Embedding of System T

We already now that product, booleans and natural numbers can be represented as typed terms on System
F.

To emebd T in F, it is suflicient to represent the higher-order recursor of T, which is done simply as
follows:

Rec £ ApM#t A MU AGY (701) (n) (U x Nat)(b, 0)A="" N (((£)(m2)2)(m1) 2, (S)(72)7)

Ll
¢

2 Representation of free structures and inductive types é&i-

2.1 Free structures

Dedekind introduced the definition of natural numbers as the smallest set containing 0 and closed under S.
We saw that they can casily be represented in system F.

Many other data types can be defined in such a way, in fact any free structure can be represented in
system F, in a uniform way that we will describe now.

. . . . : l_ ! .
We consider a collection © of formal expressions (finitely) generated by constructors e, ..., ¢; , which

may be parametrized by objects of other types, including depending on the collection being defined itself as

in the case of natural numbers.

e The simplest case is that of constants (0-ary functions), allowing to define sets of any finite cardinality.

e Another Lypical cese is when we can build new ©-terms [rom old ones, just like in Nal. In particular
one can imagine a constructor ¢ which would be a n-ary function from © to ©.

embed a type [V in © by means of a unary function from U to ©. This construction allows to define
the product type U x T for instance with a binary constructor p: U =+ T — U x T

e Another situation is when one uses auxiliary sets in the construction of ©, allowing for instance to %
e A variant is when we have a binary constructor building a new O-term from an element of [and a S

e DBut there are many more possibilities, for instance one can consider & constructor taking an object
of type U — © to build a new ©-term: this allows to build new ©-terms from U-indexed families of
O-terms. \

\WJ
e All those possibilities may be combined \j % 6

In fact we will see that one can represent in F any free structure built from a set of constructors as long
as the type being defined is used positively in the constructors.

O-term, just like in the construction of lists with the list constructor. \ % W

2.2 Positive/negative occurrences of a type

Définition 2.1 (Positive / negalive occurvences of a lype)

I
L

C \4 S =
m&;r@ﬂ — 9

An occurrence of a type U in a type A is defined to be a positive (resp. negative) occurrence by
induction on the structure of A as follows:

if A=U, then U occurs positively in A;

it A =8 — C and U is an positive (resp. negative) occurrence in C', then U is a positive (resp.
negative) occurrence in A;

if A= DB + C and U is an positive (resp. necgative) occurrence in B, then U is a negative (resp.

positive) ocenrrence in A;

if A = VX.B and U is a positive (resp. negative) occurrence in B, then U is a positive (resp.
negative) occurrence in A.

Maore concisely, an occurrence of U is positive (resp. negative) in A if it appears to the left of an even
‘resp. odd) number of —.

- T -G

— f D m
>

\

Y

i)
3;,, f—%ﬂ /(A -

2.3 The general case

—
In general the free-structure © will be described by means of a finite number of constructor functions N
fi,. .., fn respectively of type S7,...,5]. . A . 4/(‘ ..
Each of the types S! must itself be of the particular form \ . N> \ O_ e E/ .
SI=T"1 =T — ... T —6 G A 3’ -
. T B
with ©® occurring only positively in the T’} . Sh —l_4 = 177 t

Requiring that © is the free structure generated by the f; means that every ®ement of © is represented —J
in a unique and finite (or rather well-founded) way by a succession of applications of the f;.

For this purpose, we replace © by a variable X, we write S; for Si{[X/0] (and T} for T’;} X/06]) and we
introduce: T'=VX.(5] & Sz —» ... 5, =+ X) :

We shall see that 1" has a good claim to represent ©.] N

‘é":"ﬁs‘mfﬁ/% . N Wﬁﬁ?‘ - _f@f—b’\

?.(&E _T‘ UQ }5 ﬁ . __ﬁ&m——;_\>_:a(ﬂn—ﬁ* * ﬁ:’ﬁg

2.4 Hepre&,entdtmn of the constructors A
We have to find an object f; f{.u each tvpe S 7'/9]. In other words, we are looking for a function f; which b l Q) —
takes £; arguments of types T“[T/"f:}] and returns a value of type T". '

Let xy,...,zg, be the arguments of [; . ()K(T((EH) / .
As X occurs p-::ﬁ]tnelv in T% , the canonical function k; of type T'— X defined by _p\ X) &;

a m
-4
f Z(B_ %Q{_ ”T %J h; = .}LITJi:E).XLﬁ‘S yf " ﬁi& . AL h
2; (where X, y1,. .., 9, are variables) induces a function 77 {h;} from T T/X] to T’ depending on X, 41,...,1 Uys -

X occurs (uniformly) positively but also when it occurs (uniformly) negatively.

