Semi-Streaming Algorithms for Submodular Function Maximization under b-Matching Constraint

Chien-Chung Huang ${ }^{1}$ François Sellier*2

${ }^{1}$ CNRS, DI ENS, École normale supérieure, Université PSL, France
${ }^{2}$ École polytechnique, Institut Polytechnique de Paris, France

August 2021

Some Definitions

A b-matching on a multi-graph $G=(V, E)$ (with no self-loop) is defined as follow:

- for each vertex $v \in V$, a capacity $b_{v} \in \mathbb{Z}_{+}$is given
- $M \subseteq E$ is a b-matching if M has at most b_{v} edges incident to v, for all $v \in V$ (through the presentation, $\delta(v)$ will denote the set of edges incident to v).

Figure: A b-matching for $b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$

Some Definitions

In the maximum weight b-matching problem:

- a weight function $w: E \rightarrow \mathbb{R}_{+}$on the edges is given
- we have to find the b-matching M having the largest sum the weights $w(M)=\sum_{e \in M} w(e)$

Some Definitions

In the submodular maximum b-matching problem:

- a non-negative submodular function $f: 2^{E} \rightarrow \mathbb{R}_{+}$is given, i.e. a set function satisfying:

$$
\begin{aligned}
\forall X \subseteq Y \subsetneq E, \forall e \in E \backslash Y, f(X \cup\{e\}) & -f(X) \\
& \geq f(Y \cup\{e\})-f(Y)
\end{aligned}
$$

additionally we sometimes suppose that f is monotone, meaning that $\forall X \subseteq Y \subseteq E, f(X) \leq f(Y)$

- we want to find a b-matching M maximizing $f(M)$

Some Definitions

Other possible constraints:

- k-uniform hypergraph with b-matching constraint
- add a matroid constraint so that a b-matching M also has to be independent in that matroid

Some Definitions

$\mathcal{M}=(E, \mathcal{I})$ is a matroid if these conditions hold:

- $\emptyset \in \mathcal{I}$,
(2) if $X \subseteq Y \in \mathcal{I}$, then $X \in \mathcal{I}$,
- if $X, Y \in \mathcal{I},|Y|>|X|$, there exists an element $e \in Y \backslash X$ so that $X \cup\{e\} \in \mathcal{I}$,
the sets in \mathcal{I} are the independent sets and the rank $r_{\mathcal{M}}$ of the matroid \mathcal{M} is defined as $\max _{X \in \mathcal{I}}|X|$.

Some Definitions

In the semi-streaming model:

- edges of E arrive over time
- we have access only to a limited memory, ideally proportional to the output size
- as a result, some edges may have to be discarded during the execution of the algorithm

Previous Results and Our Contribution

Maximization problem	State of the Art	Our result
Linear b-matching	$3+\varepsilon$	$2+\varepsilon$
Submod. b-matching	8.899	7.464
Submod. b-matching on	$4 k+O(1)$	$(8 / 3) k+O(1)$
k-hypergraph + matroid		

Table: Comparison of our results with the State of the Art

Previous Results and Our Contribution

Semi-steaming maximum weight matching approximation:

- 6 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
- 5.83 [McGregor, 2005]
- 5.58 [Zelke, 2010]
- $4.91+\varepsilon$ [Epstein, Levin, Mestre, and Segev, 2010]
- $4+\varepsilon$ [Crouch and Stubbs, 2014]
- $2+\varepsilon$ [Paz and Schwartzman, 2018]

Semi-steaming maximum weight b-matching approximation:

- $4+\varepsilon$ [Crouch and Stubbs, 2014]
- $3+\varepsilon$ [Levin and Wajc, 2021]
- $2+\varepsilon$ [our paper]

Previous Results and Our Contribution

	matching	b-matching
linear	$2+\varepsilon$	$3+\varepsilon$
monotone	$3+2 \sqrt{2} \approx 5.828$	$3+2 \sqrt{2} \approx 5.828$
general	$4+2 \sqrt{3} \approx 7.464$	$4+2 \sqrt{6} \approx 8.899$

Table: State of the Art for semi-streaming maximum submodular matching and b-matching

Now we are able to achieve for the b-matching constraint the same bounds as for the simple matching constraint for all these types of submodular functions.

