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Awrr 2EVX.(Vo.(Vy.(y < = X(v) = X(x)) = Ve. X (x))

A ..
A= Ci4+1 =< C; 1 =0

(_'-) == [,:"‘[W'FI} L {r’15? :f: 0}‘

Fvery finite subset of © has a standard model but © has no standard model.

© has no standard model: Indeed, Let M = (D, ¢!, <™) be a model satisfying {A;,i > 0}. We
prove that M ,ﬁ Az

Let C ={c"ie N} and B=D\ C.

Consider A(X) =Vy.(Vz. (2 <y = X(2)) = X(y)) = Vy. X(y)

We prove that M, [X = B] & A(X). Clearly, M,[X = B| }& Vy.X(y) as ¢! & B: it is therefore
sufficient to prove that M, |[X = B| = Vy.(Vz.(z <y = X(2)) = X(y)).

Let d € B, then M, [X := B,y := d| = X(y) so that M,[X = B,y :=d] = (Vz.(z < y = X(2)) =
X(y)).

Otherwise, d € C: let n be such that d = ¢! In particular, we have ¢/, <M d and 1, & B so that
M| X =B y:=d FEVz(z <y= X(z)). We conclude that M, [ X =B,y :=d EVz.(z <y= X(z)) =
X(y).

From the above. one deduce that M, [X := B| = Yy.(Vz.(z < y = X(z)) = X(y)) and finally that
M= Awrr.

© is finitely satisfiable: We show that any O = {Awprr} U{A4;,0 <i <k} i 1& satisfiable.
Indeed, consider M = (N, M, < H) with <™ the strict ordering over N and cM = maz(k +1 —1,0).
Aw gy holds in N and each A,! 1 < k holds as well.




Consider the language of PAs extended with a constant ¢ and Awrr 2 VX (Vo (V. (y < o = X () = X(x)) = Ve X(x))

Bi2c£80) i=0

Aa,g £ Cig1 <0 O i = 1)
[13;,1 = 0} is finitely satisfiable but not satisfiable in standard models.

B = {Au:‘p; I‘ . {14;',,’.!: = U}-

Every finite subset of 8 has a standard model but © has no standard model.

A strong form ol incompleteness...

Consider PA5: (D&"'}SW& j&:ﬁ ML G k@!\ +}>0

e [t has a finite axiomatisation.

e The set of first-order closed formulas that can be derived in PAy is recursively enumerable since we
have a notion of deduction (which is recursive).

e 1t contains first-order arirthmetic

Godel’s first incompleteness theorem entails that there is a ITY formula F which is true in N but cannot
be derived in PA,. In particular, PA; U {—F'} does not derive a contradiction but has no standard model.

In particular, this shows that the incompleteness phenomenon is strong: there cannot be a second-order
proof system with a completeness properties for standard models.




Definition 2.1 (second-order language) el Lo, lhe language of second-order logic, be

the following:

(- The logrcal symbols | @, N, WV ,@mmﬂ =)

e A countable set V of first-order variables : xg.x1.x0. ...
o A countuble set @f constants and functions symbols (of various arity) : b, f,g,h, . ...
° Usiarm.'e construct the set of first-order terms T : t1,1». ...
K_.-—-"""r
f second-order variables of arity n : X@, X@, X@ .
v

To simplify, we omit second-order constants (they can be replaced by free variables),

e Forcachn ¢ N, a countable se
(__._____ ?

Definition 2.8 (comprehension schemas) The second-order comprehension schema SC
is the sel of all closed formulas SCo(Gix1, . i X1seees Xm) Where Loy, ... xn) ©V and
FolG) CHw1, .. n, X1y .y X} and

where X™ & F (G).



Comprehension schema is provable in second-order logic

Definition 2.8 (comprehension schemas) The second-order comprehension schema SCs \ ’ X

is the set of all closed formulas SC3(Gixy. .o 80 X1, -+ -5 Xon) Where {rq, ..., 2} TV and '
‘-FU(G) C {fﬂla vy iy X1y ) m} and V ( )

Lra v, o am s R o . . ¥ ] , rTL " — L
SO (G103 X1e s Xm) = X1 - - X AN Va1 L VI, (G X (@1, .0, 7)) € 8Cs C?/
e X EG) - x




Definition 3. 1 (Eecnnd—ﬂrder classical model) A second-order model for Lo is given by

£ olE, T )

e D is a non empty set.

e ¥ contoins a function f from D™ to D for each function f of arity n in T

o P, CP(D") for cachn € N, The sel Py, of subsels of D" will be used us the vange Jor the
second-order quantification of arity n. For n =0, we assume that Py = P (DY) = {0, 1}
because P(D") = P(0) = {0, {0}} = {0.1}.

