$ (ie. $u_i \Vdash_{\mathsf{V}} U_i$ for $1 \le i \le n$), then $t \{u_i/x_i, 1 \le i \le n\} \Vdash_{\mathsf{V}} T$. **Démonstration:** One proves the lemma by induction on a typing derivation d of $x_i: U_i \vdash_{\mathsf{F}} t: T$. (Note that there may exist several such typing derivations since we work with Curry-Style System $\mathsf{F}...$) One shall write $\Gamma = x_1: U_1, \ldots, x_n: U_n$ and $t' = t \{u_i/x_i, 1 \le i \le n\}$. - If d is an axiom, the property trivialy holds since $t' = u_i$ for some i which realizes $U_i = T$ by hypothesis. - If d ends with $\to I$, one has $t = \lambda x.v$, $T = U \to V$, and $x_1 : U_1, \dots x_n : U_n, x : U \vdash_{\mathsf{F}} v : V$ Let $v' = v \{u_i/x_i, 1 \le i \le n\}$. We want to prove that t' realizes T for valuation v : one considers a stack $\pi \in ||T||_{\mathsf{v}}$. There are only two possibilities: either no such stack exists and then t' réalizes T trivially, or π has form $u \cdot \pi'$, with $u \Vdash_{\mathsf{v}} U$ and $\pi' \in ||V||_{\mathsf{v}}$. In the second case, we know by induction hypothesis that $v'\{u/x\} \Vdash_{\mathsf{v}} V$ from which $(v'\{u/x\}, \pi') \in \mathbb{L}$ and by closure by KAM-anti-reduction of \mathbb{L} (more precisely by property 1.) and since $u \in |U|_{\mathsf{v}} \subseteq \Lambda_0$ by (weak) adaptation of v , one also has that $(t\{u/x\}, u \cdot \pi') \in \mathbb{L}$ which shows that $t' \Vdash_{\mathsf{v}} T$ since the stack was chosen arbitrarily. Let \vee be a (weakly) adapted valuation for a pole \bot and let t be a term such that $x_1: U_1, \ldots, x_n: U_n \vdash_{\mathsf{F}} t: T$ is derivable in Curry-Style F . Let $(u_i)_{1 \le i \le n}$ be realizers of the $(U_i)_{1 \le i \le n}$ (ie. $u_i \Vdash_{\mathsf{V}} U_i$ for $1 \le i \le n$), then $t \{u_i/x_i, 1 \le i \le n\} \Vdash_{\mathsf{V}} T$. Lite 2 m/s It of and with a fither we have to a with a set to a to the and to the set to the and to the set • If d ends with $\to E$, then we have t = (u)v with $x_1 : U_1, \ldots x_n : U_n \vdash_{\mathsf{F}} u : V \to T$ and $x_1 : U_1, \ldots x_n : U_n \vdash_{\mathsf{F}} v : V$ for some type V. One can apply the induction hypothesis to both derivation d_u and d_v concluding $x_1: U_1, \ldots x_n: U_n \vdash_{\mathsf{F}} u: V \to T$ and $x_1: U_1, \ldots x_n: U_n \vdash_{\mathsf{F}} v: V$ which ensures that $u' = u\{u_i/x_i, 1 \le i \le n\}$ and $v' = v\{u_i/x_i, 1 \le i \le n\}$ realizes respectively $V \to T$ and V for valuation v. To show that t' realizes T, it is enough to consider an arbitrary stack π in $||T||_{\nu}$ and to remark that $v' \cdot \pi \in ||V \to T||$ and thus that $(u', v' \cdot \pi) \in \bot$. As before $v' \in \Lambda_0$ and, using the second closure property of the pole, one gets $(t', \pi) \in \mathbb{L}$, which means, since π is any stack in $||T||_v$, that $t' \Vdash_v T$. Let \vee be a (weakly) adapted valuation for a pole \bot and let t be a term such that $x_1: U_1, \ldots, x_n: U_n \vdash_{\mathsf{F}} t: T$ is derivable in Curry-Style F . Let $(u_i)_{1 \leq i \leq n}$ be realizers of the $(U_i)_{1 \leq i \leq n}$ (ie. $u_i \Vdash_{\mathsf{V}} U_i$ for $1 \leq i \leq n$), then $t \{u_i/x_i, 1 \leq i \leq n\} \Vdash_{\mathsf{V}} T$. - If d ends with $\forall I$, then one has $T = \forall X.U$ and $x_1 : U_1, \ldots x_n : U_n \vdash_{\mathsf{F}} t : U$ where X does not occur free in the U_i . - To show that $t' \Vdash_{\mathsf{v}} \forall X.U$, let us