
Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Semi-Streaming Algorithms for Submodular
Function Maximization under b-Matching

Constraint

Chien-Chung Huang1 François Sellier*2

1CNRS, DI ENS, École normale supérieure, Université PSL, France

2École polytechnique, Institut Polytechnique de Paris, France

August 2021

1/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions
A b-matching on a multi-graph G = (V,E) (with no self-loop) is
defined as follow:

for each vertex v ∈ V , a capacity bv ∈ Z+ is given
M ⊆ E is a b-matching if M has at most bv edges incident
to v, for all v ∈ V (through the presentation, δ(v) will
denote the set of edges incident to v).

v1

v2

v3

v4

Figure: A b-matching for bv1 = bv2 = 2 and bv3 = bv4 = 1

2/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions

In the maximum weight b-matching problem:
a weight function w : E → R+ on the edges is given
we have to find the b-matching M having the largest sum
the weights w(M) =

∑
e∈M w(e)

3/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions

In the submodular maximum b-matching problem:
a non-negative submodular function f : 2E → R+ is given,
i.e. a set function satisfying:

∀X ⊆ Y (E,∀e ∈ E\Y, f(X ∪ {e})− f(X)
≥ f(Y ∪ {e})− f(Y),

additionally we sometimes suppose that f is monotone,
meaning that ∀X ⊆ Y ⊆ E, f(X) ≤ f(Y)
we want to find a b-matching M maximizing f(M)

4/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions

Other possible constraints:
k-uniform hypergraph with b-matching constraint
add a matroid constraint so that a b-matching M also has
to be independent in that matroid

5/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions

M = (E, I) is a matroid if these conditions hold:
1 ∅ ∈ I,
2 if X ⊆ Y ∈ I, then X ∈ I,
3 if X,Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so

that X ∪ {e} ∈ I,
the sets in I are the independent sets and the rank rM of the
matroid M is defined as maxX∈I |X|.

6/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Some Definitions

In the semi-streaming model:
edges of E arrive over time
we have access only to a limited memory, ideally
proportional to the output size
as a result, some edges may have to be discarded during
the execution of the algorithm

7/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Previous Results and Our Contribution

Maximization problem State of the Art Our result
Linear b-matching 3 + ε 2 + ε
Submod. b-matching 8.899 7.464
Submod. b-matching on 4k +O(1) (8/3)k +O(1)
k-hypergraph + matroid

Table: Comparison of our results with the State of the Art

8/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Previous Results and Our Contribution

Semi-steaming maximum weight matching approximation:
6 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
5.83 [McGregor, 2005]
5.58 [Zelke, 2010]
4.91 + ε [Epstein, Levin, Mestre, and Segev, 2010]
4 + ε [Crouch and Stubbs, 2014]
2 + ε [Paz and Schwartzman, 2018]

Semi-steaming maximum weight b-matching approximation:
4 + ε [Crouch and Stubbs, 2014]
3 + ε [Levin and Wajc, 2021]
2 + ε [our paper]

9/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Previous Results and Our Contribution

matching b-matching
linear 2 + ε 3 + ε

monotone 3 + 2
√

2 ≈ 5.828 3 + 2
√

2 ≈ 5.828
general 4 + 2

√
3 ≈ 7.464 4 + 2

√
6 ≈ 8.899

Table: State of the Art for semi-streaming maximum submodular
matching and b-matching

Now we are able to achieve for the b-matching constraint the
same bounds as for the simple matching constraint for all these
types of submodular functions.

10/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Some Definitions
Previous Results and Our Contribution

Previous Results and Our Contribution

For the case of the submodular maximum b-matching on a
k-uniform hypergraph with a matroid constraint:

current algorithms provide a 4k +O(1) approximation
[Chekuri, Gupta, and Quanrud, 2015; Feldman, Karbasi,
and Kazemi, 2018]
we get approximation ratios bounded by (8/3)k +O(1)

11/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018;
Levin and Wajc, 2021]:

a local ratio technique for the streaming phase to build a
set S

using a new data structure to store the edges,
allowing us to perform a more accurate discrimination

followed by a greedy construction phase going back in time
on the elements of the set S

using the aforementioned data
structure to make better choices

For this presentation, we will focus on the Maximum Weight
b-Matching problem. For ease of description, we explain how to
achieve a 2-approximation; the issue of space complexity will be
tackled later.