An Mg-inierpretation ¢ is a function on V U, oy Ve such that o{x) € D for xz € V and
aF(X) e P, for X7 e V,.

If o is a M -interpretation, we define a(t) the interpretation of a first-ovder term by induction
with o f(ty.....8,)) = flo(ty),....oltn)).

Then if @ 1s a Ma-interpretation we define Mo, o = A for a formula A by wduction as
follows:

L #ME.'"-T Xn.{fl.: L '.|t'-’.L_..] rﬁl IJU[‘-fl:' """ {T("“ l] = J[:X'?T..:I
e Ms.o = A B iff Mo, = A wmplies My, 0 = B
o Mool=AA DB iff Mo, o |-— A and Mz, 0 = B

e Moo= AV B iff Ms,o= A or Mo,o =B

e Moo =%a Aff for allv e D we have Mo, alz :— v |- A
o My, o |=Tx Aiff there exists v € D sueh that My, ox:=v|E A

o Mo, =X A 4ff for all m € P, we hiove Mo, o0 X" :=7 = A

o Moo =X A iff there exists m C Py, such that Mo, o| X" =7 = A



e N d.elr,
Theorem 3.6 (("nmplp‘rpnpqq of second order classical semantic) Let A be a closed
second-order fﬂrmui zﬁ” for any second-order madeuah that .ﬁv'Ig = S(:‘z we
have M = A.







Definition 2.2 (first-order language) flet L. a particular language of first-order logic, he - ;Z

the follouwning: e A countable set V of first-order variehles : xqo.x1,xa,... (it is simpler to use the some 3,

sel of first-ovder vartables m Cq and L2 ). i
o A countable sel ¥ of constants and funcltions symbols (of various arity) @ o, b fog.0h, ... SQ .9 Q\W

Here again we use the same set as for L.

K
o lor cach n e N, a relulzon symbol Ap  of arily e+ 1. >( ( LA )’ L '33 \
Fﬂ‘?h (c?()h L ny

Definition 2.4 (coding) We choose for euch n € N a bijection ¢y from V, to V. The fucl ~w~~—r~ *
that it is a biyjection for each n 15 the main point in our method.
Let F' be a second-order formula, we define a firsi-order formula F'* by induction as follows: Q Y

o |'=_

o (X"(t1,....tx)) = Ap, (On(X")t1,.... 1) @

o (AOR)" = A*OBY where § « {—, ALV}

o (Qr AV = Qu(Alz = y|)* where y & F,(A*) and ) & {¥, 7}
o (QX"A) =QuAX" :=Y"])" where ©,(Y") =y, y & Fp.(A") and Q € {V,d}

Example 2.6 (VX(X(x) — X(y)))" =¥z(Ap, (z,z) — Ap(z.y)). This example illustrates
why we need renaming. For instance, if ®1(X) were equal to x ory in (X(x) — X(y))".

Remark 2.7 The mapping F v— F* is not surjective, for tnstunce there is no anlecedent for

Eﬁ?’l:E 1191(%3} or Ap,(f(a).a). F'* — \{/g( APN(}




Definition The first-order comprehension schema SC' is defined simply as SC5 = {F*, F' « §5C4}
Remark 2.9 Let I'= X(x) where ®1(X) =x. We have:

o SCo(F;x; X) =VXIAYVe(F « Y(zx)) € SCs.

o SCHL(F;x; X)" = (VXIYVa(F < Y(x)))" =VzIyve(Ap(z,2) «— Ap.(y,x)) € SC1.

It is easy to see that (VXIAYVe(F « Y (z)))* = V2ayWa(F|X = Z* « Ap1(y,xz)) where
(;51{3) = Z # .

In general we have the following result : for each second-order formula GG there is a variable
substitution o such that

SCoGixy, o T X1y e Xm)® = (VXL Y dX'Wry . o Va, (G — X xy,...,25)))"
= Yy, ...Vy,3av¥r, .. .V, (CGlo]* < Ap,(r,x1,...,25)).