consider $\pi \in \|\forall X.U\|_{\mathsf{v}}$. We know by definition of the realizability interpretation that there exists $F \in F_{\Lambda_0}$ such that $\pi \in \|U\|_{\mathsf{v}[X:=F]}$, - But since X is not free in the U_i the interpretation of U_i is the same in v and in v' = v[X := F], in particular, the lemma hypothesis tells us that $u_i \Vdash_{v'} U_i$ if $1 \le i \le n$. One can therefore apply the induction hypothesis to the subderivation of conclusion $x_1 : U_1, \ldots x_n : U_n \vdash_{\mathsf{F}} t : U$ with respect to v': $t' \Vdash_{v'} U$ so that $(t', \pi) \in \mathbb{L}$ which proves that $t' \Vdash_{v} \forall X.U$. - If d ends with $\forall E$, then we have a derivation d' more elementary than d, which concludes with $x_1: U_1, \ldots x_n: U_n \vdash_{\mathsf{F}} t: \forall X.U$, with $T = U\{V/X\}$ for some V. - Let us consider $\pi \in ||U\{V/X\}||_{\nu}$: we need to prove that $(t, \pi) \in \bot$. The substitutivity lemma ensures that $\pi \in ||U||_{\nu[X:=||V||_{\nu}]}$. - By applying induction hypothesis to d', we have $t' \Vdash_{\vee} \forall X.U$ so for any $F \in F_{\Lambda_0}$, we have that $t' \Vdash_{\vee[X:=F]} U$, and in particular when $F = ||V||_{\vee}$. - We then deduce that $(t', \pi) \in \mathbb{L}$ which allows to conclude the proof of the lemma. Let \forall be a (weakly) adapted valuation for a pole \bot and let t be a term such that $x_1: U_1, \ldots, x_n: U_n \vdash_{\mathsf{F}} t: T$ is derivable in Curry-Style F . Let $(u_i)_{1 \le i \le n}$ be realizers of the $(U_i)_{1 \le i \le n}$ (ie. $u_i \Vdash_{\mathsf{V}} U_i$ for $1 \le i \le n$), then $t \{u_i/x_i, 1 \le i \le n\} \Vdash_{\mathsf{V}} T$. Adequation lemma allows to deduce easily that a typed term realizes its type and that typable terms are in the intersection of all admissible sets: #### Théorème 3.5 If Λ_0 is admissible and $\Gamma \vdash_{\mathsf{F}} t : T$, then $t \in \Lambda_0$. **Démonstration:** Indeed, if Λ_0 is admissible, then there exists a pole \bot and a valuation v adapted to Λ_0 . The adequation lemma can be applied to variables which are realizers of any type and $t = t\{x_i/x_i\} \in |T|_{\mathsf{v}} \subseteq \Lambda_0$. To prove strong normalization of F, it is therefore sufficient to prove that the set of strongly normalizing terms is admissible, that we will do in the following. # 4 Application of realizability to strong normalization of system F One shall now build a Λ_{SN} -pole \perp together with a well-adapted valuation v , that is such that for every type T, $$\mathcal{V} \subseteq |T|_{\mathsf{v}} \subseteq \Lambda_{SN}$$. #### **Lemme 4.2** For any λ -terms t, u with u strongly normalizing and π a stack, then if $t \{u/x\} \pi$ is SN, $(\lambda x. t) u\pi$ is SN. **Démonstration**: Let t, u, π as specified in the lemma's statement. Let us consider $t' = (\lambda x. t) u\pi$ and $t'' = (t \{u/x\}) \pi$. Since t'' is SN, it comes immediately that $t \in \Lambda_{SN}$ and $\pi \in \Pi_{SN}$. Assume, aiming at a contradiction that there exists an infinite reduction sequence from t'. Thanks to the above remark, this reduction cannot be infinitely in t, u or in π . Therefore one has $t' \longrightarrow_{\beta}^{\star} (\lambda x. t_0) u_0 \pi_0 \longrightarrow_{\beta} (t_0 \{u_0/x\}) \pi_0 \longrightarrow_{\beta}^{\star} \dots$, but we know that $t'' \longrightarrow_{\beta}^{\star} (t_0 \{u_0/x\}) \pi_0 \longrightarrow_{\beta}^{\star} \dots$ which contradicts strong normalization of t''. # Définition 4.3 (\perp_{SN}) Let $$\perp_{SN}$$ be $\{(t,\pi) \in \mathsf{P} \mid (t) \pi \in \Lambda_{SN}\}.