Maximum Weight b-Matchings in Random-Order Streams

Chien-Chung Huang1 François Sellier2,3

1CNRS, DI ENS, École normale supérieure, Université PSL, France
2Université Paris Cité, CNRS, IRIF, Paris, France
3MINES ParisTech, Université PSL, Paris, France
Definition of a b-Matching

≤ 3

≤ 1

v_2

v_4

v_3

v_1

≤ 2

≤ 1

≤ 1

Figure: An input graph with capacities $b_{v_1} = 2$, $b_{v_2} = 3$, and $b_{v_3} = b_{v_4} = 1$
Definition of a b-Matching

Figure: An input graph with capacities $b_{v_1} = 2$, $b_{v_2} = 3$, and $b_{v_3} = b_{v_4} = 1$
An output b-matching M, in red
The Maximum Weight b-Matching Problem

Figure: Finding a maximum weight b-matching
The Maximum Weight b-Matching Problem

Figure: Finding a maximum weight b-matching
The weight of the highlighted matching M is $2 + 3 + 4 = 9$.
The Maximum Weight b-Matching Problem

Figure: Finding a maximum weight b-matching
The weight of the highlighted matching M is $2 + 3 + 4 = 9$.

In this work, we assume the weights are small integers in a range $\{1, \ldots, W\}$.
Degree and Weighted Degree

Figure: Defining the degree and weighted degree of vertex v_2 in some subgraph H
Degree and Weighted Degree

Figure: Defining the degree and weighted degree of vertex v_2 in some subgraph H

- $\deg_H(v_2) = 2$ (and $\deg_G(v_2) = 3$)
Degree and Weighted Degree

Figure: Defining the degree and weighted degree of vertex v_2 in some subgraph H

- $\deg_H(v_2) = 2$ (and $\deg_G(v_2) = 3$)
- $\text{wdeg}_H(v_2) = 3 + 4 = 7$ (and $\text{wdeg}_G(v_2) = 3 + 4 + 2 = 9$)
Some Definitions

In the *semi-streaming* model:

- edges of E arrive over time in a stream $S = \langle e_1, \ldots, e_m \rangle$
Some Definitions

In the *semi-streaming* model:

- edges of E arrive over time in a *stream* $S = \langle e_1, \ldots, e_m \rangle$
- we have access only to a *limited memory*
Some Definitions

In the *semi-streaming* model:
- edges of E arrive over time in a *stream* $S = \langle e_1, \ldots, e_m \rangle$
- we have access only to a **limited memory**

In the *random-order semi-streaming* model:
- the permutation of the edges given in the stream is assumed to be chosen **uniformly at random** among all the possible permutations
In the adversarial (worst-case order) semi-streaming model:

- For unweighted maximum (b)-matching approximation:
 - 2 approximation using the trivial greedy algorithm
 - $1 + \ln 2 \approx 1.69$ inapproximability [Kapralov, 2021]

- For maximum weight (b)-matching approximation:
 - 5 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
 - 5.83 [McGregor, 2005]
 - 5.58 [Zelke, 2010]
 - $4.91 + \varepsilon$ [Epstein, Levin, Mestre, and Segev, 2010]
 - $2 + \varepsilon$ [Crouch and Stubbs, 2014]

- For maximum weight b-matching approximation:
 - $3 + \varepsilon$ [Levin and Wajc, 2021]
 - $2 + \varepsilon$ [Huang and Sellier, 2021]
Previous Results

In the *adversarial* (worst-case order) semi-streaming model:

- For unweighted maximum \((b-)\)matching approximation:
 - 2 approximation using the trivial greedy algorithm
 - \(1 + \ln 2 \approx 1.69\) inapproximability [Kapralov, 2021]

- For maximum weight matching approximation:
 - 6 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
 - 5.83 [McGregor, 2005]
 - 5.58 [Zelke, 2010]
 - \(4.91 + \varepsilon\) [Epstein, Levin, Mestre, and Segev, 2010]
 - \(4 + \varepsilon\) [Crouch and Stubbs, 2014]
 - \(2 + \varepsilon\) [Paz and Schwartzman, 2018]
Previous Results

In the adversarial (worst-case order) semi-streaming model:

- For unweighted maximum (b-)matching approximation:
 - 2 approximation using the trivial greedy algorithm
 - $1 + \ln 2 \approx 1.69$ inapproximability [Kapralov, 2021]