Previous Results and Our Contribution

For the case of the submodular maximum b-matching on a k-uniform hypergraph with a matroid constraint:

- current algorithms provide a $4 k+O(1)$ approximation [Chekuri, Gupta, and Quanrud, 2015; Feldman, Karbasi, and Kazemi, 2018]
- we get approximation ratios bounded by $(8 / 3) k+O(1)$

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- a local ratio technique for the streaming phase to build a set S
- followed by a greedy construction phase going back in time on the elements of the set S

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- a local ratio technique for the streaming phase to build a set S using a new data structure to store the edges, allowing us to perform a more accurate discrimination
- followed by a greedy construction phase going back in time on the elements of the set S using the aforementioned data structure to make better choices

General Presentation of the Algorithm

We use a similar framework to [Paz and Schwartzman, 2018; Levin and Wajc, 2021]:

- a local ratio technique for the streaming phase to build a set S using a new data structure to store the edges, allowing us to perform a more accurate discrimination
- followed by a greedy construction phase going back in time on the elements of the set S using the aforementioned data structure to make better choices

For this presentation, we will focus on the Maximum Weight b-Matching problem. For ease of description, we explain how to achieve a 2 -approximation; the issue of space complexity will be tackled later.

Description of the Streaming Phase

- for each vertex v, we have b_{v} queues $Q_{v, 1}, \cdots, Q_{v, b_{v}}$
- these queues contain the edges in S incident to v

Description of the Streaming Phase

- for each vertex v, we have b_{v} queues $Q_{v, 1}, \cdots, Q_{v, b_{v}}$
- these queues contain the edges in S incident to v
- we define the reduced weight $w_{v}(e)$ of an edge e in a queue $Q_{v, i}$ as the sum of the gains of the elements that arrived earlier in the queue

Description of the Streaming Phase

- for each vertex v, we have b_{v} queues $Q_{v, 1}, \cdots, Q_{v, b_{v}}$
- these queues contain the edges in S incident to v
- we define the reduced weight $w_{v}(e)$ of an edge e in a queue $Q_{v, i}$ as the sum of the gains of the elements that arrived earlier in the queue
- when an edge $e=\{u, v\}$ arrives, we define $w_{u}^{*}(e)$ (reps. $\left.w_{v}^{*}(e)\right)$ as minimum the sum of the gains among the queues of u (resp. v)

Description of the Streaming Phase

- for each vertex v, we have b_{v} queues $Q_{v, 1}, \cdots, Q_{v, b_{v}}$
- these queues contain the edges in S incident to v
- we define the reduced weight $w_{v}(e)$ of an edge e in a queue $Q_{v, i}$ as the sum of the gains of the elements that arrived earlier in the queue
- when an edge $e=\{u, v\}$ arrives, we define $w_{u}^{*}(e)$ (reps. $\left.w_{v}^{*}(e)\right)$ as minimum the sum of the gains among the queues of u (resp. v)
- an edge e is added to S only if $w(e)>w_{u}^{*}(e)+w_{v}^{*}(e)$, in that case we define the gain $g(e)=w(e)-w_{u}^{*}(e)-w_{v}^{*}(e)$ and e is pushed into the corresponding queues, otherwise we set $g(e)=0$
- we also set $w_{v}(e)=g(e)+w_{v}^{*}(e)$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{lll}
Q_{v_{1}, 1}=\emptyset & Q_{v_{1}, 2}=\emptyset & w_{v_{1}}\left(Q_{v_{1}, 1}\right)=0, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=0 \\
Q_{v_{2}, 1}=\emptyset & Q_{v_{2}, 2}=\emptyset & w_{v_{2}}\left(Q_{v_{2}, 1}\right)=0, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
Q_{v_{3}, 1}=\emptyset & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=0 \\
Q_{v_{4}, 1}=\emptyset & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0
\end{array}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{aligned}
& * Q_{v_{1}, 1}=\emptyset \quad Q_{v_{1}, 2}=\emptyset \quad w_{v_{1}}\left(Q_{v_{1}, 1}\right)=0, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=0 \\
& * Q_{v_{2}, 1}=\emptyset \quad Q_{v_{2}, 2}=\emptyset \quad w_{v_{2}}\left(Q_{v_{2}, 1}\right)=0, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
& Q_{v_{3}, 1}=\emptyset \quad w_{v_{3}}\left(Q_{v_{3}, 1}\right)=0 \\
& Q_{v_{4}, 1}=\emptyset \quad w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0
\end{aligned}
$$

$e_{1}=\left\{v_{1}, v_{2}\right\}, w\left(e_{1}\right)=1$
$w_{v_{1}}^{*}\left(e_{1}\right)=0$ and $w_{v_{2}}^{*}\left(e_{1}\right)=0$ so $g\left(e_{1}\right)=1$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlll}
* Q_{v_{1}, 1} & =\left\{e_{1}\right\} & Q_{v_{1}, 2}=\emptyset & \\
w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=0 \\
* Q_{v_{2}, 1} & =\left\{e_{1}\right\} & Q_{v_{2}, 2}=\emptyset & \\
Q_{v_{3}, 1} & =\emptyset & & \left.Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
Q_{v_{4}, 1} & =\emptyset & & \left.Q_{v_{3}, 1}\right)=0 \\
& & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0
\end{array}
$$