This funn:ttmn is defined formally in the next slide. Fﬂr this, we l"lF'E'd to mnﬂder not only the case w llf‘l'l

_ Once T{h} is defined, we consider {; = T:{h;}x; for j =1,... k; and we define "'Y- .p‘ -—-‘-P)<1
. i 7 A ,.__;:.

@%n.ﬂ- ‘:rﬁg—wz& NN T AJHH,;;J] D SIT/X]
T:\#X&B I "“E::% ,-——‘D)O Q\% k_Af\J

Ve)(W

IR0 T O ' X
xf;‘*“ Pr;g ‘D% M /,8...:0 \ D%/@B Uﬂ' "ﬂw

2.5 Functorial lifting of an F-term

We write 27 - M : U to say that M is a system F term of type U/ containing a distinguished free variable
' (of type T).
Given a type C in which X occurs positively only, a type C' in which X occurs negatively only and a
term 7 F M : U, we build terms ¢ 7/X] - ¢{M}[U/X] and 2¢ [V/X] |- C-”{ M} C'|T/X]. by induction
on C' and C" : ,

-

“ /
e 1f (15 an atom, there are two cases: 'Qj [\;’ DZﬂB DS:T %

— (' = X, in which case C{M} = M ;

[UO
— C' =Y ,in which case C{M} = z¥ , independently of M t@’ E) ITL

If C" is an atom, only the second case can apply.

o it C = D" — F, then observe that X must occur negatively only in D" and positively only in £. This
means that we know how to inductively define 2F17/X = E{MY : E[U/X] and 2P WX = DML
D'T/X]|.

From this we set C{M} = \yPW/ X1 B{M M (zC T/ XD M} y/)/).
It " = D — E', the definition is symmetric: just replace D' with D and F with E".

o if C =VYY.D, then X occurs only positively in D and we know how to inductively define 2PZ/X] |-
D{M}: DIU/X].

From this, we set C{M} = AY. D{M}[(z"VPT/ XNy /]

—
E } ;S X I_ /’4) If " = YY.D’' . the situation is again ﬂmllar just replace D with D' and T with L) ! N E w&
. 0 — E M) :Q%QM. Eiﬁ}[‘ Ot @’5 o [%))

—

2.6 Induction

Do we have a faithful representation of the free structure generated by fi.... f,7 Almost (up to a possible

issue with extensionality...)

An important property of the above definition is that one can define a function by induction on the

CONStructors:
Assume that we are given a type U and functions g, ..., g, of respective types S;[U/X]| (i = 1,...,n).

We would like to define a function h of type 7" — U satisfving:

‘ (h)(fi)xr .. xp, = (gi)uy ... up, \

where u; = T3 [h]x; for j =1,... k.
For this we put

h= el ()Ugy...gn

h has the expected type and the previous equations are clearly satisfied.

2.7

Representation of basic types

All the definitions of basic data-type constructors following the second-order encoding of the connectives
(except the existential tvpe) are particular cases of the above constructions: they were not obtained by
chance. ..

L.

The boolean tvpe has lwo constants, which will then give [; and [f5 ol lype boolean: =0 5, =
Sy = X and Bool = YX.(X — X — X). It is easy to show that T = AX Az Ayt .2 and
F'o—== AX. Az Ay~ .y are the funetions described above and that the induction operation is the
boolean test 17 = Az . AyY AbBeo (01U zy.

. The product type has a function f; of two arguments, one of tvpe U and one of type V. So we

have 51 = ! — V — X, which explains the translation. The pairing function corresponds to the
construction above, the projections do not lollow the induction schema that is nevertheless delinable,

. The sum type has two functions (the canonical injections), so 51 = U — X and Sy = V — X.

Injections and pattern-matching lollow the constructions above.

. 'The empty type has nothing, so n = 0. The function efq,, = Ju.i:%""‘f“’f.(.’r}[f 1s indeed its induction

operalor.

