# Completeness results for second-order logic

Simple proof of the completeness theorem second order classical and intuitionistic logic  $red_{uction\ to\ first-order\ mono-sorted\ logic}$  $Christophe\ RAFFALLI$ LAMA - Equipe de Logique Université de Chambéry s-mail near Quary-savoic.fr, raffalli@univ-savoic.fr

## 1 $I_{ntroduction}$

We present a simpler way than usual to deduce the completeness theorem for the first-order one. We also extend our method to the We present a simpler way than usual to deduce the completeness theorem for the case of second-order intuitionistic locic. We also extend our method to the The usual way (but not the original Henkin's proof [3, 4]) for proving the completeness theorem for first-order The usual way (but not the original Henkin's proof [3, 4]) for proving the completeness undissorted logic [2]. There is clearly a trivial translation from second-order logic to first. theorem for second-order logic is to deduce it from the completeness theorem for first-order and in multi-sorted logic. There is clearly a trivial translation from second-order logic to first-order objects and, for each  $n \in \mathbb{N}$ . multi-sorted logic [2]. There is clearly a trivial translation from second-order logic to first-order objects and, for each  $n \in \mathbb{N}$ , one sort for predicates of arity n.

Another way (due Van Dalen [12]) to is to deduce it from the completeness theorem for mono-sorted logic: Van Dalen method's is to associate a first-order variable x Another way (due Van Dalen [12]) to is to deduce it from the completeness theorem for associate a first-order variable x first-order mono-sorted logic: Van Dalen method's is to associate a first-order variable X of arity n, and encode the atomic formula X(x) by  $Ap_n(x,x_1,\ldots,x_n)$  where  $Ap_n$  is a relation symbol of arity n+1  $T_{hom}$ . socond-order proofs and first-order proofs, one adde first and second-order objects. The critical one

$$A_{WFI} \triangleq \forall X. (\forall x. (\forall y. (y < x \Rightarrow X(y)) \Rightarrow X(x)) \Rightarrow \forall x. X(x))$$

$$A_i \triangleq c_{i+1} < c_i \qquad i \ge 0$$

$$\Theta = \{A_{WFI}\} \cup \{A_i, i \ge 0\}$$

Every finite subset of  $\Theta$  has a standard model but  $\Theta$  has no standard model.

 $\Theta$  has no standard model: Indeed, Let  $\mathcal{M} = (\mathcal{D}, c_i^{\mathcal{M}}, <^{\mathcal{M}})$  be a model satisfying  $\{A_i, i \geq 0\}$ . We prove that  $\mathcal{M} \not\models \mathcal{A}_{W\mathcal{F}\mathcal{I}}$ .

Let  $C = \{c_i^{\mathcal{M}}, i \in \mathbb{N}\}$  and  $B = \mathcal{D} \setminus C$ .

Consider  $A(X) = \forall y. (\forall z. (z < y \Rightarrow X(z)) \Rightarrow X(y)) \Rightarrow \forall y. X(y)$ 

We prove that  $\mathcal{M}, [X := B] \not\models A(X)$ . Clearly,  $\mathcal{M}, [X := B] \not\models \forall y.X(y)$  as  $c_0^{\mathcal{M}} \not\in B$ : it is therefore sufficient to prove that  $\mathcal{M}, [X := B] \models \forall y.(\forall z.(z < y \Rightarrow X(z)) \Rightarrow X(y))$ .

Let  $d \in B$ , then  $\mathcal{M}, [X := B, y := d] \models X(y)$  so that  $\mathcal{M}, [X := B, y := d] \models (\forall z.(z < y \Rightarrow X(z)) \Rightarrow X(y))$ .

Otherwise,  $d \in C$ : let n be such that  $d = c_n^{\mathcal{M}}$  In particular, we have  $c_{n+1}^{\mathcal{M}} <^{\mathcal{M}} d$  and  $c_{n+1}^{\mathcal{M}} \notin B$  so that  $\mathcal{M}, [X := B, y := d] \not\models \forall z. (z < y \Rightarrow X(z))$ . We conclude that  $\mathcal{M}, [X := B, y := d] \models \forall z. (z < y \Rightarrow X(z)) \Rightarrow X(y)$ .

