Semi-Streaming Algorithms for Submodular Function Maximization under *b*-Matching Constraint

¹CNRS, DI ENS, École normale supérieure, Université PSL, France

²École polytechnique, Institut Polytechnique de Paris, France

August 2021

Some Definitions

A *b*-matching on a multi-graph G = (V, E) (with no self-loop) is defined as follow:

- for each vertex $v \in V$, a *capacity* $b_v \in \mathbb{Z}_+$ is given
- $M \subseteq E$ is a *b*-matching if M has at most b_v edges incident to v, for all $v \in V$ (through the presentation, $\delta(v)$ will denote the set of edges incident to v).

Figure: A *b*-matching for $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$

Some Definitions

Some Definitions Previous Results and Our Contribution

In the maximum weight *b*-matching problem:

- a weight function $w: E \to \mathbb{R}_+$ on the edges is given
- we have to find the b-matching M having the largest sum the weights $w(M) = \sum_{e \in M} w(e)$

Some Definitions

In the submodular maximum *b*-matching problem:

• a non-negative submodular function $f: 2^E \to \mathbb{R}_+$ is given, *i.e.* a set function satisfying:

$$\forall X \subseteq Y \subsetneq E, \forall e \in E \setminus Y, f(X \cup \{e\}) - f(X) \\ \geq f(Y \cup \{e\}) - f(Y),$$

additionally we sometimes suppose that f is monotone, meaning that $\forall X\subseteq Y\subseteq E, f(X)\leq f(Y)$

• we want to find a *b*-matching M maximizing f(M)

Some Definitions

Some Definitions Previous Results and Our Contribution

Other possible constraints:

- $\bullet\ k$ -uniform hypergraph with b-matching constraint
- add a matroid constraint so that a b-matching M also has to be independent in that matroid

Some Definitions Previous Results and Our Contribution

Some Definitions

- $\mathcal{M} = (E, \mathcal{I})$ is a *matroid* if these conditions hold:
- $0 \quad \emptyset \in \mathcal{I},$
- $e if X \subseteq Y \in \mathcal{I}, then X \in \mathcal{I},$
- **③** if $X, Y \in \mathcal{I}, |Y| > |X|$, there exists an element $e \in Y \setminus X$ so that $X \cup \{e\} \in \mathcal{I}$,

the sets in \mathcal{I} are the *independent sets* and the rank $r_{\mathcal{M}}$ of the matroid \mathcal{M} is defined as $\max_{X \in \mathcal{I}} |X|$.

Some Definitions

Some Definitions Previous Results and Our Contribution

In the *semi-streaming* model:

- $\bullet\,$ edges of E arrive over time
- we have access only to a limited memory, ideally proportional to the output size
- as a result, some edges may have to be discarded during the execution of the algorithm

Some Definitions Previous Results and Our Contribution

Previous Results and Our Contribution

Maximization problem	State of the Art	Our result
Linear <i>b</i> -matching	$3 + \varepsilon$	$2 + \varepsilon$
Submod. <i>b</i> -matching	8.899	7.464
Submod. <i>b</i> -matching on	$4l_{h} + O(1)$	(9/2) h + O(1)
k-hypergraph + matroid	$4\kappa + O(1)$	(0/3)k + O(1)

Table: Comparison of our results with the State of the Art

Previous Results and Our Contribution

Semi-steaming maximum weight matching approximation:

- 6 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
- 5.83 [McGregor, 2005]
- 5.58 [Zelke, 2010]
- 4.91 + ε [Epstein, Levin, Mestre, and Segev, 2010]
- $4 + \varepsilon$ [Crouch and Stubbs, 2014]
- $2 + \varepsilon$ [Paz and Schwartzman, 2018]

Semi-steaming maximum weight b-matching approximation:

- $4 + \varepsilon$ [Crouch and Stubbs, 2014]
- $3 + \varepsilon$ [Levin and Wajc, 2021]
- $2 + \varepsilon$ [our paper]

Some Definitions Previous Results and Our Contribution

Previous Results and Our Contribution

	matching	<i>b</i> -matching
linear	$2 + \varepsilon$	$3 + \varepsilon$
monotone	$3 + 2\sqrt{2} \approx 5.828$	$3 + 2\sqrt{2} \approx 5.828$
general	$4 + 2\sqrt{3} \approx 7.464$	$4 + 2\sqrt{6} \approx 8.899$

Table: State of the Art for semi-streaming maximum submodular matching and b-matching

Now we are able to achieve for the *b*-matching constraint the same bounds as for the simple matching constraint for all these types of submodular functions.