$ #### Proposition 4.4 $$\perp_{SN}$$ is a Λ_{SN} -pole. **<u>Démonstration</u>**: On shall verify both KAM-anti-reduction closure properties: - the first is a direct consequence of the previous lemma. - the second is trivial considering the definition of the pole since processes $(t)u, \pi$ and $(t, u \cdot \pi)$ correspond to the same λ -term $(t)u\pi$. #### Lemme 4.5 For any $F \in F_{\Lambda_{SN}}$, we have, for \perp_{SN} orthogonality: $$\mathcal{V} \subseteq F^{\perp} \subseteq \Lambda_{SN}$$. ### **Démonstration :** Let $F \in F_{\Lambda_{SN}}$. If $x \in \mathcal{V}$ and $\pi \in F \subseteq F_{\Lambda_{SN}}$, then $(x) \pi \in \Lambda_{SN}$ so that $x \in F^{\perp}$ and $\mathcal{V} \subseteq F^{\perp}$. Of $t \in F^{\perp}$, as F is not empty, let $\pi \in F$. We have $(t) \pi \in \Lambda_{SN}$ and therefore it comes that $t \in \Lambda_{SN}$. One deduce that $F^{\perp} \subseteq \Lambda_{SN}$. ### Proposition 4.6 Λ_{SN} is admissible. **Démonstration**: Consider pole \perp_{SN} , one define the valuation v_{SN} such that $\mathsf{v}_{SN}(X) = \Pi_{SN}$ for any type variable X. It is sufficient to show that for all type T, $||T||_{\mathsf{v}_{SN}} \in \mathsf{F}_{\mathsf{SN}}$. More precisely, one use a stronger induction hypothesis and prove that for any type T, $||T||_{v_{SN}} \in \mathsf{F}_{\mathsf{SN}}$ as soon as v_{SN} takes its values in F_{SN} by induction on type T: - Case T = X. Then $||X||_{v_{SN}} = v_{SN}(X) \in F_{SN}$ by hypothesis on v_{SN} . - Case $T = U \to V$. Then, by induction hypothesis, $||U||_{\mathsf{v}_{\mathsf{SN}}}$, $||V||_{\mathsf{v}_{\mathsf{SN}}} \in \mathsf{F}_{\mathsf{SN}}$. By the previous lemma, $|U|_{\mathsf{v}_{\mathsf{SN}}} = ||U||_{\mathsf{v}_{\mathsf{SN}}}^{\perp}$ contains all variables so that $||T||_{\mathsf{v}_{\mathsf{SN}}} = ||U||_{\mathsf{v}_{\mathsf{SN}}} \cdot ||V||_{\mathsf{v}_{\mathsf{SN}}}$ is non-empty and is a subset of Π_{SN} since $|U|_{\mathsf{v}_{\mathsf{SN}}} \subseteq \Lambda_{\mathsf{SN}}$ (by the lemma) and $||V||_{\mathsf{v}_{\mathsf{SN}}} \in \Pi_{\mathsf{SN}}$ by induction hypothesis: one has $||T||_{\mathsf{v}_{\mathsf{SN}}} \in \mathsf{F}_{\mathsf{SN}}$. - Case $T = \forall X.U$. Then $\|\forall X.U\|_{\mathsf{v}_{\mathsf{SN}}} = \bigcup_{F \in \mathsf{F}_{\mathsf{SN}}} \|U\|_{\mathsf{v}_{\mathsf{SN}}[X:=F]} \subseteq \mathsf{F}_{\mathsf{SN}}$ since every $\|U\|_{\mathsf{v}_{\mathsf{SN}}[X:=F]} \subseteq \mathsf{F}_{\mathsf{SN}}$ by induction hypothesis. The strong normalization theorem for System F is then a simple corollary of the previous result thanks to adequation lemma for realizability: #### Corollaire 4.7 Every typable term in F is strongly normalizing. <u>Démonstration</u>: We know by the corollary of adequation lemma that typable terms are in the intersection of all admissible sets, so that they are in Λ_{SN} which is admissible by the previous lemma. # 5 Some more applications of realizability #### r roposition o.