From the above, one deduce that  $\mathcal{M}$ ,  $[X := B] \models \forall y. (\forall z. (z < y \Rightarrow X(z)) \Rightarrow X(y))$  and finally that  $\mathcal{M} \not\models A_{WFI}$ .

 $\Theta$  is finitely satisfiable: We show that any  $\Theta_k = \{A_{WFI}\} \cup \{A_i, 0 \le i \le k\}$  is satisfiable. Indeed, consider  $\mathcal{M} = (\mathbb{N}, c_i^{\mathcal{M}}, <^{\mathcal{M}})$  with  $<^{\mathcal{M}}$  the strict ordering over  $\mathbb{N}$  and  $c_i^{\mathcal{M}} = max(k+1-i,0)$ .  $A_{WFI}$  holds in  $\mathbb{N}$  and each  $A_i, i \le k$  holds as well. Consider the language of  $PA_2$  extended with a constant c and

$$A_{WFI} \triangleq \forall X. (\forall x. (\forall y. (y < x \Rightarrow X(y)) \Rightarrow X(x)) \Rightarrow \forall x. X(x))$$

$$B_i \triangleq c \neq S^i(0) \qquad i \geq 0$$

 $A_i \triangleq c_{i+1} < c_i \qquad i \ge 0$ 

 $\{B_i, i \geq 0\}$  is finitely satisfiable but not satisfiable in standard models.

$$\Theta = \{A_{WFI}\} \cup \{A_i, i \ge 0\}$$

Every finite subset of  $\Theta$  has a standard model but  $\Theta$  has no standard model.

## A strong form of incompleteness...

Consider PA2: (oby with the arcons for +, X).

- It has a finite axiomatisation.
- The set of first-order closed formulas that can be derived in PA<sub>2</sub> is recursively enumerable since we have a notion of deduction (which is recursive).
- it contains first-order arithmetic

Gödel's first incompleteness theorem entails that there is a  $\Pi_1^0$  formula F which is true in  $\mathbb{N}$  but cannot be derived in  $\mathsf{PA}_2$ . In particular,  $\mathsf{PA}_2 \cup \{\neg F\}$  does not derive a contradiction but has no standard model.

In particular, this shows that the incompleteness phenomenon is strong: there cannot be a second-order proof system with a completeness properties for standard models.

**Definition 2.1 (second-order language)** Let  $\mathcal{L}_2$ , the language of second-order logic, be the following:

- ( The logical symbols  $\perp \bigcirc$ ,  $\wedge$ ,  $\vee$ ,  $\bigcirc$  and  $\exists$ .
  - A countable set V of first-order variables :  $x_0, x_1, x_2, \ldots$
  - ullet A countable set ullet of constants and functions symbols (of various arity):  $a,b,f,g,h,\ldots$
  - Using  $\widehat{\mathcal{V}}$  and  $\widehat{\Sigma}$  we construct the set of first-order terms  $\mathcal{T}$  :  $t_1, t_2, ...$
  - ullet For each  $n\in\mathbb{N}$ , a countable set  $\mathcal{V}_n$  of second-order variables of arity  $n:X_0^{ullet},X_1^{ullet},X_2^{ullet},\ldots$

To simplify, we omit second-order constants (they can be replaced by free variables).

**Definition 2.8 (comprehension schemas)** The second-order comprehension schema  $SC_2$  is the set of all closed formulas  $SC_2(G; x_1, \ldots, x_n; \chi_1, \ldots, \chi_m)$  where  $\{x_1, \ldots, x_n\} \subset \mathcal{V}$  and  $\mathcal{F}_v(G) \subseteq \{x_1, \ldots, x_n, \chi_1, \ldots, \chi_m\}$  and

 $SC_2(G; x_1, \dots, x_n; \chi_1, \dots, \chi_m) = \forall \chi_1 \dots \forall \chi_m \exists X^n \forall x_1 \dots \forall x_n (G \leftrightarrow X^n(x_1, \dots, x_n)) \in SC_2$ where  $X^n \notin F_v(G)$ .