Some Definitions Previous Results and Our Contribution

Previous Results and Our Contribution

For the case of the submodular maximum b-matching on a k-uniform hypergraph with a matroid constraint:

- current algorithms provide a 4k + O(1) approximation [Chekuri, Gupta, and Quanrud, 2015; Feldman, Karbasi, and Kazemi, 2018]
- we get approximation ratios bounded by (8/3)k + O(1)

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- \bullet a local ratio technique for the streaming phase to build a set S
- \bullet followed by a greedy construction phase going back in time on the elements of the set S

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- a local ratio technique for the streaming phase to build a set S using a new data structure to store the edges, allowing us to perform a more accurate discrimination
- followed by a greedy construction phase going back in time on the elements of the set *S* using the aforementioned data structure to make better choices

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- a local ratio technique for the streaming phase to build a set S using a new data structure to store the edges, allowing us to perform a more accurate discrimination
- followed by a greedy construction phase going back in time on the elements of the set *S* using the aforementioned data structure to make better choices

For this presentation, we will focus on the Maximum Weight *b*-Matching problem. For ease of description, we explain how to achieve a 2-approximation; the issue of space complexity will be tackled later.

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

- for each vertex v, we have b_v queues $Q_{v,1}, \cdots, Q_{v,b_v}$
- $\bullet\,$ these queues contain the edges in S incident to v

- for each vertex v, we have b_v queues $Q_{v,1}, \cdots, Q_{v,b_v}$
- $\bullet\,$ these queues contain the edges in S incident to v
- we define the reduced weight $w_v(e)$ of an edge e in a queue $Q_{v,i}$ as the sum of the gains of the elements that arrived earlier in the queue

- for each vertex v, we have b_v queues $Q_{v,1}, \cdots, Q_{v,b_v}$
- $\bullet\,$ these queues contain the edges in S incident to v
- we define the reduced weight $w_v(e)$ of an edge e in a queue $Q_{v,i}$ as the sum of the gains of the elements that arrived earlier in the queue
- when an edge $e = \{u, v\}$ arrives, we define $w_u^*(e)$ (reps. $w_v^*(e)$) as minimum the sum of the gains among the queues of u (resp. v)

- for each vertex v, we have b_v queues $Q_{v,1}, \cdots, Q_{v,b_v}$
- $\bullet\,$ these queues contain the edges in S incident to v
- we define the reduced weight $w_v(e)$ of an edge e in a queue $Q_{v,i}$ as the sum of the gains of the elements that arrived earlier in the queue
- when an edge $e = \{u, v\}$ arrives, we define $w_u^*(e)$ (reps. $w_v^*(e)$) as minimum the sum of the gains among the queues of u (resp. v)
- an edge e is added to S only if $w(e) > w_u^*(e) + w_v^*(e)$, in that case we define the gain $g(e) = w(e) - w_u^*(e) - w_v^*(e)$ and e is pushed into the corresponding queues, otherwise we set g(e) = 0