$e_{1}=\left\{v_{1}, v_{2}\right\}, w\left(e_{1}\right)=1$
$w_{v_{1}}^{*}\left(e_{1}\right)=0$ and $w_{v_{2}}^{*}\left(e_{1}\right)=0$ so $g\left(e_{1}\right)=1$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlll}
* Q_{v_{1}, 1} & =\left\{e_{1}\right\} & Q_{v_{1}, 2}=\emptyset & \\
w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=0 \\
Q_{v_{2}, 1} & =\left\{e_{1}\right\} & Q_{v_{2}, 2}=\emptyset & \\
* w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
* Q_{v_{3}, 1} & =\emptyset & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=0 \\
Q_{v_{4}, 1} & =\emptyset & &
\end{array}
$$

$e_{2}=\left\{v_{1}, v_{3}\right\}, w\left(e_{2}\right)=2$
$w_{v_{1}}^{*}\left(e_{2}\right)=0$ and $w_{v_{3}}^{*}\left(e_{2}\right)=0$ so $g\left(e_{2}\right)=2$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlrl}
* Q_{v_{1}, 1} & =\left\{e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & \\
w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
Q_{v_{2}, 1} & =\left\{e_{1}\right\} & Q_{v_{2}, 2}=\emptyset & \\
* w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
* Q_{v_{3}, 1} & =\left\{e_{2}\right\} & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=2 \\
Q_{v_{4}, 1} & =\emptyset & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0
\end{array}
$$

$e_{2}=\left\{v_{1}, v_{3}\right\}, w\left(e_{2}\right)=2$
$w_{v_{1}}^{*}\left(e_{2}\right)=0$ and $w_{v_{3}}^{*}\left(e_{2}\right)=0$ so $g\left(e_{2}\right)=2$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rll}
Q_{v_{1}, 1}=\left\{e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
* Q_{v_{2}, 1}=\left\{e_{1}\right\} & Q_{v_{2}, 2}=\emptyset & w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=0 \\
* Q_{v_{3}, 1}=\left\{e_{2}\right\} & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=2 \\
Q_{v_{4}, 1}=\emptyset & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0 \\
e_{3}=\left\{v_{2}, v_{3}\right\}, w\left(e_{3}\right)=4 & \\
w_{v_{2}}^{*}\left(e_{3}\right)=0 \text { and } w_{v_{3}}^{*}\left(e_{3}\right)=2 \text { so } g\left(e_{3}\right)=4-2=2
\end{array}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{aligned}
& Q_{v_{1}, 1}=\left\{e_{1}\right\} \quad Q_{v_{1}, 2}=\left\{e_{2}\right\} \quad w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
& * Q_{v_{2}, 1}=\left\{e_{1}\right\} \quad Q_{v_{2}, 2}=\left\{e_{3}\right\} \quad w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
& * Q_{v_{3}, 1}=\left\{e_{3}, e_{2}\right\} \\
& w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4 \\
& Q_{v_{4}, 1}=\emptyset \\
& w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0 \\
& e_{3}=\left\{v_{2}, v_{3}\right\}, w\left(e_{3}\right)=4 \\
& w_{v_{2}}^{*}\left(e_{3}\right)=0 \text { and } w_{v_{3}}^{*}\left(e_{3}\right)=2 \text { so } g\left(e_{3}\right)=4-2=2
\end{aligned}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rll}
Q_{v_{1}, 1} & =\left\{e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} \\
Q_{v_{2}, 1} & =\left\{e_{1}\right\} & w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
* Q_{v_{3}, 1} & =\left\{e_{3}, e_{2}\right\} & \\
* Q_{v_{4}, 1} & =\emptyset & \\
e_{4}=\left\{e_{3}\right\} & w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
w_{v_{3}}^{*}\left(e_{4}\right)=4, w\left(e_{4}\right)=3 & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4 \\
& w_{v_{4}}\left(Q_{v_{3}, 1}\right)=0
\end{array}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlrl}
* Q_{v_{1}, 1} & =\left\{e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & \\
w_{v_{1}}\left(Q_{v_{1}, 1}\right)=1, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
Q_{v_{2}, 1} & =\left\{e_{1}\right\} & Q_{v_{2}, 2}=\left\{e_{3}\right\} & \\
w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
* & & =\left\{e_{3}, e_{2}\right\} &
\end{array}
$$