⊿ There is no closed term t such that $\vdash_{\mathsf{F}} t : \bot : _ \qquad \forall \ \not\searrow \cdot \not\searrow$ **Démonstration:** Let us apply realizability: there is to show a set of terms Λ_0 , a Λ_0 -pole and a weakly admissible set for this pole, allowing to use adequation lemma and its consequences. Λ is of course an admissible set and we know that \emptyset and \mathbf{p} are Λ -poles (this is a general fact) and that every valuation is weakly admissible for these poles since $\Lambda_0 = \Lambda$ as noted above. Let us consider $\bot = \emptyset$ We have then $\|\forall X.X\|_{\mathsf{v}} = \bigcup_{F \in F_{\Lambda}} F = \Pi$. Let us reason by contradiction and assume that there exists a term t such that $\vdash t : \forall X.X$. By the theory of realizability, we know that t realize universally $\forall X.X$ ($t \Vdash_{\vee} \forall X.X$ for any valuation) this implies that for all $\pi \in \Pi$, we have $(t, \pi) \sqsubseteq \mathbb{L}$... which is impossible since \mathbb{L} is empty: as a conclusion, such a term t cannot exist. ## Proposition 5.3 If $\vdash_{\mathsf{F}} t : \mathsf{ID}$, then $t \longrightarrow_{\beta}^{\star} \lambda x. x.$ $$ID = AX(X-x) F \in [AX(X-x)]^{\alpha[x,E]}$$ **Démonstration**: One shall again consider Λ as admissible set and consider $\mathbb{L}_x = \{(t, \pi) \mid (t)\pi \longrightarrow^* x\}$. This is of course a pole since the closure properties are trivially met. Let us consider $F^{\emptyset} = \{\emptyset\}$ (ie. the singleton made of the empty stack) and $\mathsf{v} = [X := F^{\emptyset}]$. We have therefore $X \Vdash_{\mathsf{v}} X$ (indeed, $(x,\emptyset) \in \mathbb{L}_x$) and if $\vdash t : \forall X.(X \to X)$ (so that in particular if it is a closed term), we have $t \Vdash_{\mathsf{v}} X \to X$ so $(t,x \cdot \emptyset) \in \mathbb{L}_x$ which ensures that $(t)x \longrightarrow^* x$ by definition du pôle of the pole. We have $(t)x \longrightarrow^{\star} (\lambda x.v)x \longrightarrow_{\beta} v \longrightarrow^{\star} x$ so that $t \longrightarrow^{\star} \lambda x.v \longrightarrow^{\star} \lambda x.x$, QED. # Proposition 5.4 $\underbrace{ \text{If} \vdash_{\mathsf{F}} t : \text{Bool}, \text{ then } t \longrightarrow_{\beta}^{\star} \lambda x. \, \lambda y. \, x \text{ or } t \longrightarrow_{\beta}^{\star} \lambda x. \, \lambda y. \, y. }_{\beta} \, \lambda x. \, \lambda y. \, y.$ **<u>Démonstration</u>**: The set $\bot_{x,y} = \bot_x \cup \bot_y$ is a Λ -pole. Let us consider valuation $\mathbf{v} = [X := \{\emptyset\}]$ as before. We clearly have $x \Vdash_{\vee} X$ and $y \Vdash_{\vee} X$ and by adequation lemma, if $\vdash_{\mathsf{F}} t$: Bool, then $t \Vdash_{\vee} X \to \backslash X \to X$ so that $(t)x \Vdash_{\vee} X \to X$ and $(t)xy \Vdash_{\vee} X$, that is $(t)xy \longrightarrow^{\star} x$ or $(t)xy \longrightarrow^{\star} y$. Since t is closed, we have: $(t)xy \longrightarrow^{\star} (\lambda x.v)xy \longrightarrow (v)y \longrightarrow^{\star} (\lambda y.w)y \longrightarrow w \longrightarrow^{\star} z \in \{x,y\}$. from which comes that $t \longrightarrow^{\star} \lambda x.v \longrightarrow^{\star} \lambda x.\lambda y.w \longrightarrow^{\star} \lambda x.\lambda y.z$ with $z \in \{x,y\}$, QED. # £_1 2.0.0. # Proposition 5.5 If $\vdash_{\mathsf{F}} t : \mathsf{Nat}$, then there exists an natural n such that $t \longrightarrow_{\beta}^{\star} \lambda z. \lambda s. (s)^n z.$ $\mathcal{L}^{b} = A \times (\overline{X} - \overline{X} - \overline{X})$ **<u>Démonstration</u>**: Let s and z be variables. Let us consider $\bot_{\mathsf{Nat}} = \{(t,\pi) \mid \exists n \geq 0, (t)\pi \longrightarrow^{\star} (s)^n z\}.