### Comprehension schema is provable in second-order logic

**Definition 2.8 (comprehension schemas)** The second-order comprehension schema  $SC_2$  is the set of all closed formulas  $SC_2(G; x_1, \ldots, x_n; \chi_1, \ldots, \chi_m)$  where  $\{x_1, \ldots, x_n\} \subset \mathcal{V}$  and  $\mathcal{F}_v(G) \subseteq \{x_1, \ldots, x_n, \chi_1, \ldots, \chi_m\}$  and

$$SC_2(G; x_1, \dots, x_n; \chi_1, \dots, \chi_m) = \forall \chi_1 \dots \forall \chi_m \exists X^n \forall x_1 \dots \forall x_n (G \leftrightarrow X^n(x_1, \dots, x_n)) \in SC_2$$

where  $X^n \not\in F_v(G)$ .







Definition 3.1 (second-order classical model) A second-order model for  $\mathcal{L}_2$  is given by

a tuple  $\mathcal{M}_2 = (\mathcal{D}, \overline{\Sigma}, \{\mathcal{P}_n\}_{n \in \mathbb{N}})$  where

• D is a non empty set.



- $\overline{\Sigma}$  contains a function f from  $\mathcal{D}^n$  to  $\mathcal{D}$  for each function f of arity n in  $\Sigma$ .
- $\mathcal{P}_n \subseteq \mathcal{P}(\mathcal{D}^n)$  for each  $n \in \mathbb{N}$ . The set  $\mathcal{P}_n$  of subsets of  $\mathcal{D}^n$  will be used as the range for the second-order quantification of arity n. For n = 0, we assume that  $\mathcal{P}_0 = \mathcal{P}(\mathcal{D}^0) = \{0, 1\}$  because  $\mathcal{P}(\mathcal{D}^0) = \mathcal{P}(\emptyset) = \{\emptyset, \{\emptyset\}\} = \{0, 1\}$ .

An  $\mathcal{M}_2$ -interpretation  $\sigma$  is a function on  $\mathcal{V} \cup \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$  such that  $\sigma(x) \in \mathcal{D}$  for  $x \in \mathcal{V}$  and  $\sigma(X^n) \in \mathcal{P}_n$  for  $X^n \in \mathcal{V}_n$ .

If  $\sigma$  is a  $\mathcal{M}_2$ -interpretation, we define  $\sigma(t)$  the interpretation of a first-order term by induction with  $\sigma(f(t_1,\ldots,t_n))=\overline{f}(\sigma(t_1),\ldots,\sigma(t_n))$ .

Then if  $\sigma$  is a  $\mathcal{M}_2$ -interpretation we define  $\mathcal{M}_2, \sigma \models A$  for a formula A by induction as follows:

- $\mathcal{M}_2, \sigma \models X^n(t_1, \ldots, t_n)$  iff  $(\sigma(t_1), \ldots, \sigma(t_n)) \in \sigma(X^n)$
- $\mathcal{M}_2, \sigma \models A \rightarrow B \text{ iff } \mathcal{M}_2, \sigma \models A \text{ implies } \mathcal{M}_2, \sigma \models B$
- $\mathcal{M}_2, \sigma \models A \land B \text{ iff } \mathcal{M}_2, \sigma \models A \text{ and } \mathcal{M}_2, \sigma \models B$
- $\mathcal{M}_2, \sigma \models A \vee B \text{ iff } \mathcal{M}_2, \sigma \models A \text{ or } \mathcal{M}_2, \sigma \models B$
- $\mathcal{M}_2, \sigma \models \forall x \ A \ iff for \ all \ v \in \mathcal{D} \ we \ have \ \mathcal{M}_2, \sigma[x := v] \models A$
- $\mathcal{M}_2, \sigma \models \exists x \ A \ iff \ there \ exists \ v \in \mathcal{D} \ such \ that \ \mathcal{M}_2, \sigma[x := v] \models A$
- $\mathcal{M}_2, \sigma \models \forall X^n A \text{ iff for all } \pi \in \mathcal{P}_n \text{ we have } \mathcal{M}_2, \sigma[X^n := \pi] \models A$
- $\mathcal{M}_2, \sigma \models \exists X^n A \text{ iff there exists } \pi \in \mathcal{P}_n \text{ such that } \mathcal{M}_2, \sigma[X^n := \pi] \models A$