- For maximum weight matching approximation:
 - 6 [Feigenbaum, Kannan, McGregor, Suri, and Zhang, 2005]
 - 5.83 [McGregor, 2005]
 - 5.58 [Zelke, 2010]
 - $4.91 + \varepsilon$ [Epstein, Levin, Mestre, and Segev, 2010]
 - $4 + \varepsilon$ [Crouch and Stubbs, 2014]
 - $2 + \varepsilon$ [Paz and Schwartzman, 2018]

- For maximum weight b-matching approximation:
 - $4 + \varepsilon$ [Crouch and Stubbs, 2014]
 - $3 + \varepsilon$ [Levin and Wajc, 2021]
 - $2 + \varepsilon$ [Huang and Sellier, 2021]
In the *random-order* semi-steaming model:

- For maximum unweighted matching approximation:
 - 1.98 (bipartite), 1.99 (general) [Konrad, Magniez, and Mathieu, 2012]
 - 1.86 (bipartite) [Konrad, 2018]
 - $5/3 \approx 1.67$ (bipartite), $11/6 \approx 1.84$ (general) [Farhadi, Hajiaghayi, Mai, Rao, and Rossi, 2020]
 - $3/2 + \varepsilon$ (general) [Bernstein, 2020]
 - $3/2 - \delta$ (general, $\delta \sim 10^{-14}$) [Assadi and Behnezhad, 2021]
In the *random-order* semi-steaming model:

- For maximum unweighted matching approximation:
 - 1.98 (bipartite), 1.99 (general) [Konrad, Magniez, and Mathieu, 2012]
 - 1.86 (bipartite) [Konrad, 2018]
 - $\frac{5}{3} \approx 1.67$ (bipartite), $\frac{11}{6} \approx 1.84$ (general) [Farhadi, Hajiaghayi, Mai, Rao, and Rossi, 2020]
 - $\frac{3}{2} + \varepsilon$ (general) [Bernstein, 2020]
 - $\frac{3}{2} - \delta$ (general, $\delta \sim 10^{-14}$) [Assadi and Behnezhad, 2021]

- For maximum weight matching approximation:
 - $2 - \delta$ (general, $\delta \sim 10^{-17}$) [Gamlath, Kale, Mitrovic, and Svensson, 2019]
Previous Results

In the *random-order* semi-steaming model:

- For maximum unweighted matching approximation:
 - 1.98 (bipartite), 1.99 (general) [Konrad, Magniez, and Mathieu, 2012]
 - 1.86 (bipartite) [Konrad, 2018]
 - $5/3 \approx 1.67$ (bipartite), $11/6 \approx 1.84$ (general) [Farhadi, Hajiaghayi, Mai, Rao, and Rossi, 2020]
 - $3/2 + \varepsilon$ (general) [Bernstein, 2020]
 - $3/2 - \delta$ (general, $\delta \sim 10^{-14}$) [Assadi and Behnezhad, 2021]

- For maximum weight matching approximation:
 - $2 - \delta$ (general, $\delta \sim 10^{-17}$) [Gamlath, Kale, Mitrovic, and Svensson, 2019]

- For maximum (weight) b-matching approximation:
 - no previous result in the random-order setting
Previous Results and Our Contribution

<table>
<thead>
<tr>
<th>Maximization problem</th>
<th>Adversarial</th>
<th>Random-Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted matching</td>
<td>2</td>
<td>3/2 − δ</td>
</tr>
<tr>
<td>Weighted matching</td>
<td>2</td>
<td>2 − δ</td>
</tr>
<tr>
<td>Unweighted b-matching</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Weighted b-matching</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table: Approximation ratios for adversarial and random-order streams (we assume weights are small integers in \{1, \ldots, W\}).
<p>|
|--------------------------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Maximization problem</th>
<th>Adversarial</th>
<th>Random-Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted matching</td>
<td>2</td>
<td>$3/2 - \delta$</td>
</tr>
<tr>
<td>Weighted matching</td>
<td>2</td>
<td>$2 - \delta \left(2 - 1/(2W) + \varepsilon\right)$</td>
</tr>
<tr>
<td>Unweighted b-matching</td>
<td>2</td>
<td>$2 \left(3/2 + \varepsilon\right)$</td>
</tr>
<tr>
<td>Weighted b-matching</td>
<td>2</td>
<td>$2 \left(2 - 1/(2W) + \varepsilon\right)$</td>
</tr>
</tbody>
</table>

Table: Approximation ratios for adversarial and random-order streams (we assume weights are small integers in \(\{1, \ldots, W\}\)). Comparison with our results.
Our Contribution

We generalize the result of [Bernstein, 2020] (\(3/2 + \varepsilon\) approximation for simple matchings in random-order streams) to integer-weighted \(b\)-matchings.