12/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018;
Levin and Wajc, 2021]:

a local ratio technique for the streaming phase to build a
set S using a new data structure to store the edges,
allowing us to perform a more accurate discrimination
followed by a greedy construction phase going back in time
on the elements of the set S using the aforementioned data
structure to make better choices

For this presentation, we will focus on the Maximum Weight
b-Matching problem. For ease of description, we explain how to
achieve a 2-approximation; the issue of space complexity will be
tackled later.

12/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018;
Levin and Wajc, 2021]:

a local ratio technique for the streaming phase to build a
set S using a new data structure to store the edges,
allowing us to perform a more accurate discrimination
followed by a greedy construction phase going back in time
on the elements of the set S using the aforementioned data
structure to make better choices

For this presentation, we will focus on the Maximum Weight
b-Matching problem. For ease of description, we explain how to
achieve a 2-approximation; the issue of space complexity will be
tackled later.

12/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

for each vertex v, we have bv queues Qv,1, · · · , Qv,bv

these queues contain the edges in S incident to v

we define the reduced weight wv(e) of an edge e in a queue
Qv,i as the sum of the gains of the elements that arrived
earlier in the queue
when an edge e = {u, v} arrives, we define w∗u(e) (reps.
w∗v(e)) as minimum the sum of the gains among the queues
of u (resp. v)
an edge e is added to S only if w(e) > w∗u(e) + w∗v(e), in
that case we define the gain g(e) = w(e)− w∗u(e)− w∗v(e)
and e is pushed into the corresponding queues, otherwise
we set g(e) = 0
we also set wv(e) = g(e) + w∗v(e)

13/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

for each vertex v, we have bv queues Qv,1, · · · , Qv,bv

these queues contain the edges in S incident to v
we define the reduced weight wv(e) of an edge e in a queue
Qv,i as the sum of the gains of the elements that arrived
earlier in the queue

when an edge e = {u, v} arrives, we define w∗u(e) (reps.
w∗v(e)) as minimum the sum of the gains among the queues
of u (resp. v)
an edge e is added to S only if w(e) > w∗u(e) + w∗v(e), in
that case we define the gain g(e) = w(e)− w∗u(e)− w∗v(e)
and e is pushed into the corresponding queues, otherwise
we set g(e) = 0
we also set wv(e) = g(e) + w∗v(e)

13/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

for each vertex v, we have bv queues Qv,1, · · · , Qv,bv

these queues contain the edges in S incident to v
we define the reduced weight wv(e) of an edge e in a queue
Qv,i as the sum of the gains of the elements that arrived
earlier in the queue
when an edge e = {u, v} arrives, we define w∗u(e) (reps.
w∗v(e)) as minimum the sum of the gains among the queues
of u (resp. v)

an edge e is added to S only if w(e) > w∗u(e) + w∗v(e), in
that case we define the gain g(e) = w(e)− w∗u(e)− w∗v(e)
and e is pushed into the corresponding queues, otherwise
we set g(e) = 0
we also set wv(e) = g(e) + w∗v(e)

13/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

for each vertex v, we have bv queues Qv,1, · · · , Qv,bv

these queues contain the edges in S incident to v
we define the reduced weight wv(e) of an edge e in a queue
Qv,i as the sum of the gains of the elements that arrived
earlier in the queue
when an edge e = {u, v} arrives, we define w∗u(e) (reps.
w∗v(e)) as minimum the sum of the gains among the queues
of u (resp. v)
an edge e is added to S only if w(e) > w∗u(e) + w∗v(e), in
that case we define the gain g(e) = w(e)− w∗u(e)− w∗v(e)
and e is pushed into the corresponding queues, otherwise
we set g(e) = 0
we also set wv(e) = g(e) + w∗v(e)

13/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = ∅ Qv1,2 = ∅ wv1(Qv1,1) = 0, wv1(Qv1,2) = 0
Qv2,1 = ∅ Qv2,2 = ∅ wv2(Qv2,1) = 0, wv2(Qv2,2) = 0
Qv3,1 = ∅ wv3(Qv3,1) = 0
Qv4,1 = ∅ wv4(Qv3,1) = 0