~ E(1,23) Re(1,03) Theorem 3.6 (Completeness of second order classical semantic) Let A be a closed second-order formula.  $\vdash_c^2 A$  iff for any second-order model  $\mathcal{M}_2$  such that  $\mathcal{M}_2 \models SC_2$  we have  $\mathcal{M}_2 \models A$ . Full second-order models D'Henkin models (røged relation vær becomes a parameter DEORST-order (many sorted) models of SOL. X(ty...Em).

M = (D) E (D) (ty...E) X (t, ...t, x").

IFT & A Kran ToBC & FAT. DA convoise.
DA sementical translation. (4) A Bonus: a notion of SO intuitoristic models
for wich No a completo

**Definition 2.2 (first-order language)** Let  $\mathcal{L}_1$ , a particular language of first-order logic, be

the following: • A countable set V of first-order variables:  $x_0, x_1, x_2, \ldots$  (it is simpler to use the same set of first-order variables in  $\mathcal{L}_1$  and  $\mathcal{L}_2$ ).

• A countable set  $\Sigma$  of constants and functions symbols (of various arity):  $a, b, f, g, h, \ldots$ Here again we use the same set as for  $\mathcal{L}_2$ .

• For each  $n \in \mathbb{N}$ , a relation symbol  $Ap_n$  of arity n+1.



**Definition 2.4 (coding)** We choose for each  $n \in \mathbb{N}$  a bijection  $\phi_n$  from  $\mathcal{V}_n$  to  $\mathcal{V}$ . The fact that it is a bijection for each n is the main point in our method.

Let F be a second-order formula, we define a first-order formula  $F^*$  by induction as follows:

- ⊥\*=⊥
- $(X^n(t_1,\ldots,t_n))^* = Ap_n(\phi_n(X^n),t_1,\ldots,t_n)$
- $(A \Diamond B)^* = A^* \Diamond B^* \text{ where } \Diamond \in \{ \rightarrow, \land, \lor \}$
- $(Qx A)^* = Qy(A[x := y])^*$  where  $y \notin \mathcal{F}_v(A^*)$  and  $Q \in \{\forall, \exists\}$
- $(QX^nA)^* = Qy(A[X^n := Y^n])^*$  where  $\Phi_n(Y^n) = y$ ,  $y \notin \mathcal{F}_v(A^*)$  and  $Q \in \{\forall, \exists\}$

**Example 2.6**  $(\forall X(X(x) \to X(y)))^* = \forall z(Ap_1(z,x) \to Ap_1(z,y))$ . This example illustrates why we need renaming. For instance, if  $\Phi_1(X)$  were equal to x or y in  $(X(x) \to X(y))^*$ .

**Remark 2.7** The mapping  $F \mapsto F^*$  is not surjective, for instance there is no antecedent for  $\forall x A p_1(x,x) \text{ or } A p_1(f(a),a).$ 



**Definition** The first-order comprehension schema  $SC_1$  is defined simply as  $SC_2^* = \{F^*, F \in SC_2\}$ 

**Remark 2.9** Let F = X(x) where  $\Phi_1(X) = x$ . We have:

- $SC_2(F; x; X) = \forall X \exists Y \forall x (F \leftrightarrow Y(x)) \in SC_2$ .
- $SC_2(F; x; X)^* = (\forall X \exists Y \forall x (F \leftrightarrow Y(x)))^* = \forall z \exists y \forall x (Ap_1(z, x) \leftrightarrow Ap_1(y, x)) \in SC_1.$

It is easy to see that  $(\forall X \exists Y \forall x (F \leftrightarrow Y(x)))^* = \forall z \exists y \forall x (F[X := Z]^* \leftrightarrow Ap_1(y, x))$  where  $\phi_1(Z) = z \neq x$ .