Theorem

We can extract with high probability from a randomly-ordered stream of edges having integer weights in \(\{1, \ldots, W\}\) a weighted \(b\)-matching with an approximation ratio of

\[
2 - \frac{1}{2W} + \varepsilon,
\]

using \(O(\max(|M_G|, n) \cdot \text{poly}(\log(m), W, 1/\varepsilon))\) memory.
To obtain algorithms for random-order streams:

- for unweighted simple matching [Bernstein, 2020]: use of *Edge-Degree Constrained Subgraph*
To obtain algorithms for random-order streams:

- for unweighted simple matching [Bernstein, 2020]: use of \textit{Edge-Degree Constrained Subgraph}
- for integer-weighted b-matching [our paper]: introduce a generalization of the \textit{Edge-Degree Constrained Subgraph}
Definition (EDCS [Bernstein and Stein, 2015])

Let $G = (V, E)$ be a graph, and H a subgraph of G. Given any integer parameters $\beta > \beta^-$, we say that H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$.

Figure: Example with $\beta = 5$ and $\beta^- = 4$
Simple facts on about EDCSes:

- they always exist (can be built in polynomial time)
- they are of size $O(n \cdot \beta)$
Simple facts on about EDCSes:
- they always exist (can be built in polynomial time)
- they are of size $O(n \cdot \beta)$

Main result [Bernstein and Stein, 2015]:

Theorem (Main theorem about EDCSes)

For $\beta / \beta^- \leq 1$, a (β, β^-)-EDCS always contain a $3/2 + \varepsilon$ approximation of the maximum cardinality matching.

This bound is tight.
Generalizing EDCS

Definition (EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$

Some properties we want to have for weighted b-matchings:
Generalizing EDCS

Definition (EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$

Some properties we want to have for weighted b-matchings:

- favoring edges having large weights
Generalizing EDCS

Definition (EDCS)
Let $\beta > \beta^-$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$

Some properties we want to have for weighted b-matchings:

- favoring edges having large weights
- homogeneity
Generalizing EDCS

Definition (EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$

Some properties we want to have for weighted b-matchings:

- favoring edges having large weights
- homogeneity
- taking into account the capacities b_v
Generalizing EDCS

Definition \((w-b\text{-EDCS})\)

Let \(\beta > \beta^-\), then \(H\) is a \((\beta, \beta^-)\)-\(w-b\)-EDCS of \(G\) if \(H\) satisfies the following properties:

1. For any \((u, v) \in H\), \(\deg_H(u) + \deg_H(v) \leq \beta \cdot w(u, v)\)
2. For any \((u, v) \in G \setminus H\), \(\deg_H(u) + \deg_H(v) \geq \beta^- \cdot w(u, v)\)

Figure: Favoring larger edges
Generalizing EDCS

Definition (w-b-EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-w-b-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $w\deg_H(u) + w\deg_H(v) \leq \beta \cdot w(u, v)$
2. For any $(u, v) \in G \setminus H$, $w\deg_H(u) + w\deg_H(v) \geq \beta^- \cdot w(u, v)$

We want to have an homogeneous definition, so that multiplying all the weights of the graph G by a factor λ does not change the EDCS structure in the graph:

$$w'(u, v) = \lambda \cdot w(u, v)$$
Generalizing EDCS

Definition (weighted b-EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-w-b-EDCS of G if H satisfies the following properties:

- For any $(u, v) \in H$, \[\frac{\text{wdeg}_H(u)}{b_u} + \frac{\text{wdeg}_H(v)}{b_v} \leq \beta \cdot w(u, v) \]
- For any $(u, v) \in G \setminus H$, \[\frac{\text{wdeg}_H(u)}{b_u} + \frac{\text{wdeg}_H(v)}{b_v} \geq \beta^- \cdot w(u, v) \]

We take into account the capacity of a vertex:
- a vertex with a large capacity should be able to have more edges in the w-b-EDCS
Introduction
EDCS Technique
Conclusion

Generalizing EDCS

Definition (EDCS)
Let $\beta > \beta^-$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$

Definition (weighted b-EDCS)
Let $\beta > \beta^-$, then H is a (β, β^-)-w-b-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\frac{w\deg_H(u)}{b_u} + \frac{w\deg_H(v)}{b_v} \leq \beta \cdot w(u, v)$
2. For any $(u, v) \in G \setminus H$, $\frac{w\deg_H(u)}{b_u} + \frac{w\deg_H(v)}{b_v} \geq \beta^- \cdot w(u, v)$
Similarly, for weighted b-EDCSes:

- they always exist (can be built in pseudo-polynomial time)
- they are of size $O(|M_G| \cdot \beta)$
Similarly, for weighted b-EDCSes:

- they always exist (can be built in pseudo-polynomial time)
- they are of size $O(|M_G| \cdot \beta)$

Main result:

Theorem (Main theorem about weighted b-EDCSes)

For $\beta/\beta^- \text{ close enough to 1}$, a (β, β^-)-w-b-EDCS always contain a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching.