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = ∅ Qv1,2 = ∅ wv1(Qv1,1) = 0, wv1(Qv1,2) = 0
∗Qv2,1 = ∅ Qv2,2 = ∅ wv2(Qv2,1) = 0, wv2(Qv2,2) = 0
Qv3,1 = ∅ wv3(Qv3,1) = 0
Qv4,1 = ∅ wv4(Qv3,1) = 0

e1 = {v1, v2}, w(e1) = 1
w∗v1(e1) = 0 and w∗v2(e1) = 0 so g(e1) = 1

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = {e1} Qv1,2 = ∅ wv1(Qv1,1) = 1, wv1(Qv1,2) = 0
∗Qv2,1 = {e1} Qv2,2 = ∅ wv2(Qv2,1) = 1, wv2(Qv2,2) = 0
Qv3,1 = ∅ wv3(Qv3,1) = 0
Qv4,1 = ∅ wv4(Qv3,1) = 0

e1 = {v1, v2}, w(e1) = 1
w∗v1(e1) = 0 and w∗v2(e1) = 0 so g(e1) = 1

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = {e1} Qv1,2 = ∅ wv1(Qv1,1) = 1, wv1(Qv1,2) = 0
Qv2,1 = {e1} Qv2,2 = ∅ wv2(Qv2,1) = 1, wv2(Qv2,2) = 0
∗Qv3,1 = ∅ wv3(Qv3,1) = 0
Qv4,1 = ∅ wv4(Qv3,1) = 0

e2 = {v1, v3}, w(e2) = 2
w∗v1(e2) = 0 and w∗v3(e2) = 0 so g(e2) = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = {e1} Qv1,2 = {e2} wv1(Qv1,1) = 1, wv1(Qv1,2) = 2
Qv2,1 = {e1} Qv2,2 = ∅ wv2(Qv2,1) = 1, wv2(Qv2,2) = 0
∗Qv3,1 = {e2} wv3(Qv3,1) = 2
Qv4,1 = ∅ wv4(Qv3,1) = 0

e2 = {v1, v3}, w(e2) = 2
w∗v1(e2) = 0 and w∗v3(e2) = 0 so g(e2) = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e1} Qv1,2 = {e2} wv1(Qv1,1) = 1, wv1(Qv1,2) = 2
∗Qv2,1 = {e1} Qv2,2 = ∅ wv2(Qv2,1) = 1, wv2(Qv2,2) = 0
∗Qv3,1 = {e2} wv3(Qv3,1) = 2
Qv4,1 = ∅ wv4(Qv3,1) = 0

e3 = {v2, v3}, w(e3) = 4
w∗v2(e3) = 0 and w∗v3(e3) = 2 so g(e3) = 4− 2 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e1} Qv1,2 = {e2} wv1(Qv1,1) = 1, wv1(Qv1,2) = 2
∗Qv2,1 = {e1} Qv2,2 = {e3} wv2(Qv2,1) = 1, wv2(Qv2,2) = 2
∗Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
Qv4,1 = ∅ wv4(Qv3,1) = 0

e3 = {v2, v3}, w(e3) = 4
w∗v2(e3) = 0 and w∗v3(e3) = 2 so g(e3) = 4− 2 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e1} Qv1,2 = {e2} wv1(Qv1,1) = 1, wv1(Qv1,2) = 2
Qv2,1 = {e1} Qv2,2 = {e3} wv2(Qv2,1) = 1, wv2(Qv2,2) = 2
∗Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
∗Qv4,1 = ∅ wv4(Qv3,1) = 0

e4 = {v3, v4}, w(e4) = 3
w∗v3(e4) = 4 and w∗v4(e4) = 0 so g(e4) = 0

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = {e1} Qv1,2 = {e2} wv1(Qv1,1) = 1, wv1(Qv1,2) = 2
Qv2,1 = {e1} Qv2,2 = {e3} wv2(Qv2,1) = 1, wv2(Qv2,2) = 2
Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
∗Qv4,1 = ∅ wv4(Qv3,1) = 0

e5 = {v1, v4}, w(e5) = 3
w∗v1(e5) = 1 and w∗v4(e5) = 0 so g(e5) = 3− 1 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