$e_{5}=\left\{v_{1}, v_{4}\right\}, w\left(e_{5}\right)=3$
$w_{v_{1}}^{*}\left(e_{5}\right)=1$ and $w_{v_{4}}^{*}\left(e_{5}\right)=0$ so $g\left(e_{5}\right)=3-1=2$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.
$* Q_{v_{1}, 1}=\left\{e_{5}, e_{1}\right\} \quad Q_{v_{1}, 2}=\left\{e_{2}\right\} \quad w_{v_{1}}\left(Q_{v_{1}, 1}\right)=3, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2$
$Q_{v_{2}, 1}=\left\{e_{1}\right\} \quad Q_{v_{2}, 2}=\left\{e_{3}\right\} \quad w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2$
$Q_{v_{3}, 1}=\left\{e_{3}, e_{2}\right\}$
$w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4$
$* Q_{v_{4}, 1}=\left\{e_{5}\right\}$
$w_{v_{4}}\left(Q_{v_{3}, 1}\right)=2$
$e_{5}=\left\{v_{1}, v_{4}\right\}, w\left(e_{5}\right)=3$
$w_{v_{1}}^{*}\left(e_{5}\right)=1$ and $w_{v_{4}}^{*}\left(e_{5}\right)=0$ so $g\left(e_{5}\right)=3-1=2$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlrl}
Q_{v_{1}, 1} & =\left\{e_{5}, e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & w_{v_{1}}\left(Q_{v_{1}, 1}\right)=3, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
* Q_{v_{2}, 1} & =\left\{e_{1}\right\} & Q_{v_{2}, 2}=\left\{e_{3}\right\} & w_{v_{2}}\left(Q_{v_{2}, 1}\right)=1, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
Q_{v_{3}, 1} & =\left\{e_{3}, e_{2}\right\} & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4 \\
* Q_{v_{4}, 1} & =\left\{e_{5}\right\} & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=2 \\
e_{6}=\left\{v_{2}, v_{4}\right\}, w\left(e_{6}\right)=5 &
\end{array}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{rlrl}
Q_{v_{1}, 1} & =\left\{e_{5}, e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & \\
* w_{v_{1}}\left(Q_{v_{1}, 1}\right)=3, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
* Q_{v_{2}, 1} & =\left\{e_{6}, e_{1}\right\} & Q_{v_{2}, 2}=\left\{e_{3}\right\} & \\
Q_{v_{3}, 1} & =\left\{Q_{v_{2}, 1}\right)=3, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
\left.* e_{2}\right\} & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4 \\
* Q_{v_{4}, 1} & =\left\{e_{6}, e_{5}\right\} & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=4 \\
e_{6}=\left\{v_{2}, v_{4}\right\}, w\left(e_{6}\right)=5 &
\end{array}
$$

Description of the Streaming Phase

For $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, b_{v_{1}}=b_{v_{2}}=2$ and $b_{v_{3}}=b_{v_{4}}=1$.

$$
\begin{array}{lll}
Q_{v_{1}, 1}=\left\{e_{5}, e_{1}\right\} & Q_{v_{1}, 2}=\left\{e_{2}\right\} & w_{v_{1}}\left(Q_{v_{1}, 1}\right)=3, w_{v_{1}}\left(Q_{v_{1}, 2}\right)=2 \\
Q_{v_{2}, 1}=\left\{e_{6}, e_{1}\right\} & Q_{v_{2}, 2}=\left\{e_{3}\right\} & w_{v_{2}}\left(Q_{v_{2}, 1}\right)=3, w_{v_{2}}\left(Q_{v_{2}, 2}\right)=2 \\
Q_{v_{3}, 1}=\left\{e_{3}, e_{2}\right\} & & w_{v_{3}}\left(Q_{v_{3}, 1}\right)=4 \\
Q_{v_{4}, 1}=\left\{e_{6}, e_{5}\right\} & & w_{v_{4}}\left(Q_{v_{3}, 1}\right)=4
\end{array}
$$