$ \perp_{Nat} is a Λ -pole as before and we can consider the same valuation as before: $\mathsf{v} = [X := \{\emptyset\}]$. We then have of course $z \Vdash_{\mathsf{v}} X$ (trivial) eand $s \Vdash_{\mathsf{v}} X \to X$. Indeed, if $\pi \in \|X \to X\|_{\mathsf{v}}$, we have $\pi = t \cdot \emptyset$ with $t \mapsto^{\star} (s)^k z$ for some k, so that $(s)t \mapsto^{\star} (s)^{k+1} z$, that is $(s, \pi) \in \mathbb{L}_{\mathsf{Nat}}$ and $s \Vdash_{\mathsf{v}} X \to X$. Let then $\vdash_{\mathsf{F}} t : \mathsf{Nat}$, we have by the adequation lemma, after instanciation, that $t \vdash_{\mathsf{V}} X \to (X \to X) \to X$ and then that $(t)zs \vdash_{\mathsf{V}} X \to X$ and $(t)zs \longrightarrow^{\star} (s)^k z$. It comes that $(t)zs \longrightarrow^{\star} (\lambda z.v)zs \longrightarrow (v)s \longrightarrow^{\star} (\lambda s.w)s \longrightarrow w \longrightarrow^{\star} (s)^k z$ or otherwise said, that $t \longrightarrow^{\star} \lambda z.\lambda s.(s)^k z$, what needed to be proved. ## Proposition 5.9 There is no closed term t such that $\vdash_{\mathsf{F}} t : \mathsf{DNE} : \preceq \forall \mathsf{X} : ((\mathsf{X} \multimap \mathsf{J}) - \supset \mathsf{J}) \longrightarrow \mathsf{X}$ **<u>Démonstration</u>**: Le us reason by contradiction, assuming t is a closed term such that $\vdash_{\mathsf{F}} t : \mathsf{DNE}$. Consider Λ as admissible set and consider $\bot_x = \{(t,\pi) \mid (t)\pi \longrightarrow^* x\}$. Remember also that every valuation is weakly adapted wrt A, which is sufficient to apply adequacy lemma. We know that t realizes universally $\forall X.(((X \to \bot) \to \bot) \to X)$, that is $t \Vdash_{\mathsf{v}} \mathsf{W}(((X \to \bot) \to \bot) \to X)$ \perp) $\rightarrow X$) for any valuation v. Consider in particular $F = \{\emptyset\}$ and $G = \{x \cdot \emptyset\}$ and $v_1 = [X := F]$ and $v_2 = [X := G]$. We have: (i) F, G are non empty; (ii) F, G are disjoint; (iii) F, G have non empty orthogonal sets. We have $t \in |((X \to \bot) \to \bot) \to X|_{v_i}$ for $i \in \{1, 2\}$. In particular, for any $u \in |(X \to \bot) \to \bot|_{v_i}$, $(t)u \in |X|_{v_i} = v_i(X)^{\bot}$. For any $v \in |X \to \bot|_{v_i}$ and $w \in |X|_{v_i}$, $(v)w \in |\bot|_{v_i} = \emptyset$. Since $|X|_{v_i} \neq \emptyset$ (as $x \in |X|_{v_1}$ and $\lambda x.x \in X$) $|X|_{\mathsf{v}_2}$) we have that $|X \to \bot|_{\mathsf{v}_i} = \emptyset$. It follows that $\|(X \to \bot) \to \bot\|_{\mathsf{v}_i} = \emptyset$ and $|(X \to \bot) \to \bot|_{\mathsf{v}_i} = \Lambda$. Therefore, for any $u \in \Lambda$, $(t)u \in F^{\perp}$ and $(t)u \in G^{\perp}$ which means: - $(t)u \longrightarrow^{\star} x \text{ (using } (t)u \in F^{\perp});$ - $(t)ux \longrightarrow^* x$ (using $(t)u \in G^{\perp}$). But that would imply $(x)x =_{\beta} x$ which is not, a contradiction. Vn. Nat(z). MA2 ===> · (5) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) · Vary EQA(a) , y < a = Aly · De Condition to have unique representation. (~ Reals can be represented as ternary relations in PA₂ using a variant of Dedeking cuts: together with: $$Real[R] = \exists k \in \mathcal{X} \land Ini[R] \land Bounded[R] \land Open[R]$$ • $$Inf[n, m, p, n', m', p'] = (n \times p' + m' \times p) \leq (n' \times p + m \times p').$$ • $$Ini[X] = \forall n, m, p, n', m', p' \{X(n, m, p) \rightarrow Inf[n', m', p', n, m, p] \rightarrow X(n', m', p')\}.$$ • $$Bounded[X] = \exists n, m, p \, \forall n', m', p' \, \{X(n', m', p') \rightarrow Inf[n', m', p', n, m, p]\}.$$ • $$Open[X] = \neg \exists n, m, p \, \forall n', m', p' \, \{X(n', m', p') \leftrightarrow Inf[n', m', p', n, m, p]\}.$$