∗Qv1,1 = {e5, e1} Qv1,2 = {e2} wv1(Qv1,1) = 3, wv1(Qv1,2) = 2
Qv2,1 = {e1} Qv2,2 = {e3} wv2(Qv2,1) = 1, wv2(Qv2,2) = 2
Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
∗Qv4,1 = {e5} wv4(Qv3,1) = 2

e5 = {v1, v4}, w(e5) = 3
w∗v1(e5) = 1 and w∗v4(e5) = 0 so g(e5) = 3− 1 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e5, e1} Qv1,2 = {e2} wv1(Qv1,1) = 3, wv1(Qv1,2) = 2
∗Qv2,1 = {e1} Qv2,2 = {e3} wv2(Qv2,1) = 1, wv2(Qv2,2) = 2
Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
∗Qv4,1 = {e5} wv4(Qv3,1) = 2

e6 = {v2, v4}, w(e6) = 5
w∗v2(e6) = 1 and w∗v4(e6) = 2 so g(e6) = 5− 2− 1 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e5, e1} Qv1,2 = {e2} wv1(Qv1,1) = 3, wv1(Qv1,2) = 2
∗Qv2,1 = {e6, e1} Qv2,2 = {e3} wv2(Qv2,1) = 3, wv2(Qv2,2) = 2
Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
∗Qv4,1 = {e6, e5} wv4(Qv3,1) = 4

e6 = {v2, v4}, w(e6) = 5
w∗v2(e6) = 1 and w∗v4(e6) = 2 so g(e6) = 5− 2− 1 = 2

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

v1

v2

v3

v4

For V = {v1, v2, v3, v4}, bv1 = bv2 = 2 and bv3 = bv4 = 1.

Qv1,1 = {e5, e1} Qv1,2 = {e2} wv1(Qv1,1) = 3, wv1(Qv1,2) = 2
Qv2,1 = {e6, e1} Qv2,2 = {e3} wv2(Qv2,1) = 3, wv2(Qv2,2) = 2
Qv3,1 = {e3, e2} wv3(Qv3,1) = 4
Qv4,1 = {e6, e5} wv4(Qv3,1) = 4

14/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Streaming Phase

We can show that g(S) ≥ 1/2 · w(Mopt).

15/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

start with M = ∅
in the reverse arrival order in S, add an edge e to M if no
queue it appears in contains any element already in M

in fact, we want a b-matching of weight at least g(S), and
when an edge e is taken, all the gains for elements below it
in the queues are counted, as w(e) = g(e) +

∑
u∈ew

∗
u(e)

16/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

start with M = ∅
in the reverse arrival order in S, add an edge e to M if no
queue it appears in contains any element already in M

in fact, we want a b-matching of weight at least g(S), and
when an edge e is taken, all the gains for elements below it
in the queues are counted, as w(e) = g(e) +

∑
u∈ew

∗
u(e)

16/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

Qv1,1 = {e5, e1} Qv1,2 = {e2}
Qv2,1 = {e6, e1} Qv2,2 = {e3}
Qv3,1 = {e3, e2}
Qv4,1 = {e6, e5}

M = ∅
w(M) = 0

17/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

Qv1,1 = {e5, e1} Qv1,2 = {e2}
Qv2,1 = {e6, e1} Qv2,2 = {e3}
Qv3,1 = {e3, e2}
Qv4,1 = {e6, e5}

M = {e6}
w(M) = w(e6) = g(e6) + g(e5) + g(e1)

17/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

Going back to the previous example:

Qv1,1 = {e5, e1} Qv1,2 = {e2}
Qv2,1 = {e6, e1} Qv2,2 = {e3}
Qv3,1 = {e3, e2}
Qv4,1 = {e6, e5}

M = {e6, e3}
w(M) = w(e6) + w(e3) = g(e6) + g(e5) + g(e1) + g(e3) + g(e2)

17/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Description of the Construction Phase

18/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Outline of the Analysis

Theorem
Algorithms 1 and 2 provide a 2-approximation for the maximum
weight b-matching problem.

The main steps are:
it holds that 2g(S) ≥ w(Mopt)
the construction phase builds a feasible b-matching M such
that w(M) ≥ g(S)

19/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Outline of the Analysis

elements on top of queues Qv,i are the biggest regarding
the reduced weight wv, and the sum of their reduced
weight is g(δ(v))

as a result, for any b-matching M ′, it holds that
wv(M ′ ∩ δ(v)) ≤ wv({Qv.top(), 1 ≤ i ≤ bv}) = g(δ(v))
we can use it to show that w(M ′) ≤ 2g(S) for any
b-matching M ′.
moreover, the set M built during the construction phase is
a b-matching of weight at least g(S).

20/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Outline of the Analysis

elements on top of queues Qv,i are the biggest regarding
the reduced weight wv, and the sum of their reduced
weight is g(δ(v))
as a result, for any b-matching M ′, it holds that
wv(M ′ ∩ δ(v)) ≤ wv({Qv.top(), 1 ≤ i ≤ bv}) = g(δ(v))

we can use it to show that w(M ′) ≤ 2g(S) for any
b-matching M ′.
moreover, the set M built during the construction phase is
a b-matching of weight at least g(S).