Description of the Streaming Phase

Algorithm 1 Streaming phase for weighted matching

```
1: \(S \leftarrow \emptyset\)
2: \(\forall v \in V: Q_{v} \leftarrow\left(Q_{v, 1}=\emptyset, \cdots, Q_{v, b_{v}}=\emptyset\right) \quad \triangleright b_{v}\) queues for a vertex \(v\)
: for \(e=e_{t}, 1 \leq t \leq|E|\) an edge from the stream do
4: \(\quad\) for \(u \in e\) do
5: \(\quad w_{u}^{*}(e) \leftarrow \min \left\{w_{u}\left(Q_{u, q} \cdot \operatorname{top}()\right): 1 \leq q \leq b_{u}\right\}\)
6: \(\quad q_{u}(e) \leftarrow q\) such that \(w_{u}\left(Q_{u, q} \cdot \operatorname{top}()\right)=w_{u}^{*}(e)\)
7: \(\quad\) if \(w(e)>\sum_{u \in e} w_{u}^{*}(e)\) then
8: \(\quad g(e) \leftarrow w(e)-\sum_{u \in e} w_{u}^{*}(e)\)
9: \(\quad S \leftarrow S \cup\{e\}\)
10: \(\quad\) for \(u \in e\) do
11:
12:
    \(w_{u}(e) \leftarrow w_{u}^{*}(e)+g(e)\)
    \(r_{u}(e) \leftarrow Q_{u, q_{u}(e)} \cdot \operatorname{top}() \quad \triangleright r_{u}(e)\) is the element below \(e\) in the queue
        \(Q_{u, q_{u}(e)} \cdot \operatorname{push}(e) \quad \triangleright\) add \(e\) on the top of the smallest queue
```

We can show that $g(S) \geq 1 / 2 \cdot w\left(M^{o p t}\right)$.

Description of the Construction Phase

- start with $M=\emptyset$
- in the reverse arrival order in S, add an edge e to M if no queue it appears in contains any element already in M

Description of the Construction Phase

- start with $M=\emptyset$
- in the reverse arrival order in S, add an edge e to M if no queue it appears in contains any element already in M
- in fact, we want a b-matching of weight at least $g(S)$, and when an edge e is taken, all the gains for elements below it in the queues are counted, as $w(e)=g(e)+\sum_{u \in e} w_{u}^{*}(e)$

Description of the Construction Phase

Going back to the previous example:

$$
\begin{aligned}
Q_{v_{1}, 1} & =\left\{e_{5}, e_{1}\right\} \quad Q_{v_{1}, 2}=\left\{e_{2}\right\} \\
Q_{v_{2}, 1} & =\left\{e_{6}, e_{1}\right\} \quad Q_{v_{2}, 2}=\left\{e_{3}\right\} \\
Q_{v_{3}, 1} & =\left\{e_{3}, e_{2}\right\} \\
Q_{v_{4}, 1} & =\left\{e_{6}, e_{5}\right\}
\end{aligned}
$$

$M=\emptyset$
$w(M)=0$

Description of the Construction Phase

Going back to the previous example:

$$
\begin{aligned}
& Q_{v_{1}, 1}=\left\{e_{5}, e_{1}\right\} \quad Q_{v_{1}, 2}=\left\{e_{2}\right\} \\
& Q_{v_{2}, 1}=\left\{e_{6}, e_{1}\right\} \quad Q_{v_{2}, 2}=\left\{e_{3}\right\} \\
& Q_{v_{3}, 1}=\left\{e_{3}, e_{2}\right\} \\
& Q_{v_{4}, 1}=\left\{e_{6}, e_{5}\right\}
\end{aligned}
$$

$M=\left\{e_{6}\right\}$
$w(M)=w\left(e_{6}\right)=g\left(e_{6}\right)+g\left(e_{5}\right)+g\left(e_{1}\right)$

Description of the Construction Phase

Going back to the previous example:

$$
\begin{aligned}
& Q_{v_{1}, 1}=\left\{e_{5}, e_{1}\right\} \quad Q_{v_{1}, 2}=\left\{e_{2}\right\} \\
& Q_{v_{2}, 1}=\left\{e_{6}, e_{1}\right\} \quad Q_{v_{2}, 2}=\left\{e_{3}\right\} \\
& Q_{v_{3}, 1}=\left\{e_{3}, e_{2}\right\} \\
& Q_{v_{4}, 1}=\left\{e_{6}, e_{5}\right\}
\end{aligned}
$$

$M=\left\{e_{6}, e_{3}\right\}$
$w(M)=w\left(e_{6}\right)+w\left(e_{3}\right)=g\left(e_{6}\right)+g\left(e_{5}\right)+g\left(e_{1}\right)+g\left(e_{3}\right)+g\left(e_{2}\right)$

Description of the Construction Phase

Algorithm 2 Greedy construction phase

```
1: \(M \leftarrow \emptyset\)
2: \(\forall e \in S: z_{e} \leftarrow 1\)
3: for \(e \in S\) in reverse order do
4: if \(z_{e}=0\) then continue \(\quad \triangleright\) skip edge \(e\) if it is marked
5: \(\quad M \leftarrow M \cup\{e\}\)
6: \(\quad\) for \(u \in e\) do
7: \(\quad c \leftarrow e\)
8: \(\quad\) while \(c \neq \perp\) do
9: \(z_{c} \leftarrow 0 \quad \triangleright\) mark elements below \(e\) in each queue
10: \(\quad c \leftarrow r_{u}(c)\)
```

11: return M

Outline of the Analysis

Theorem

Algorithms 1 and 2 provide a 2-approximation for the maximum weight b-matching problem.