This bound is tight.
Proof for Weighted EDCS

In the following:

- we prove the result for bipartite weighted matchings, as the generalization to weighted \(b\)-matchings will be a reduction to this case
- we will explain what adaptations of the proof of [Assadi and Bernstein, 2018] is required in that case

Lemma

For \(\frac{\beta}{\beta^-} \) close enough to 1, a \((\beta, \beta^-)\)-w-b-EDCS always contain a \(2 - \frac{1}{2W} + \varepsilon\) approximation of the maximum weight matching in a bipartite graph.
Existing Proof for Unweighted Simple Matchings

Figure: Witness set $\overline{A} \cup B$ from Hall’s marriage theorem — can also be seen as a vertex cover (picture from [Assadi and Bernstein, 2018])
Existing Proof for Unweighted Simple Matchings

Figure: Witness set $\overline{A} \cup B$ from Hall’s marriage theorem — can also be seen as a vertex cover (picture from [Assadi and Bernstein, 2018])

We want to bound $|S| \geq 2(|M_G| - |M_H|)$.

Definition (EDCS)

Let $\beta \geq \beta^- + 1$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$.

Consider the edges \tilde{E} incident to S in H.

Chien-Chung Huang, François Sellier
Weighted b-Matchings in Random-Order Streams
Existing Proof for Unweighted Simple Matchings

Definition (EDCS)

Let $\beta \geq \beta^- + 1$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$.

Consider the edges \tilde{E} incident to S in H. By Property ii:

$$|S| \cdot \beta^- / 2 \leq |\tilde{E}|$$
Existing Proof for Unweighted Simple Matchings

Definition (EDCS)

Let $\beta \geq \beta^- + 1$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$

2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-$.

Consider the edges \tilde{E} incident to S in H. By Property ii:

$$|S| \cdot \beta^- / 2 \leq |\tilde{E}|$$

and using convexity and averaging arguments,

$$|\tilde{E}| \leq (\beta - \beta^- / 2) \cdot |M_H|$$
Existing Proof for Unweighted Simple Matchings

Definition (EDCS)

Let $\beta \geq \beta^- + 1$, then H is a (β, β^-)-EDCS of G if H satisfies the following properties:

1. For any $(u, v) \in H$, $\deg_H(u) + \deg_H(v) \leq \beta$
2. For any $(u, v) \in G \setminus H$, $\deg_H(u) + \deg_H(v) \geq \beta^-.$

Consider the edges \tilde{E} incident to S in H. By Property ii:

$$|S| \cdot \frac{\beta^-}{2} \leq |\tilde{E}|$$

and using convexity and averaging arguments,

$$|\tilde{E}| \leq (\beta - \beta^-/2) \cdot |M_H|$$

hence,

$$|S| \leq (2\beta/\beta^- - 1) \cdot |M_H| \leq (1 + \varepsilon) \cdot |M_H|$$
Theorem (Kőnig-Egerváry duality theorem)

In any edge-weighted bipartite subgraph H of G, the maximum weight of a matching equals the smallest weight of a w-vertex-cover.

In other words, there exist integers $(\alpha_v)_{v \in V}$ such that:

- $\sum_{v \in V} \alpha_v = w(M_H)$
- for all $(u, v) \in H$, $w(u, v) \leq \alpha_u + \alpha_v$
Proof for Weighted EDCS

Theorem (Kőnig-Egerváry duality theorem)

In any edge-weighted bipartite subgraph H of G, the maximum weight of a matching equals the smallest weight of a w-vertex-cover.