• we also set
$$w_v(e) = g(e) + w_v^*(e)$$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \emptyset & Q_{v_1,2} &= \emptyset & w_{v_1}(Q_{v_1,1}) = 0, \ w_{v_1}(Q_{v_1,2}) = 0 \\ Q_{v_2,1} &= \emptyset & Q_{v_2,2} &= \emptyset & w_{v_2}(Q_{v_2,1}) = 0, \ w_{v_2}(Q_{v_2,2}) = 0 \\ Q_{v_3,1} &= \emptyset & w_{v_3}(Q_{v_3,1}) = 0 \\ Q_{v_4,1} &= \emptyset & w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For $V = \{v_1, v_2, v_3, v_4\}$, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} * Q_{v_1,1} &= \emptyset & Q_{v_1,2} &= \emptyset & w_{v_1}(Q_{v_1,1}) = 0, \ w_{v_1}(Q_{v_1,2}) = 0 \\ * Q_{v_2,1} &= \emptyset & Q_{v_2,2} &= \emptyset & w_{v_2}(Q_{v_2,1}) = 0, \ w_{v_2}(Q_{v_2,2}) = 0 \\ Q_{v_3,1} &= \emptyset & w_{v_3}(Q_{v_3,1}) = 0 \\ Q_{v_4,1} &= \emptyset & w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

$$e_1 = \{v_1, v_2\}, w(e_1) = 1$$

 $w_{v_1}^*(e_1) = 0$ and $w_{v_2}^*(e_1) = 0$ so $g(e_1) = 1$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} &*Q_{v_1,1} = \{e_1\} \quad Q_{v_1,2} = \emptyset \quad w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 0 \\ &*Q_{v_2,1} = \{e_1\} \quad Q_{v_2,2} = \emptyset \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 0 \\ &Q_{v_3,1} = \emptyset \qquad \qquad w_{v_3}(Q_{v_3,1}) = 0 \\ &Q_{v_4,1} = \emptyset \qquad \qquad w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

$$e_1 = \{v_1, v_2\}, w(e_1) = 1$$

 $w_{v_1}^*(e_1) = 0$ and $w_{v_2}^*(e_1) = 0$ so $g(e_1) = 1$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} &*Q_{v_1,1} = \{e_1\} \quad Q_{v_1,2} = \emptyset \quad w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 0 \\ &Q_{v_2,1} = \{e_1\} \quad Q_{v_2,2} = \emptyset \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 0 \\ &*Q_{v_3,1} = \emptyset \qquad \qquad w_{v_3}(Q_{v_3,1}) = 0 \\ &Q_{v_4,1} = \emptyset \qquad \qquad w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

$$e_2 = \{v_1, v_3\}, w(e_2) = 2$$

$$w_{v_1}^*(e_2) = 0 \text{ and } w_{v_3}^*(e_2) = 0 \text{ so } g(e_2) = 2$$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} &*Q_{v_1,1} = \{e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 2\\ &Q_{v_2,1} = \{e_1\} \quad Q_{v_2,2} = \emptyset \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 0\\ &*Q_{v_3,1} = \{e_2\} \quad w_{v_3}(Q_{v_3,1}) = 2\\ &Q_{v_4,1} = \emptyset \quad w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

$$e_2 = \{v_1, v_3\}, w(e_2) = 2$$

$$w_{v_1}^*(e_2) = 0 \text{ and } w_{v_3}^*(e_2) = 0 \text{ so } g(e_2) = 2$$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \{e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 2 \\ &* Q_{v_2,1} = \{e_1\} \quad Q_{v_2,2} = \emptyset \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 0 \\ &* Q_{v_3,1} = \{e_2\} \quad w_{v_3}(Q_{v_3,1}) = 2 \\ &Q_{v_4,1} = \emptyset \quad w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

 $e_3 = \{v_2, v_3\}, w(e_3) = 4$ $w_{v_2}^*(e_3) = 0$ and $w_{v_3}^*(e_3) = 2$ so $g(e_3) = 4 - 2 = 2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \{e_1\} & Q_{v_1,2} &= \{e_2\} & w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 2 \\ &* Q_{v_2,1} &= \{e_1\} & Q_{v_2,2} = \{e_3\} & w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 2 \\ &* Q_{v_3,1} &= \{e_3, e_2\} & w_{v_3}(Q_{v_3,1}) = 4 \\ &Q_{v_4,1} &= \emptyset & w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