The main steps are:

- it holds that $2 g(S) \geq w\left(M^{\text {opt }}\right)$
- the construction phase builds a feasible b-matching M such that $w(M) \geq g(S)$

Outline of the Analysis

- elements on top of queues $Q_{v, i}$ are the biggest regarding the reduced weight w_{v}, and the sum of their reduced weight is $g(\delta(v))$

Outline of the Analysis

- elements on top of queues $Q_{v, i}$ are the biggest regarding the reduced weight w_{v}, and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any b-matching M^{\prime}, it holds that $w_{v}\left(M^{\prime} \cap \delta(v)\right) \leq w_{v}\left(\left\{Q_{v} \cdot \operatorname{top}(), 1 \leq i \leq b_{v}\right\}\right)=g(\delta(v))$

Outline of the Analysis

- elements on top of queues $Q_{v, i}$ are the biggest regarding the reduced weight w_{v}, and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any b-matching M^{\prime}, it holds that $w_{v}\left(M^{\prime} \cap \delta(v)\right) \leq w_{v}\left(\left\{Q_{v} \cdot \operatorname{top}(), 1 \leq i \leq b_{v}\right\}\right)=g(\delta(v))$
- we can use it to show that $w\left(M^{\prime}\right) \leq 2 g(S)$ for any b-matching M^{\prime}.

Outline of the Analysis

- elements on top of queues $Q_{v, i}$ are the biggest regarding the reduced weight w_{v}, and the sum of their reduced weight is $g(\delta(v))$
- as a result, for any b-matching M^{\prime}, it holds that $w_{v}\left(M^{\prime} \cap \delta(v)\right) \leq w_{v}\left(\left\{Q_{v} \cdot \operatorname{top}(), 1 \leq i \leq b_{v}\right\}\right)=g(\delta(v))$
- we can use it to show that $w\left(M^{\prime}\right) \leq 2 g(S)$ for any b-matching M^{\prime}.
- moreover, the set M built during the construction phase is a b-matching of weight at least $g(S)$.

Outline of the Analysis

Below are listed the steps of the analysis, where $M^{\text {opt }}$ denotes the optimal b-matching:
(1) $\forall v \in V, g(\delta(v))=g(\delta(v) \cap S)=\sum_{i=1}^{b_{v}} w\left(Q_{v, i}\right.$.top ()$)$
(1) $\left\{Q_{v, q} \cdot \operatorname{top}(): 1 \leq q \leq b_{v}\right\}$ contains the b_{v} heaviest elements of $S \cap \delta(v)$ in terms of reduced weights w_{v}
(1) $\forall v \in V, w_{v}\left(Q_{v}\right):=\sum_{i=1}^{b_{v}} w\left(Q_{v, i} \cdot \operatorname{top}()\right) \geq w_{v}\left(M^{o p t} \cap \delta(v)\right)$
(1) $2 g(S) \geq w\left(M^{o p t}\right)$
(1) Algorithm 2 outputs a feasible b-matching M with weight $w(M) \geq g(S)$

Analysis

Proposition

(1) For all $v \in V$ we have $g(\delta(v))=g(\delta(v) \cap S)=w_{v}\left(Q_{v}\right)$, where $w_{v}\left(Q_{v}\right)=\sum_{i=1}^{b_{v}} w\left(Q_{v, i}\right.$.top ()$)$.
(1) The set $\left\{Q_{v, q} \cdot \operatorname{top}(): 1 \leq q \leq b_{v}\right\}$ contains the b_{v} heaviest elements of $S \cap \delta(v)$ in terms of reduced weights w_{v}.