] 9
Theorem 2.10 Let T be o second-order contert and A a second-orvder formule. If T — 1 A

then I'*, SCy FL A* [k < {i,c}).

prool: By induction on the derivation of I’ I—f, A




Definition 2.11 (reverse coding) Let F' be a ﬁmt-ﬁim’er formula, we deﬁnﬁ {1 second-order

formula F'° by induction as fr}Hr}wh

Y'f—i Ao K — ﬁ( . (/(m(\ U HD KSE

o Ap,(x,ty, .. 1) = X™(t1,... 1) where X" =

o Ap,(t.t1....,t,)° =L if t is not a variable. ?
.-4"""
o (AOB)® = A°OB® where & € {—, A, V) }(

Z_ Q:r 4] = QzQX"? ... QX»A° where Q € {¥V,d}, X" = ¢ (x) for all n € N, i

_——=

-'l-.._._l_l___._-‘-_

z,g <1y

\lswi\ﬁ Lo RO—— |

K\XKPQ \P—l\<\




Lemma 2.17 Let T be a first-order context and A a first-order formula. If T F} A then

[ =t A° (ke {i,c}). %C [_'* - A’

proof: By induction on the derivation of I' = A. The only difficult cascs arc the casc of the
elimination of ¥ and the introduction of - ‘Wh]t‘h are treated in the same way as the examples

Let I' be a first-order context, F' = Ap1(x,y) — Ap2(x,y,y)V Ap1(y,x) and t a term.
We have :

o (VzI)” =VavVXIVX3(XYy) — X?(y,y) vYL(2)) and Bz F)® = Fz3X1IX3( X1 (y) —
Xy, y) VY H(z)) (where p1(YT) =y).

o Ift =z, then (Flx:=1t)" = Z'(y) — Z*(y.y) VY (2) (where 61(Z") = ¢o(Z7) = z)
and if t 15 not a variable, then (Flx :=t]) =L—1 vY''(t)

We remark that :

o (Flr:=2])=2Z"y) = Z%y.y) VY (2) = F°[X" := Z"|[x := z] if = i5 a variable such
that ¢1(Z1) = ¢2(Z%) = 2.

o (Flz:=t])"=1L—1LVvY'(t)=F°[X':= A oy _][z:=1] if t is not a variable.
and then :
o IfI° =3 (Vx F)°, then (by using some Y-elimination rules) I'° i (Flx :=1])°.

o IfI° =3 (Flz:=1t])°, then (by using some Z-introduction rules) I'° i (dz F)°.




. A 9 g
Theorem 2.18 Let I be a second-order context and A a second-order formula. If T+, SCy — Lemma 2.13 If A s a second order Jormala then B3 A™ — A

At then b A (ke {i.c}).

Corollary 2.15 -2 (SC|)° « SC%

proof:

Lemma 2.17 Let T be a first-order contert and A a first-order formala. Tf T I—ET A then
I A% (ke {i.c}).



Now, we will use the translation between L2 and L1 to obtain completeness:

1- we know that a first-order provability of F* under assumptions Gamma*, SC1*
entails the second-order probability of F;

2- if one can relate the fact that F is a second-order semantical consequence of
Gamma to a similar semantical relation between first order statements Gamma*
and F*, we can rely on Godel completeness theorem for predicate calculus.

3- that is our next, and final task: relate semantical consequences by turning a
second-order model of L2 into a first-order model of L1. We shall also ensure that

the translated model satisfies SC1.



Definition 3.3 (semantical translation) Let M1 = (D, 3, {ay }nen) be a first-order model.
We define a second-order model M1° = (D, ¥, { n}m:fq) mhmﬁ Py = 40,1} and for n > 0,
P, ={la|l,;a € D} whe-re— {({11 ) a1 ... ,Eﬂ_p ca,t.