 $e_3 = \{v_2, v_3\}, w(e_3) = 4$ $w_{v_2}^*(e_3) = 0$ and $w_{v_3}^*(e_3) = 2$ so $g(e_3) = 4 - 2 = 2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{array}{ll} Q_{v_1,1} = \{e_1\} & Q_{v_1,2} = \{e_2\} & w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 2\\ Q_{v_2,1} = \{e_1\} & Q_{v_2,2} = \{e_3\} & w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 2\\ * Q_{v_3,1} = \{e_3, e_2\} & w_{v_3}(Q_{v_3,1}) = 4\\ * Q_{v_4,1} = \emptyset & w_{v_4}(Q_{v_3,1}) = 0 \end{array}$$

$$e_4 = \{v_3, v_4\}, w(e_4) = 3$$

$$w_{v_3}^*(e_4) = 4 \text{ and } w_{v_4}^*(e_4) = 0 \text{ so } g(e_4) = 0$$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} &*Q_{v_1,1} = \{e_1\} & Q_{v_1,2} = \{e_2\} & w_{v_1}(Q_{v_1,1}) = 1, \ w_{v_1}(Q_{v_1,2}) = 2 \\ & Q_{v_2,1} = \{e_1\} & Q_{v_2,2} = \{e_3\} & w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 2 \\ & Q_{v_3,1} = \{e_3, e_2\} & w_{v_3}(Q_{v_3,1}) = 4 \\ &*Q_{v_4,1} = \emptyset & w_{v_4}(Q_{v_3,1}) = 0 \end{aligned}$$

 $e_5=\{v_1,v_4\},\,w(e_5)=3$ $w_{v_1}^*(e_5)=1$ and $w_{v_4}^*(e_5)=0$ so $g(e_5)=3-1=2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} &*Q_{v_1,1} = \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 3, \ w_{v_1}(Q_{v_1,2}) = 2 \\ &Q_{v_2,1} = \{e_1\} \qquad Q_{v_2,2} = \{e_3\} \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 2 \\ &Q_{v_3,1} = \{e_3, e_2\} \qquad \qquad w_{v_3}(Q_{v_3,1}) = 4 \\ &*Q_{v_4,1} = \{e_5\} \qquad \qquad w_{v_4}(Q_{v_3,1}) = 2 \end{aligned}$$

 $e_5=\{v_1,v_4\},\,w(e_5)=3$ $w_{v_1}^*(e_5)=1$ and $w_{v_4}^*(e_5)=0$ so $g(e_5)=3-1=2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 3, \ w_{v_1}(Q_{v_1,2}) = 2 \\ &* Q_{v_2,1} = \{e_1\} \qquad Q_{v_2,2} = \{e_3\} \quad w_{v_2}(Q_{v_2,1}) = 1, \ w_{v_2}(Q_{v_2,2}) = 2 \\ &Q_{v_3,1} = \{e_3, e_2\} \qquad \qquad w_{v_3}(Q_{v_3,1}) = 4 \\ &* Q_{v_4,1} = \{e_5\} \qquad \qquad w_{v_4}(Q_{v_3,1}) = 2 \end{aligned}$$

$$e_6 = \{v_2, v_4\}, w(e_6) = 5$$

 $w_{v_2}^*(e_6) = 1$ and $w_{v_4}^*(e_6) = 2$ so $g(e_6) = 5 - 2 - 1 = 2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}$$
, $b_{v_1} = b_{v_2} = 2$ and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 3, \ w_{v_1}(Q_{v_1,2}) = 2 \\ &* Q_{v_2,1} = \{e_6, e_1\} \quad Q_{v_2,2} = \{e_3\} \quad w_{v_2}(Q_{v_2,1}) = 3, \ w_{v_2}(Q_{v_2,2}) = 2 \\ &Q_{v_3,1} = \{e_3, e_2\} \qquad \qquad w_{v_3}(Q_{v_3,1}) = 4 \\ &* Q_{v_4,1} = \{e_6, e_5\} \qquad \qquad w_{v_4}(Q_{v_3,1}) = 4 \end{aligned}$$

$$e_6 = \{v_2, v_4\}, w(e_6) = 5$$

 $w_{v_2}^*(e_6) = 1$ and $w_{v_4}^*(e_6) = 2$ so $g(e_6) = 5 - 2 - 1 = 2$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Streaming Phase