20/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Outline of the Analysis

elements on top of queues Qv,i are the biggest regarding
the reduced weight wv, and the sum of their reduced
weight is g(δ(v))
as a result, for any b-matching M ′, it holds that
wv(M ′ ∩ δ(v)) ≤ wv({Qv.top(), 1 ≤ i ≤ bv}) = g(δ(v))
we can use it to show that w(M ′) ≤ 2g(S) for any
b-matching M ′.

moreover, the set M built during the construction phase is
a b-matching of weight at least g(S).

20/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Description of the Streaming Phase
Description of the Construction Phase
Outline of the Analysis

Outline of the Analysis

elements on top of queues Qv,i are the biggest regarding
the reduced weight wv, and the sum of their reduced
weight is g(δ(v))
as a result, for any b-matching M ′, it holds that
wv(M ′ ∩ δ(v)) ≤ wv({Qv.top(), 1 ≤ i ≤ bv}) = g(δ(v))
we can use it to show that w(M ′) ≤ 2g(S) for any
b-matching M ′.
moreover, the set M built during the construction phase is
a b-matching of weight at least g(S).

20/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Outline of the Analysis

Below are listed the steps of the analysis, where Mopt denotes
the optimal b-matching:

i ∀v ∈ V, g(δ(v)) = g(δ(v) ∩ S) =
∑bv

i=1w(Qv,i.top())
ii {Qv,q.top() : 1 ≤ q ≤ bv} contains the bv heaviest elements

of S ∩ δ(v) in terms of reduced weights wv

iii ∀v ∈ V, wv(Qv) :=
∑bv

i=1w(Qv,i.top()) ≥ wv(Mopt ∩ δ(v))
iv 2g(S) ≥ w(Mopt)
v Algorithm 2 outputs a feasible b-matching M with weight

w(M) ≥ g(S)

21/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Proposition

i For all v ∈ V we have g(δ(v)) = g(δ(v) ∩ S) = wv(Qv),
where wv(Qv) =

∑bv
i=1w(Qv,i.top()).

ii The set {Qv,q.top() : 1 ≤ q ≤ bv} contains the bv heaviest
elements of S ∩ δ(v) in terms of reduced weights wv.

22/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Lemma

∀v ∈ V, wv(Qv) ≥ wv(Mopt ∩ δ(v)).

by the previous proposition, wv(Qv) is exactly the sum of
the reduced weights of the bv heaviest elements in S ∩ δ(v)
∀e = et ∈Mopt\S, wv(et) = min{wv(Q(t−1)

v,q) : 1 ≤ q ≤
bv} ≤ min{wv(Q|E|v,q) : 1 ≤ q ≤ bv}

23/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Lemma

2g(S) ≥ w(Mopt)

For any e = {u, v}, wu(e) + wv(e) ≥ w(e), so

w(Mopt) ≤
∑

e={u,v}∈Mopt

wu(e) + wv(e)

=
∑
u∈V

wu(Mopt ∩ δ(u))

≤
∑
u∈V

wu(Qu) =
∑
u∈V

g(S ∩ δ(u)) = 2g(S).

24/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Lemma

Algorithm 2 builds a b-matching M with w(M) ≥ g(S).

Using w(e) = g(e) +
∑

u∈ew
∗
u(e) = g(e) +

∑
u∈e

∑
e′∈Q

(t−1)
u,qu(e)

g(e′).

25/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Using w(e) = g(e) +
∑

u∈ew
∗
u(e) = g(e) +

∑
u∈e

∑
e′∈Q

(t−1)
u,qu(e)

g(e′).

Each gain g(e) for is paid for by at least one element of M .

26/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Analysis

Theorem
Algorithms 1 and 2 provide a 2-approximation for the maximum
weight b-matching problem.

Remark
It is straightforward to extend our algorithm to a k-uniform
hypergraph, for which we can get an approximation ratio of k.

27/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Making the Algorithm Memory-Efficient

The key ideas, from [Ghaffari and Wajc, 2019], are:
to choose a constant α = 1 + ε > 0 and replace the test
w(e) >

∑
u∈ew

∗
u(e) by w(e) > α

∑
u∈ew

∗
u(e), so that in the

queues the reduces weights wv grow exponentially, without
hurting too much the approximation ratio
to delete the elements that are far below in the queues,
because these elements have very small gains

28/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Making the Algorithm Memory-Efficient

Here, Mmax denotes the maximum cardinality b-matching and
W the maximum ratio between two non-zero weights.