Let o be an Mi-interpretation, we deﬁne o° a M1 iﬂ.terpwmtwn by o°(x) = o(x) if

r €V and a®(X™) = |a(A(X™)|n.
o - (6= b\
™ % >c<\rm[k —by)

Lemma 3.4 for any first-order model M+, any Mq-interpretation o and any second order

ormula A, My.o |= A* if and only if M1°,0° |= A.
/ ; 15 , Y 1 -

proof: By induction on the formula A, this is an immediate consequence of the definition of
semantical translation. 0

Corollary 3.5 For any [irst-order model M1, My = SC1 «f and only +f M1° = SCs.

proof: Immediate consequence of lemma 3.4 using the fact that formulas in SC| and SC; are
closed. _




Theorem 3.6 (Completeness of second order classical semantic) Let A be a closed
second-order formula. 2 A iff for any second-order model Mo such that My = SCy we
have Mo |= A.

proof: == Usual direct proof by induction on the proof of -2 A.

<= Let My be a first-order model such that M; = SC,. Using corollary 3.5 we have
M 1° = SC9 and by hypothesis, we get M1° = A. Then using lemma 3.4 we have M = A*.
As this is true for any first-order model satistying SC';. the first-order completeness theorem
gives SC1 L A* and this leads to the wanted result F> A using theorem 2.18. N

MOEA R U HESC R =K R

CEAT




Intuitionistic completeness

Definition 4.5 (first-order intuitionistic model) A first-order Kripke model is given by
a tuple K1 = (K,0, <, {Dp}peic {pbpercs {0np bt peic. 1) where

e ([,<.0) is a partially ordered set with O as bottom element.
e D, are non empty sets such that for all p.qg € K, p < g tmplies D, C D,.

e X, contains a function fp from Dy to Dy for cach function f of arity n mn L. More-
over, for all p,q € K, p < q implies that for all (ai1,....a,) € D, T Dy we have

f?-:'(ﬂh"'?uﬂ]zfq‘:u'la"'?uﬂ)- |

* O are subsels of D"V such that for all p.g € K. for all n € N. p < vrnplies
n,p I D, ; P:q ) | . p =g tmp
Qipp = Qg

o (= is the relation defined by p + Ap, (a,a1,....ay) if and only ifp € K and (a,ar,. ... ap,)
Qp.p-

A Kq-interpretation o at level p 15 o function from V to D,

-
LS



Definition 4.1 (second-order intuitionistic model) A second-order Kripke model for L
is given by o tuple K2 = (K, 0, <, {Dp}tperc, {8 }peics 1n p bnew pex) where

o (IC,<,0) is a partially ordered set with 0 as bottom element.

o D, are non empty sets such that for all p,q € K, p < ¢ implies D, T D,.

® 2, contains a function f, from Dy to Dy for each function f of arity n in 2. More-
over, for all p.q € K, p < q implies that for all (a1,...,a,) € Dy C Dy we have

fp(ala- v }ﬂfnj — f.-:,r(ﬂls* . ?aﬂ)'

o II,, are non empty sets of increasing functions (Fy)q»p such that for all ¢ > p. Py €
P(Dy) (increasing means for all q.q" > p, q < ¢ implies P, C Fy ). Moreover, if q > p
and 7w € 11, , then 7 restricted to all g > q belongs to IL, 4.

I'n particular, an element of g, is a particulor increasing function in {0,1} wilh 0 = {)

and 1 = {[ﬁ}

A Ky-interpretation o ot level p is a function o such that o(x) € D, forx € V and o(X") €
1L, » for X™ € V,.



Definition 4.6 (semantical translation) Let
K1 = (K,0, < ADpbpexc, {50 bocios 100 bnerperc: )
be o first-order Kripke model. We define o second-order Kripke model
Ki1° = (K,0, <. {Dp}pexc. {Zp}peic: {Mnp b nemipek)

where Iy, = { aln;a € Dyt owith for oll g = p, o o(g) = {ar,...,an) € D) (e a1, ... an) €

Oy}
Let o be a Ky -interpretation at level p, we define % a Kq°-interpretation at level p by a®(x) =

g(x) and ¥ (X") = |o(H(X™)) n.
Lemma 4.7 For any first-order Kripke model Kq, any K1-tnlerpretation o al level p and any
secand order formula A, Ky, o,p — A" 1f and only if K".¢%, pH— A.

Corollary 4.8 For any first-order Kripke model K1, I, = SCy if and only +f K,° HF SCs5.

Theorem 4.9 (Completeness of second order intuitionistic semantic) Let A be a closed
second-order. I—f A iff for oll second-order Kripke model Ko such that Ko b= SCy we have

Kot A