Algorithm 1 Streaming phase for weighted matching

```
\(: S \leftarrow \emptyset\)
2: \(\forall v \in V: Q_{v} \leftarrow\left(Q_{v, 1}=\emptyset, \cdots, Q_{v, b_{v}}=\emptyset\right) \quad \triangleright b_{v}\) queues for a vertex \(v\)
3: for \(e=e_{t}, 1 \leq t \leq|E|\) an edge from the stream do
        for \(u \in e\) do
            \(w_{u}^{*}(e) \leftarrow \min \left\{w_{u}\left(Q_{u, q} . \operatorname{top}()\right): 1 \leq q \leq b_{u}\right\}\)
            \(q_{u}(e) \leftarrow q\) such that \(w_{u}\left(Q_{u, q} \cdot \operatorname{top}()\right)=w_{u}^{*}(e)\)
        if \(w(e)>\sum_{u \in e} w_{u}^{*}(e)\) then
            \(g(e) \leftarrow w(e)-\sum_{u \in e} w_{u}^{*}(e)\)
            \(S \leftarrow S \cup\{e\}\)
            for \(u \in e\) do
                \(w_{u}(e) \leftarrow w_{u}^{*}(e)+g(e)\)
            \(r_{u}(e) \leftarrow Q_{u, q_{u}(e)} \cdot \operatorname{top}() \quad \triangleright r_{u}(e)\) is the element below \(e\) in the queue
            \(Q_{u, q_{u}(e)} \cdot \operatorname{push}(e) \quad \triangleright\) add \(e\) on the top of the smallest queue
```


Analysis

Lemma

$\forall v \in V, w_{v}\left(Q_{v}\right) \geq w_{v}\left(M^{o p t} \cap \delta(v)\right)$.

- by the previous proposition, $w_{v}\left(Q_{v}\right)$ is exactly the sum of the reduced weights of the b_{v} heaviest elements in $S \cap \delta(v)$
- $\forall e=e_{t} \in M^{o p t} \backslash S, w_{v}\left(e_{t}\right)=\min \left\{w_{v}\left(Q_{v, q}^{(t-1)}\right): 1 \leq q \leq\right.$ $\left.b_{v}\right\} \leq \min \left\{w_{v}\left(Q_{v, q}^{|E|}\right): 1 \leq q \leq b_{v}\right\}$

Analysis

Lemma

$$
2 g(S) \geq w\left(M^{o p t}\right)
$$

For any $e=\{u, v\}, w_{u}(e)+w_{v}(e) \geq w(e)$, so

$$
\begin{aligned}
w\left(M^{o p t}\right) & \leq \sum_{e=\{u, v\} \in M^{o p t}} w_{u}(e)+w_{v}(e) \\
& =\sum_{u \in V} w_{u}\left(M^{\text {opt }} \cap \delta(u)\right) \\
& \leq \sum_{u \in V} w_{u}\left(Q_{u}\right)=\sum_{u \in V} g(S \cap \delta(u))=2 g(S) .
\end{aligned}
$$

Analysis

Lemma

Algorithm 2 builds a b-matching M with $w(M) \geq g(S)$.

Using $w(e)=g(e)+\sum_{u \in e} w_{u}^{*}(e)=g(e)+\sum_{u \in e} \sum_{e^{\prime} \in Q_{u, q_{u}(e)}^{(t-1)}} g\left(e^{\prime}\right)$.
Algorithm 1 Streaming phase for weighted matching

```
: \(S \leftarrow \emptyset\)
\(\forall v \in V: Q_{v} \leftarrow\left(Q_{v, 1}=\emptyset, \cdots, Q_{v, b_{v}}=\emptyset\right) \quad \triangleright b_{v}\) queues for a vertex \(v\)
for \(e=e_{t}, 1 \leq t \leq|E|\) an edge from the stream do
for \(u \in e\) do
\(w_{u}^{*}(e) \leftarrow \min \left\{w_{u}\left(Q_{u, q} \cdot \operatorname{top}()\right): 1 \leq q \leq b_{u}\right\}\)
\(q_{u}(e) \leftarrow q\) such that \(w_{u}\left(Q_{u, q} \cdot \operatorname{top}()\right)=w_{u}^{*}(e)\)
    if \(w(e)>\sum_{u \in e} w_{u}^{*}(e)\) then
        \(g(e) \leftarrow w(e)-\sum_{u \in e} w_{u}^{*}(e)\)
        \(S \leftarrow S \cup\{e\}\)
        for \(u \in e\) do
            \(w_{u}(e) \leftarrow w_{u}^{*}(e)+g(e)\)
            \(r_{u}(e) \leftarrow Q_{u, q_{u}(e)} \cdot \operatorname{top}() \quad r_{u}(e)\) is the element below \(e\) in the queue
            \(Q_{u, q_{u}(e)} \cdot \operatorname{push}(e) \quad \triangleright\) add \(e\) on the top of the smallest queue
```


Analysis

$\operatorname{Using} w(e)=g(e)+\sum_{u \in e} w_{u}^{*}(e)=g(e)+\sum_{u \in e} \sum_{e^{\prime} \in Q_{u, q_{u}(e)}^{(t-1)}} g\left(e^{\prime}\right)$.