For
$$V = \{v_1, v_2, v_3, v_4\}, b_{v_1} = b_{v_2} = 2$$
 and $b_{v_3} = b_{v_4} = 1$.

$$\begin{aligned} Q_{v_1,1} &= \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\} \quad w_{v_1}(Q_{v_1,1}) = 3, \ w_{v_1}(Q_{v_1,2}) = 2\\ Q_{v_2,1} &= \{e_6, e_1\} \quad Q_{v_2,2} = \{e_3\} \quad w_{v_2}(Q_{v_2,1}) = 3, \ w_{v_2}(Q_{v_2,2}) = 2\\ Q_{v_3,1} &= \{e_3, e_2\} \qquad \qquad w_{v_3}(Q_{v_3,1}) = 4\\ Q_{v_4,1} &= \{e_6, e_5\} \qquad \qquad w_{v_4}(Q_{v_3,1}) = 4 \end{aligned}$$

Algorithm 1 Streaming phase for weighted matching 1: $S \leftarrow \emptyset$ 2: $\forall v \in V : Q_v \leftarrow (Q_{v,1} = \emptyset, \cdots, Q_{v,b_v} = \emptyset)$ $\triangleright b_v$ queues for a vertex v 3: for $e = e_t$, $1 \le t \le |E|$ an edge from the stream do for $u \in e$ do 4: 5: $w_{u}^{*}(e) \leftarrow \min\{w_{u}(Q_{u,a},top()): 1 < q < b_{u}\}$ $q_u(e) \leftarrow q$ such that $w_u(Q_{u,q},top()) = w_u^*(e)$ 6: if $w(e) > \sum_{u \in e} w_u^*(e)$ then 7: $g(e) \leftarrow w(e) - \sum_{u \in e} w_u^*(e)$ 8: $S \leftarrow S \cup \{e\}$ 9: for $u \in e$ do 10: $w_u(e) \leftarrow w_u^*(e) + q(e)$ 11. $r_u(e) \leftarrow Q_{u,q_u(e)}.top()$ 12: $\triangleright r_u(e)$ is the element below e in the queue $Q_{u,q_u(e)}.push(e)$ \triangleright add *e* on the top of the smallest queue 13:

We can show that $g(S) \ge 1/2 \cdot w(M^{opt})$.

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

- start with $M = \emptyset$
- in the reverse arrival order in S, add an edge e to M if no queue it appears in contains any element already in M

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

- start with $M = \emptyset$
- in the reverse arrival order in S, add an edge e to M if no queue it appears in contains any element already in M
- in fact, we want a *b*-matching of weight at least g(S), and when an edge *e* is taken, all the gains for elements below it in the queues are counted, as $w(e) = g(e) + \sum_{u \in e} w_u^*(e)$

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

$$Q_{v_1,1} = \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\}$$
$$Q_{v_2,1} = \{e_6, e_1\} \quad Q_{v_2,2} = \{e_3\}$$
$$Q_{v_3,1} = \{e_3, e_2\}$$
$$Q_{v_4,1} = \{e_6, e_5\}$$

 $M = \emptyset$ w(M) = 0

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

$$Q_{v_1,1} = \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\}$$
$$Q_{v_2,1} = \{e_6, e_1\} \quad Q_{v_2,2} = \{e_3\}$$
$$Q_{v_3,1} = \{e_3, e_2\}$$
$$Q_{v_4,1} = \{e_6, e_5\}$$

$$M = \{e_6\}$$

w(M) = w(e_6) = g(e_6) + g(e_5) + g(e_1)

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

$$Q_{v_1,1} = \{e_5, e_1\} \quad Q_{v_1,2} = \{e_2\}$$
$$Q_{v_2,1} = \{e_6, e_1\} \quad Q_{v_2,2} = \{e_3\}$$
$$Q_{v_3,1} = \{e_3, e_2\}$$
$$Q_{v_4,1} = \{e_6, e_5\}$$

$$M = \{e_6, e_3\}$$

w(M) = w(e_6) + w(e_3) = g(e_6) + g(e_5) + g(e_1) + g(e_3) + g(e_2)