In general we have the following result: for each second-order formula G there is a variable substitution  $\sigma$  such that

$$SC_2(G; x_1, \dots, x_n; \chi_1, \dots, \chi_m)^* = (\forall \chi_1 \dots \forall \chi_m \exists X^n \forall x_1 \dots \forall x_n (G \leftrightarrow X^n(x_1, \dots, x_n)))^*$$

$$= \forall y_1 \dots \forall y_m \exists x \forall x_1 \dots \forall x_n (G[\sigma]^* \leftrightarrow Ap_n(x, x_1, \dots, x_n)).$$

**Theorem 2.10** Let  $\Gamma$  be a second-order context and A a second-order formula. If  $\Gamma \vdash_k^2 A$  then  $\Gamma^*, SC_1 \vdash_k^1 A^*$   $(k \in \{i, c\})$ .

proof: By induction on the derivation of  $\Gamma \vdash_k^2 A$ 

**Definition 2.11 (reverse coding)** Let F be a first-order formula, we define a second-order formula  $F^{\diamond}$  by induction as follows:



•  $Ap_n(t, t_1, \ldots, t_n)^{\diamond} = \perp if t \text{ is not a variable.}$ 

•  $(A \lozenge B)^{\lozenge} = A^{\lozenge} \lozenge B^{\lozenge} \text{ where } \lozenge \in \{ \rightarrow, \land, \lor \}$ 





**Lemma 2.17** Let  $\Gamma$  be a first-order context and A a first-order formula. If  $\Gamma \vdash_k^1 A$  then  $\Gamma^{\diamond} \vdash_k^2 A^{\diamond}$   $(k \in \{i, c\})$ .

<u>proof</u>: By induction on the derivation of  $\Gamma \vdash_k^1 A$ . The only difficult cases are the case of the elimination of  $\forall$  and the introduction of  $\exists$  which are treated in the same way as the examples

Let  $\Gamma$  be a first-order context,  $F = Ap_1(x, y) \rightarrow Ap_2(x, y, y) \lor Ap_1(y, x)$  and t a term. We have :

- $(\forall x F)^{\diamond} = \forall x \forall X^1 \forall X^2 (X^1(y) \rightarrow X^2(y, y) \lor Y^1(x))$  and  $(\exists x F)^{\diamond} = \exists x \exists X^1 \exists X^2 (X^1(y) \rightarrow X^2(y, y) \lor Y^1(x))$  (where  $\phi_1(Y^1) = y$ ).
- If t = z, then  $(F[x := t])^{\diamond} = Z^1(y) \rightarrow Z^2(y, y) \vee Y^1(z)$  (where  $\phi_1(Z^1) = \phi_2(Z^2) = z$ ) and if t is not a variable, then  $(F[x := t])^{\diamond} = \bot \rightarrow \bot \vee Y^1(t)$

We remark that:

- $(F[x := z])^{\diamond} = Z^{1}(y) \rightarrow Z^{2}(y, y) \vee Y^{1}(z) = F^{\diamond}[X^{1} := Z^{1}][x := z]$  if z is a variable such that  $\phi_{1}(Z^{1}) = \phi_{2}(Z^{2}) = z$ .
- $(F[x := t])^{\diamond} = \bot \rightarrow \bot \lor Y^{1}(t) = F^{\diamond}[X^{1} := \lambda x_{1} \bot][x := t]$  if t is not a variable.

and then:

- If  $\Gamma^{\diamond} \vdash_{k}^{2} (\forall x \, F)^{\diamond}$ , then (by using some  $\forall$ -elimination rules)  $\Gamma^{\diamond} \vdash_{k}^{2} (F[x := t])^{\diamond}$ .
- If  $\Gamma^{\diamond} \vdash_k^2 (F[x := t])^{\diamond}$ , then (by using some  $\exists$ -introduction rules)  $\Gamma^{\diamond} \vdash_k^2 (\exists x \, F)^{\diamond}$ .