In other words, there exist integers $(\alpha_v)_{v \in V}$ such that:

- $\sum_{v \in V} \alpha_v = w(M_H)$
- for all $(u, v) \in H$, $w(u, v) \leq \alpha_u + \alpha_v$

We now consider the optimal matching M_G in G. The first idea is to use this duality theorem to relate $w(M_G)$ to $w(M_H)$, with a leftover term that will be analyzed in the second part of the proof (just like the set S previously).
We introduce the notion of *good* and *bad* edges:

- Let \((u, v) \in M_G\) such that \(\beta^- \cdot w(u, v) \leq \beta \cdot (\alpha_u + \alpha_v)\) is called a *good edge*; the set of good edges is denoted as \(M_{good}\);
- Let \((u, v) \in M_G\) such that \(\beta^- \cdot w(u, v) > \beta \cdot (\alpha_u + \alpha_v)\) is called a *bad edge*; the set of bad edges is denoted as \(M_{bad}\).
Proof for Weighted EDCS

Now, denoting by V_{bad} the set of vertices which are the endpoints of a bad edge and such that $w\text{deg}_H(u) - \beta \cdot \alpha_u > 0$, we can get

$$\beta^\cdot w(M_G) \leq \beta \cdot w(M_H) + \sum_{v \in V_{bad}} (w\text{deg}_H(v) - \beta \cdot \alpha_v)$$
Proof for Weighted EDCS

Now, denoting by V_{bad} the set of vertices which are the endpoints of a bad edge and such that $w\deg_H(u) - \beta \cdot \alpha_u > 0$, we can get

$$\beta^- \cdot w(M_G) \leq \beta \cdot w(M_H) + \sum_{v \in V_{bad}} (w\deg_H(v) - \beta \cdot \alpha_v)$$

Claim

We have the inequality

$$\sum_{v \in V_{bad}} (w\deg_H(v) - \beta \cdot \alpha_v) \leq \left(\beta + W - \frac{\beta^-}{2W \cdot (1 + \varepsilon/4)}\right) \cdot w(M_H)$$
Proof for Weighted EDCS

Claim

We have the inequality

$$\sum_{v \in V_{bad}} (w_{\text{deg}}_H(v) - \beta \cdot \alpha_v) \leq \left(\beta + W - \frac{\beta^-}{2W \cdot (1 + \epsilon/4)} \right) \cdot w(M_H)$$

- V_{bad} plays somehow here the role of S
Proof for Weighted EDCS

Claim

We have the inequality

\[
\sum_{v \in V_{bad}} (w \deg_H(v) - \beta \cdot \alpha_v) \leq \left(\beta + W - \frac{\beta}{2W \cdot (1 + \varepsilon/4)} \right) \cdot w(M_H)
\]

- \(V_{bad} \) plays somehow here the role of \(S \)
- however we cannot just use the set of edges in \(H \) incident to \(V_{bad} \) — some vertices are partially covered
Proof for Weighted EDCS

Claim

We have the inequality

$$\sum_{v \in V_{bad}} (w \deg_H(v) - \beta \cdot \alpha_v) \leq \left(\beta + W - \frac{\beta^-}{2W \cdot (1 + \varepsilon/4)} \right) \cdot w(M_H)$$

- V_{bad} plays somehow here the role of S
- however we cannot just use the set of edges in H incident to V_{bad} — some vertices are partially covered
- we need to build an auxiliary graph H_{bad} made of a well-chosen set of edges \tilde{E}
Proof for Weighted EDCS

Claim

We have the inequality

$$\sum_{v \in V_{bad}} (w_{\text{deg}_H(v)} - \beta \cdot \alpha_v) \leq \left(\beta + W - \frac{\beta^{-}}{2W \cdot (1 + \epsilon/4)} \right) \cdot w(M_H)$$

- V_{bad} plays somehow here the role of S
- however we cannot just use the set of edges in H incident to V_{bad} — some vertices are partially covered
- we need to build an auxiliary graph H_{bad} made of a well-chosen set of edges \tilde{E}
- then a similar averaging/convexity argument can be used
Proof for Weighted EDCS

Lemma

For β/β^{-} close enough to 1, a (β, β^{-})-w-b-EDCS always contain a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching in a bipartite graph.

Theorem

For β/β^{-} close enough to 1, a (β, β^{-})-w-b-EDCS always contain a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching.

Using the probabilistic method and Lovasz Local Lemma, as in [Assadi and Bernstein, 2018].
Definition (weighted b-EDCS)

Let $\beta > \beta^-$, then H is a (β, β^-)-w-b-EDCS of G if H satisfies the following properties:

i. For any $(u, v) \in H$, \[\frac{w\deg_H(u)}{b_u} + \frac{w\deg_H(v)}{b_v} \leq \beta \cdot w(u, v) \]

ii. For any $(u, v) \in G \setminus H$, \[\frac{w\deg_H(u)}{b_u} + \frac{w\deg_H(v)}{b_v} \geq \beta^- \cdot w(u, v) \]

Theorem (Main theorem about weighted b-EDCSes)

For β/β^- close enough to 1, a (β, β^-)-w-b-EDCS always contain a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching.

Can be used to design an algorithm for random-order streams.