Theorem
Using the first memory optimization, we can then recover a
2 + ε approximation using O

(
log1+ε(W/ε) · |Mmax|

)
variables.

Theorem
Using both memory optimizations, we can then recover a 2 + ε
approximation using O

(
log1+ε(1/ε) · |Mmax|+

∑
v∈V bv

)
variables.

29/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Generalization to Submodular Functions

For submodular functions:
use the memory-efficient version of the algorithm for the
streaming phase, and replace w(e) by the marginal gain
f(e |S) := f(S ∪ {e})− f(S)

g(S) will be a significant portion of f(S | ∅), if ε is big
enough
g(S) will also be a significant part of f(Mopt |S), if ε is
small enough
The construction phase will provide a b-matching M such
that f(M) ≥ g(S) + f(∅)
randomization for non-monotone submodular functions

this analysis borrows ideas from [Levin and Wajc, 2021].

30/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Generalization to Submodular Functions

For submodular functions:
use the memory-efficient version of the algorithm for the
streaming phase, and replace w(e) by the marginal gain
f(e |S) := f(S ∪ {e})− f(S)
g(S) will be a significant portion of f(S | ∅), if ε is big
enough

g(S) will also be a significant part of f(Mopt |S), if ε is
small enough
The construction phase will provide a b-matching M such
that f(M) ≥ g(S) + f(∅)
randomization for non-monotone submodular functions

this analysis borrows ideas from [Levin and Wajc, 2021].

30/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Generalization to Submodular Functions

For submodular functions:
use the memory-efficient version of the algorithm for the
streaming phase, and replace w(e) by the marginal gain
f(e |S) := f(S ∪ {e})− f(S)
g(S) will be a significant portion of f(S | ∅), if ε is big
enough
g(S) will also be a significant part of f(Mopt |S), if ε is
small enough

The construction phase will provide a b-matching M such
that f(M) ≥ g(S) + f(∅)
randomization for non-monotone submodular functions

this analysis borrows ideas from [Levin and Wajc, 2021].

30/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Generalization to Submodular Functions

For submodular functions:
use the memory-efficient version of the algorithm for the
streaming phase, and replace w(e) by the marginal gain
f(e |S) := f(S ∪ {e})− f(S)
g(S) will be a significant portion of f(S | ∅), if ε is big
enough
g(S) will also be a significant part of f(Mopt |S), if ε is
small enough
The construction phase will provide a b-matching M such
that f(M) ≥ g(S) + f(∅)

randomization for non-monotone submodular functions

this analysis borrows ideas from [Levin and Wajc, 2021].

30/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Analysis of the Algorithm
Making the Algorithm Memory-Efficient
Generalization

Generalization to Submodular Functions

For submodular functions:
use the memory-efficient version of the algorithm for the
streaming phase, and replace w(e) by the marginal gain
f(e |S) := f(S ∪ {e})− f(S)
g(S) will be a significant portion of f(S | ∅), if ε is big
enough
g(S) will also be a significant part of f(Mopt |S), if ε is
small enough
The construction phase will provide a b-matching M such
that f(M) ≥ g(S) + f(∅)
randomization for non-monotone submodular functions

this analysis borrows ideas from [Levin and Wajc, 2021].

30/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

Introduction
General Presentation of the Algorithm

Analysis, Memory Optimization, and Generalization

Conclusion
Main results:

Maximization problem State of the Art Our result
Linear b-matching 3 + ε 2 + ε
Submod. b-matching 8.899 7.464
Submod. b-matching on 4k +O(1) (8/3)k +O(1)
k-hypergraph + matroid

Table: Comparison of our results with the State of the Art

Main ideas:
a local ratio technique for the streaming phase to build a
set S using one queue per vertex capacity to store the edges
followed by a greedy construction phase going back in time
on the elements of the set S using the aforementioned
queues to make better choices

31/31
Chien-Chung Huang, François Sellier* Semi-Streaming Algorithms for b-Matchings

	Introduction
	Some Definitions
	Previous Results and Our Contribution

	General Presentation of the Algorithm
	Description of the Streaming Phase
	Description of the Construction Phase
	Outline of the Analysis

	Analysis, Memory Optimization, and Generalization
	Analysis of the Algorithm
	Making the Algorithm Memory-Efficient
	Generalization

	