3c2) [ + A

713

**Theorem 2.18** Let  $\Gamma$  be a second-order context and A a second-order formula. If  $\Gamma^*$ ,  $SC_1 \vdash_k^1 A^*$  then  $\Gamma \vdash_k^2 A$   $(k \in \{i, c\})$ .

**Lemma 2.13** If A is a second order formula then  $\vdash_i^2 A^{*\diamond} \leftrightarrow A$ .

Corollary 2.15  $\vdash_i^2 (SC_1)^{\diamond} \leftrightarrow SC_2$ 

proof:

**Lemma 2.17** Let  $\Gamma$  be a first-order context and A a first-order formula. If  $\Gamma \vdash_k^1 A$  then  $\Gamma^{\diamond} \vdash_k^2 A^{\diamond} \ (k \in \{i, c\}).$ 

Now, we will use the translation between L2 and L1 to obtain completeness:

- 1- we know that a first-order provability of F\* under assumptions Gamma\*, SC1\* entails the second-order probability of F;
- 2- if one can relate the fact that F is a second-order semantical consequence of Gamma to a similar semantical relation between first order statements Gamma\* and F\*, we can rely on Gödel completeness theorem for predicate calculus.
- 3- that is our next, and final task: relate semantical consequences by turning a second-order model of L2 into a first-order model of L1. We shall also ensure that the translated model satisfies SC1.

**Definition 3.3 (semantical translation)** Let  $\mathcal{M}_1 = (\mathcal{D}, \overline{\Sigma}, \{\alpha_n\}_{n \in \mathbb{N}})$  be a first-order model. We define a second-order model  $\mathcal{M}_1^{\diamond} = (\mathcal{D}, \overline{\Sigma}, \{\mathcal{P}_n\}_{n \in \mathbb{N}})$  where  $\mathcal{P}_0 = \{0, 1\}$  and for n > 0,  $\mathcal{P}_n = \{|a|_n; a \in \mathcal{D}\}$  where  $(a|_n) = \{(a_1, \ldots, a_n) \in \mathcal{D}^n; (a_1, \ldots, a_n) \in \alpha_n\}$ . Let  $\sigma$  be an  $\mathcal{M}_1$ -interpretation, we define  $\sigma^{\diamond}$  an  $\mathcal{M}_1^{\diamond}$ -interpretation by  $\sigma^{\diamond}(x) = \sigma(x)$  if  $x \in \mathcal{V}$  and  $\sigma^{\diamond}(X^n) = |\sigma(\phi(X^n))|_n$ .

**Lemma 3.4** For any first-order model  $\mathcal{M}_1$ , any  $\mathcal{M}_1$ -interpretation  $\sigma$  and any second order formula A,  $\mathcal{M}_1, \sigma \models A^*$  if and only if  $\mathcal{M}_1^{\diamond}, \sigma^{\diamond} \models A$ .

<u>proof</u>: By induction on the formula A, this is an immediate consequence of the definition of semantical translation.

Corollary 3.5 For any first-order model  $\mathcal{M}_1$ ,  $\mathcal{M}_1 \models SC_1$  if and only if  $\mathcal{M}_1^{\diamond} \models SC_2$ .

<u>proof</u>: Immediate consequence of lemma 3.4 using the fact that formulas in  $SC_1$  and  $SC_2$  are closed.