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Description of the Construction Phase

A	Algorithm 2 Greedy construction phase	
1: 1	$M \leftarrow \emptyset$	
2: \	$\forall e \in S : z_e \leftarrow 1$	
3: t	for $e \in S$ in reverse order do	
4:	if $z_e = 0$ then continue	\triangleright skip edge e if it is marked
5:	$M \leftarrow M \cup \{e\}$	
6:	for $u \in e$ do	
7:	$c \leftarrow e$	
8:	while $c \neq \perp$ do	
9:	$z_c \leftarrow 0$	\triangleright mark elements below e in each queue
10:	$c \leftarrow r_u(c)$	
11: 1	return M	

Description of the Streaming Phase Description of the Construction Phase Outline of the Analysis

Outline of the Analysis

Theorem

Algorithms 1 and 2 provide a 2-approximation for the maximum weight b-matching problem.

The main steps are:

- it holds that $2g(S) \ge w(M^{opt})$
- the construction phase builds a feasible *b*-matching *M* such that $w(M) \ge g(S)$

Outline of the Analysis

• elements on top of queues $Q_{v,i}$ are the biggest regarding the reduced weight w_v , and the sum of their reduced weight is $g(\delta(v))$
 Introduction
 Description of the Streaming Phase

 General Presentation of the Algorithm
 Description of the Construction Pha

 Analysis, Memory Optimization, and Generalization
 Outline of the Analysis

Outline of the Analysis

- elements on top of queues $Q_{v,i}$ are the biggest regarding the reduced weight w_v , and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any *b*-matching M', it holds that $w_v(M' \cap \delta(v)) \le w_v(\{Q_v.top(), 1 \le i \le b_v\}) = g(\delta(v))$

 Introduction
 Description of the Streaming Phase

 General Presentation of the Algorithm
 Description of the Construction Phase

 Analysis, Memory Optimization, and Generalization
 Outline of the Analysis

Outline of the Analysis

- elements on top of queues $Q_{v,i}$ are the biggest regarding the reduced weight w_v , and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any *b*-matching M', it holds that $w_v(M' \cap \delta(v)) \le w_v(\{Q_v.top(), 1 \le i \le b_v\}) = g(\delta(v))$
- we can use it to show that $w(M') \leq 2g(S)$ for any b-matching M'.

 Introduction
 Description of the Streaming Phase

 General Presentation of the Algorithm
 Description of the Construction Phase

 Analysis, Memory Optimization, and Generalization
 Outline of the Analysis

Outline of the Analysis

- elements on top of queues $Q_{v,i}$ are the biggest regarding the reduced weight w_v , and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any *b*-matching M', it holds that $w_v(M' \cap \delta(v)) \le w_v(\{Q_v.top(), 1 \le i \le b_v\}) = g(\delta(v))$
- we can use it to show that $w(M') \leq 2g(S)$ for any b-matching M'.
- moreover, the set M built during the construction phase is a *b*-matching of weight at least g(S).

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Outline of the Analysis

Below are listed the steps of the analysis, where M^{opt} denotes the optimal *b*-matching:

- $\forall v \in V, g(\delta(v)) = g(\delta(v) \cap S) = \sum_{i=1}^{b_v} w(Q_{v,i}.top())$
- $\{Q_{v,q}.top(): 1 \le q \le b_v\}$ contains the b_v heaviest elements of $S \cap \delta(v)$ in terms of reduced weights w_v

- $\textcircled{o} \quad 2g(S) \geq w(M^{opt})$
- Algorithm 2 outputs a feasible *b*-matching *M* with weight $w(M) \ge g(S)$

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Analysis

Proposition

• For all
$$v \in V$$
 we have $g(\delta(v)) = g(\delta(v) \cap S) = w_v(Q_v)$,
where $w_v(Q_v) = \sum_{i=1}^{b_v} w(Q_{v,i}.top())$.

(b) The set $\{Q_{v,q}.top(): 1 \le q \le b_v\}$ contains the b_v heaviest elements of $S \cap \delta(v)$ in terms of reduced weights w_v .