Let us now turn to some more complex examples.

2.8 Integers

The integer type has two functions: O of type integer and 5 from integers to integers, which gives 57 = X
and S; =X — X, 50

Int £ VX. {55 —+ (X — X) — X} In the type Int, the integer n will be represented the Church numeral
by n=AXAx* M2 () (w)(y) ... ([y)z (n occurrences of y)

Remark: By interchanging S, and Ss , one could represent Int by the variant v.X.((X » X)) (X + X))
which gives essentially the same thing. In this case, the interpretation of . is immediate: it is the function
which to any type [V and funetion [of type [— [/ associates the function f,, |, i.e. [iterated n times.

We have seen already the basic functions.

As for the induction operator, it is the iterator I't, which takes an ohject of type U7 | a function of type
[/ — U7 and returns a result of type UV :

(It)uft = () Uuf

(AX Ao Ny 7N o) Uuf
(A A=Y S
(AEJU—}U) f

u

(1)ufO

+ 4 4

(Itiuf(St) AX A)ﬂ; Syt Xaey)Unf
Azt \y”“" (ynUzy)uf

(
(
(Ay" =Y (y)tUuy) f
(
(

4l

tUuy
o ft

2.9 Lists

¢

LU being a Lype, we want Lo form the Lype List;r , whose objects are [nile sequences (g, ..., u,, | ol tvpe U,
; | 1 ; P L A N

We have two functions:

e the sequence () of type Listyy , and hence S = X

e the function which maps an object u of type U and a sequence (u, ..

SJ‘_,E — {fi" — .1/"1.; — J'ir-
Mechanically applyving the gencral scheme, we got
Listy =9X.(X - (U =X =+ X)— X)

B A VXX
nil 2 AX da™ " 747 o
(cons)ut = AX Az MY " 7 yultX ay)

So the sequence (uy,...,u,) is represented by
= ; . - . ,
AX Azt ™ 7 7 (g (P us . (e
which we recognise, replacing y by cons and @ by nil | as

{ y r " ‘ 3 .
,l_i:.ﬂl'IE_}'?J'.] [MCGFIEJ’H."_!. PP ILCD”E)'?LHFIII

This last term could be oblained by reducing (w, u,)(Listy)nilcons.

Sl) to (U uy, . Ug). SO

We have an iteration on lists: if W is a type, wis of type W, fis ol type I/ — W — W | one can deline
for t of type List;; the term Itw it of type W by

Tywft = (W[

which satisfies
() il —* w

(ft)w flcons)ut —"(flu(lt)w ft

Examples

e ([f)nilconst —* ¢ for all £ of the form (uy, ..., 1,).

o If W = ListV where V is another type, and f = AaV . Ay™"*""V ((cons)(g)z)y where g is of type U — V
.11 18 easy to see that

"

(TEynilf(uy, ooty — (gt o (G UR)

One can also deline:

]

e concatenation: (wq, ..., 0, O oo) = (W1, Uy Uy ey Uy
o reversal : reverse(ur, ..., %n) = (U, ..., U1)

Remark: Listyy depends on §7, bul the definibion we have given is in Tact uniform inic, so we can deline
Nil = AX.nil[X] of type WX .Listy
Cons = A X.cons| X | of type ¥ X (X — Listy — Listy)

2.10 Trees of branching type U

There are two functions:
e the tree consisting only of its root, so 5| = X;

e the construction of a tree from a family (#,,),c of trees, so 5, = (U — X) — X.

reey = VX.(X = (U = X) = X) = X)
. L3 Irrir L L3
nil 2 AX At AtV 37X g

(collect) f 2 AX da™ M\ytv — M7 ()25 (fl2Xzy

The iteration is defined by (It)wht = (£)Wwh when Wis a type, w of type W, hof type (U = W) — W
and t of type Tree. It satisfies:

(It)whnil —" w Ttwhicollect f) —* (W) AaV (T wh(f)a

Il is possible Lo abstraclt the type U" wilth trees.

This potential for abstraction shows up the modularity of F very well: [or example, one can deline the
module C'ollect = AX.collect| X], which can subsequently be used by specifving the type X. Of course,
we see the value ol this in more complicated cases: we only write the program once, but it can be applied
(plugged into other modules) in a great variety of situations.