Theorem 3.6 (Completeness of second order classical semantic) Let A be a closed second-order formula.  $\vdash_c^2 A$  iff for any second-order model  $\mathcal{M}_2$  such that  $\mathcal{M}_2 \models SC_2$  we have  $\mathcal{M}_2 \models A$ .

 $\underline{\text{proof:}} \Longrightarrow \text{Usual direct proof by induction on the proof of } \vdash_c^2 A.$ 

 $\Leftarrow$  Let  $\mathcal{M}_1$  be a first-order model such that  $\mathcal{M}_1 \models SC_1$ . Using corollary 3.5 we have  $\mathcal{M}_1^{\diamond} \models SC_2$  and by hypothesis, we get  $\mathcal{M}_1^{\diamond} \models A$ . Then using lemma 3.4 we have  $\mathcal{M}_1 \models A^*$ . As this is true for any first-order model satisfying  $SC_1$ , the first-order completeness theorem gives  $SC_1 \vdash_c^1 A^*$  and this leads to the wanted result  $\vdash_c^2 A$  using theorem 2.18.  $\square$ 

MO FA Aten M, FA\*, MFSC, M => M, FA.

SC, FA.

SC, FA.

## Intuitionistic completeness

**Definition 4.5 (first-order intuitionistic model)** A first-order Kripke model is given by a tuple  $\mathcal{K}_1 = (\mathcal{K}, 0, \leq, \{\mathcal{D}_p\}_{p \in \mathcal{K}}, \{\overline{\Sigma}_p\}_{p \in \mathcal{K}}, \{\alpha_{n,p}\}_{n \in \mathbb{N}, p \in \mathcal{K}}, \Vdash)$  where

- $(K, \leq, 0)$  is a partially ordered set with 0 as bottom element.
- $\mathcal{D}_p$  are non empty sets such that for all  $p, q \in \mathcal{K}$ ,  $p \leq q$  implies  $\mathcal{D}_p \subseteq \mathcal{D}_q$ .
- $\overline{\Sigma}_p$  contains a function  $\overline{f}_p$  from  $\mathcal{D}_p^n$  to  $\mathcal{D}_p$  for each function f of arity n in  $\Sigma$ . Moreover, for all  $p, q \in \mathcal{K}$ ,  $p \leq q$  implies that for all  $(a_1, \ldots, a_n) \in \mathcal{D}_p^n \subseteq \mathcal{D}_q^n$  we have  $\overline{f}_p(a_1, \ldots, a_n) = \overline{f}_q(a_1, \ldots, a_n)$ .
- $\alpha_{n,p}$  are subsets of  $\mathcal{D}_p^{n+1}$  such that for all  $p,q \in \mathcal{K}$ , for all  $n \in \mathbb{N}$ ,  $p \leq q$  implies  $\alpha_{n,p} \subseteq \alpha_{n,q}$ .
- $\Vdash$  is the relation defined by  $p \Vdash Ap_n(a, a_1, \ldots, a_n)$  if and only if  $p \in \mathcal{K}$  and  $(a, a_1, \ldots, a_n) \in \alpha_{n,p}$ .

A  $\mathcal{K}_1$ -interpretation  $\sigma$  at level p is a function from  $\mathcal{V}$  to  $\mathcal{D}_p$ .

Definition 4.1 (second-order intuitionistic model) A second-order Kripke model for  $\mathcal{L}_2$  is given by a tuple  $\mathcal{K}_2 = (\mathcal{K}, 0, \leq, \{\mathcal{D}_p\}_{p \in \mathcal{K}}, \{\Sigma_p\}_{p \in \mathcal{K}}, \{\Pi_{n,p}\}_{n \in \mathbb{N}, p \in \mathcal{K}})$  where