Algorithm 2 Greedy construction phase
: $M \leftarrow \emptyset$
$\forall e \in S: z_{e} \leftarrow 1$
for $e \in S$ in reverse order do
if $z_{e}=0$ then continue \triangleright skip edge e if it is marked
$M \leftarrow M \cup\{e\}$
for $u \in e$ do
$c \leftarrow e$
while $c \neq \perp$ do
$z_{c} \leftarrow 0 \quad \triangleright$ mark elements below e in each queue
$c \leftarrow r_{u}(c)$
return M

Each gain $g(e)$ for is paid for by at least one element of M.

Analysis

Theorem

Algorithms 1 and 2 provide a 2-approximation for the maximum weight b-matching problem.

Remark

It is straightforward to extend our algorithm to a k-uniform hypergraph, for which we can get an approximation ratio of k.

Making the Algorithm Memory-Efficient

The key ideas, from [Ghaffari and Wajc, 2019], are:

- to choose a constant $\alpha=1+\varepsilon>0$ and replace the test $w(e)>\sum_{u \in e} w_{u}^{*}(e)$ by $w(e)>\alpha \sum_{u \in e} w_{u}^{*}(e)$, so that in the queues the reduces weights w_{v} grow exponentially, without hurting too much the approximation ratio
- to delete the elements that are far below in the queues, because these elements have very small gains

Making the Algorithm Memory-Efficient

Here, $M_{\max }$ denotes the maximum cardinality b-matching and W the maximum ratio between two non-zero weights.

Theorem

Using the first memory optimization, we can then recover a $2+\varepsilon$ approximation using $O\left(\log _{1+\varepsilon}(W / \varepsilon) \cdot\left|M_{\max }\right|\right)$ variables.

Theorem

Using both memory optimizations, we can then recover a $2+\varepsilon$ approximation using $O\left(\log _{1+\varepsilon}(1 / \varepsilon) \cdot\left|M_{\max }\right|+\sum_{v \in V} b_{v}\right)$ variables.

Generalization to Submodular Functions

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace $w(e)$ by the marginal gain $f(e \mid S):=f(S \cup\{e\})-f(S)$
this analysis borrows ideas from [Levin and Wajc, 2021].

Generalization to Submodular Functions

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace $w(e)$ by the marginal gain $f(e \mid S):=f(S \cup\{e\})-f(S)$
- $g(S)$ will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
this analysis borrows ideas from [Levin and Wajc, 2021].

Generalization to Submodular Functions

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace $w(e)$ by the marginal gain $f(e \mid S):=f(S \cup\{e\})-f(S)$
- $g(S)$ will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- $g(S)$ will also be a significant part of $f\left(M^{o p t} \mid S\right)$, if ε is small enough
this analysis borrows ideas from [Levin and Wajc, 2021].

Generalization to Submodular Functions

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace $w(e)$ by the marginal gain $f(e \mid S):=f(S \cup\{e\})-f(S)$
- $g(S)$ will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- $g(S)$ will also be a significant part of $f\left(M^{o p t} \mid S\right)$, if ε is small enough
- The construction phase will provide a b-matching M such that $f(M) \geq g(S)+f(\emptyset)$
this analysis borrows ideas from [Levin and Wajc, 2021].

Generalization to Submodular Functions

For submodular functions:

- use the memory-efficient version of the algorithm for the streaming phase, and replace $w(e)$ by the marginal gain $f(e \mid S):=f(S \cup\{e\})-f(S)$
- $g(S)$ will be a significant portion of $f(S \mid \emptyset)$, if ε is big enough
- $g(S)$ will also be a significant part of $f\left(M^{o p t} \mid S\right)$, if ε is small enough
- The construction phase will provide a b-matching M such that $f(M) \geq g(S)+f(\emptyset)$
- randomization for non-monotone submodular functions
this analysis borrows ideas from [Levin and Wajc, 2021].

Conclusion

Main results:

Maximization problem	State of the Art	Our result
Linear b-matching	$3+\varepsilon$	$2+\varepsilon$
Submod. b-matching	8.899	7.464
Submod. b-matching on	$4 k+O(1)$	$(8 / 3) k+O(1)$
k-hypergraph + matroid		

Table: Comparison of our results with the State of the Art

Main ideas:

- a local ratio technique for the streaming phase to build a set S using one queue per vertex capacity to store the edges
- followed by a greedy construction phase going back in time on the elements of the set S using the aforementioned queues to make better choices