Algorithm 1 Streaming phase for weighted matching 1: $S \leftarrow \emptyset$ 2: $\forall v \in V : Q_v \leftarrow (Q_{v,1} = \emptyset, \cdots, Q_{v,b_v} = \emptyset)$ \triangleright b, queues for a vertex v 3: for $e = e_t$, $1 \le t \le |E|$ an edge from the stream do for $u \in e$ do $w_u^*(e) \leftarrow \min\{w_u(Q_{u,q}.top()): 1 \le q \le b_u\}$ $q_u(e) \leftarrow q$ such that $w_u(Q_{u,q}.top()) = w_u^*(e)$ 6: 7: if $w(e) > \sum_{u \in e} w_u^*(e)$ then $g(e) \leftarrow w(e) - \sum_{u \in e} w_u^*(e)$ 8: $S \leftarrow S \cup \{e\}$ 9: for $u \in e$ do 10. $w_u(e) \leftarrow w_u^*(e) + q(e)$ 11. 12. $r_u(e) \leftarrow Q_{u,q_u(e)}.top()$ $\triangleright r_n(e)$ is the element below e in the queue $Q_{u,a_u(e)}.push(e)$ \triangleright add *e* on the top of the smallest queue 13:

Analysis of the Algorithm Making the Algorithm Memory-Efficien Generalization

Analysis

Lemma

$\forall v \in V, \, w_v(Q_v) \ge w_v(M^{opt} \cap \delta(v)).$

 by the previous proposition, w_v(Q_v) is exactly the sum of the reduced weights of the b_v heaviest elements in S ∩ δ(v)

•
$$\forall e = e_t \in M^{opt} \setminus S, w_v(e_t) = \min\{w_v(Q_{v,q}^{(t-1)}) : 1 \le q \le b_v\} \le \min\{w_v(Q_{v,q}^{|E|}) : 1 \le q \le b_v\}$$

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Analysis

Lemma

 $2g(S) \ge w(M^{opt})$

For any $e = \{u, v\}, w_u(e) + w_v(e) \ge w(e)$, so

$$w(M^{opt}) \leq \sum_{e=\{u,v\}\in M^{opt}} w_u(e) + w_v(e)$$

=
$$\sum_{u\in V} w_u(M^{opt} \cap \delta(u))$$

$$\leq \sum_{u\in V} w_u(Q_u) = \sum_{u\in V} g(S \cap \delta(u)) = 2g(S).$$

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Analysis

Lemma

Algorithm 2 builds a b-matching M with $w(M) \ge g(S)$.

Using
$$w(e) = g(e) + \sum_{u \in e} w_u^*(e) = g(e) + \sum_{u \in e} \sum_{e' \in Q_{u,q_u(e)}^{(t-1)}} g(e')$$
.

Algorithm 1 Streaming phase for weighted matching

1: $S \leftarrow \emptyset$ 2: $\forall v \in V : Q_v \leftarrow (Q_{v,1} = \emptyset, \cdots, Q_{v,h_v} = \emptyset)$ $\triangleright b_v$ queues for a vertex v3: for $e = e_t$, $1 \le t \le |E|$ an edge from the stream do for $u \in e$ do 4: $w_{u}^{*}(e) \leftarrow \min\{w_{u}(Q_{u,a},top()): 1 \le a \le b_{u}\}$ 5. $q_u(e) \leftarrow q$ such that $w_u(Q_{u,q}.top()) = w_u^*(e)$ 6: if $w(e) > \sum_{u \in e} w_u^*(e)$ then 7: $g(e) \leftarrow w(e) - \sum_{u \in e} w_u^*(e)$ 8: $S \leftarrow S \cup \{e\}$ 9: for $u \in e$ do 10. $w_u(e) \leftarrow w_u^*(e) + q(e)$ 11. 12: $r_u(e) \leftarrow Q_{u,q_u(e)}.top()$ $\triangleright r_n(e)$ is the element below e in the queue $Q_{u,q_u(e)}.push(e)$ \triangleright add *e* on the top of the smallest queue 13:

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Analysis

Using
$$w(e) = g(e) + \sum_{u \in e} w_u^*(e) = g(e) + \sum_{u \in e} \sum_{e' \in Q_{u,q_u(e)}^{(t-1)}} g(e').$$

Algorithm 2 Greedy construction phase 1: $M \leftarrow \emptyset$ 2: $\forall e \in S : z_e \leftarrow 1$ 3: for $e \in S$ in reverse order do 4. if $z_e = 0$ then continue \triangleright skip edge *e* if it is marked $M \leftarrow M \cup \{e\}$ 5: for $u \in e$ do 6: 7: $c \leftarrow e$ while $c \neq \perp$ do 8. 9: $z_c \leftarrow 0$ \triangleright mark elements below *e* in each queue $c \leftarrow r_u(c)$ 10. 11: return M

Each gain g(e) for is paid for by at least one element of M.

Analysis

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Theorem

Algorithms 1 and 2 provide a 2-approximation for the maximum weight b-matching problem.

Remark

It is straightforward to extend our algorithm to a k-uniform hypergraph, for which we can get an approximation ratio of k.

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Making the Algorithm Memory-Efficient

The key ideas, from [Ghaffari and Wajc, 2019], are:

- to choose a constant $\alpha = 1 + \varepsilon > 0$ and replace the test $w(e) > \sum_{u \in e} w_u^*(e)$ by $w(e) > \alpha \sum_{u \in e} w_u^*(e)$, so that in the queues the reduces weights w_v grow exponentially, without hurting too much the approximation ratio
- to delete the elements that are far below in the queues, because these elements have very small gains

Analysis of the Algorithm Making the Algorithm Memory-Efficient Generalization

Making the Algorithm Memory-Efficient

Here, M_{max} denotes the maximum cardinality *b*-matching and W the maximum ratio between two non-zero weights.

Theorem

Using the first memory optimization, we can then recover a $2 + \varepsilon$ approximation using $O\left(\log_{1+\varepsilon}(W/\varepsilon) \cdot |M_{max}|\right)$ variables.

Theorem

Using both memory optimizations, we can then recover a $2 + \varepsilon$ approximation using $O\left(\log_{1+\varepsilon}(1/\varepsilon) \cdot |M_{max}| + \sum_{v \in V} b_v\right)$ variables.

For submodular functions:

• use the memory-efficient version of the algorithm for the streaming phase, and replace w(e) by the marginal gain $f(e \mid S) := f(S \cup \{e\}) - f(S)$

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace w(e) by the marginal gain $f(e \mid S) := f(S \cup \{e\}) f(S)$
- g(S) will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace w(e) by the marginal gain $f(e \mid S) := f(S \cup \{e\}) f(S)$
- g(S) will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- g(S) will also be a significant part of $f(M^{opt} | S)$, if ε is small enough

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace w(e) by the marginal gain $f(e \mid S) := f(S \cup \{e\}) f(S)$
- g(S) will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- g(S) will also be a significant part of $f(M^{opt} | S)$, if ε is small enough
- The construction phase will provide a b-matching M such that $f(M) \geq g(S) + f(\emptyset)$

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace w(e) by the marginal gain $f(e \mid S) := f(S \cup \{e\}) f(S)$
- g(S) will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- g(S) will also be a significant part of $f(M^{opt} | S)$, if ε is small enough
- The construction phase will provide a b-matching M such that $f(M)\geq g(S)+f(\emptyset)$
- randomization for non-monotone submodular functions

Conclusion

Main results:

Maximization problem	State of the Art	Our result
Linear <i>b</i> -matching	$3 + \varepsilon$	$2 + \varepsilon$
Submod. b-matching	8.899	7.464
Submod. <i>b</i> -matching on	4h + O(1)	(9/2) h + O(1)
k-hypergraph + matroid	$4\kappa + O(1)$	(0/3)k + O(1)

Table: Comparison of our results with the State of the Art

Main ideas:

- a local ratio technique for the streaming phase to build a set S using one queue per vertex capacity to store the edges
- followed by a greedy construction phase going back in time on the elements of the set *S* using the aforementioned queues to make better choices