- $(K, \leq, 0)$  is a partially ordered set with 0 as bottom element.
- $\mathcal{D}_p$  are non empty sets such that for all  $p, q \in \mathcal{K}$ ,  $p \leq q$  implies  $\mathcal{D}_p \subseteq \mathcal{D}_q$ .
- $\overline{\Sigma}_p$  contains a function  $\overline{f}_p$  from  $\mathcal{D}_p^n$  to  $\mathcal{D}_p$  for each function f of arity n in  $\Sigma$ . Moreover, for all  $p, q \in \mathcal{K}$ ,  $p \leq q$  implies that for all  $(a_1, \ldots, a_n) \in \mathcal{D}_p^n \subseteq \mathcal{D}_q^n$  we have  $\overline{f}_p(a_1, \ldots, a_n) = \overline{f}_q(a_1, \ldots, a_n)$ .
- $\Pi_{n,p}$  are non empty sets of increasing functions  $(P_q)_{q\geq p}$  such that for all  $q\geq p, P_q\in \mathcal{P}(\mathcal{D}_q^n)$  (increasing means for all  $q, q'\geq p, q\leq q'$  implies  $P_q\subseteq P_{q'}$ ). Moreover, if  $q\geq p$  and  $\pi\in\Pi_{n,p}$  then  $\pi$  restricted to all  $q'\geq q$  belongs to  $\Pi_{n,q}$ .

In particular, an element of  $\Pi_{0,p}$  is a particular increasing function in  $\{0,1\}$  with  $0=\emptyset$  and  $1=\{\emptyset\}$ .

A  $\mathcal{K}_2$ -interpretation  $\sigma$  at level p is a function  $\sigma$  such that  $\sigma(x) \in \mathcal{D}_p$  for  $x \in \mathcal{V}$  and  $\sigma(X^n) \in \Pi_{n,p}$  for  $X^n \in \mathcal{V}_n$ .

#### Definition 4.6 (semantical translation) Let

$$\mathcal{K}_1 = (\mathcal{K}, 0, \leq, \{\mathcal{D}_p\}_{p \in \mathcal{K}}, \{\overline{\Sigma}_p\}_{p \in \mathcal{K}}, \{\alpha_{n,p}\}_{n \in \mathbb{N}, p \in \mathcal{K}}, \vdash )$$

be a first-order Kripke model. We define a second-order Kripke model

$$\mathcal{K}_1^{\diamond} = (\mathcal{K}, 0, \leq, \{\mathcal{D}_p\}_{p \in \mathcal{K}}, \{\overline{\Sigma}_p\}_{p \in \mathcal{K}}, \{\Pi_{n,p}\}_{n \in \mathbb{N}, p \in \mathcal{K}})$$

where  $\Pi_{n,p} = \{|a|_n; a \in \mathcal{D}_p\}$  with for all  $q \geq p$ ,  $|a|_n(q) = \{(a_1, \ldots, a_n) \in \mathcal{D}_q^n; (a, a_1, \ldots, a_n) \in \alpha_{n,q}\}$ .

Let  $\sigma$  be a  $\mathcal{K}_1$ -interpretation at level p, we define  $\sigma^{\diamond}$  a  $\mathcal{K}_1^{\diamond}$ -interpretation at level p by  $\sigma^{\diamond}(x) = \sigma(x)$  and  $\sigma^{\diamond}(X^n) = |\sigma(\phi(X^n))|_n$ .

**Lemma 4.7** For any first-order Kripke model  $K_1$ , any  $K_1$ -interpretation  $\sigma$  at level p and any second order formula A,  $K_1$ ,  $\sigma$ ,  $p \Vdash A^*$  if and only if  $K_1^{\diamond}$ ,  $\sigma^{\diamond}$ ,  $p \Vdash A$ .

Corollary 4.8 For any first-order Kripke model  $K_1$ ,  $K_1 \Vdash SC_1$  if and only if  $K_1 ^{\diamond} \Vdash SC_2$ .

Theorem 4.9 (Completeness of second order intuitionistic semantic) Let A be a closed second-order.  $\vdash_i^2 A$  iff for all second-order Kripke model  $\mathcal{K}_2$  such that  $\mathcal{K}_2 \Vdash SC_2$  we have  $\mathcal{K}_2 \Vdash A$ .