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Maximum k Vertex Cover

Figure: A maximum k-vertex cover problem with k = 2
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Maximum k Vertex Cover

Figure: A maximum k-vertex cover problem with k = 2, the value of
the cover is 12 + 2 + 1 + 4 + 3 + 2 + 5
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Maximum k Vertex Cover
Let G = (V, E) be a graph.

a non-negative weight w(e) is associated to each edge e ∈ E

an edge e = (u, v) is called covered by a set S ⊆ V if at
least one of its endpoints is in S, i.e u ∈ S or v ∈ S

we will denote EG(S) the sum of the weights of the edges
covered the set S ⊆ V , i.e.

EG(S) =
∑

e=(u,v)∈E,{u,v}∩S ̸=∅
w(e)

in the maximum k-vertex cover problem, we want a set
containing at most k elements maximizing EG, i.e.

argmax
S⊆V,|S|≤k

EG(S)
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Matroid-Constrained Maximum Vertex Cover

Figure: A maximum matroid-constrained vertex cover problem (one
vertex per color can be taken)
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Matroid-Constrained Maximum Vertex Cover

Figure: A maximum matroid-constrained vertex cover problem (one
vertex per color can be taken), the value of the cover is
12 + 4 + 3 + 2 + 5
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Matroid-Constrained Maximum Vertex Cover

M = (V, I) is a matroid on the ground set V if these conditions
hold for I ⊆ P(V ):

1 ∅ ∈ I,
2 if X ⊆ Y ∈ I, then X ∈ I,
3 if X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so

that X ∪ {e} ∈ I,
the sets in I are the independent sets and the rank rM of the
matroid M is defined as maxX∈I |X|.
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Matroid-Constrained Maximum Vertex Cover

Let G = (V, E) be a graph and M = (V, I) a matroid over V :
in the matroid-constrained maximum vertex cover problem,
we want a set independent in M maximizing EG, i.e.

argmax
S⊆V,S∈I

EG(S)
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General Outline

this work generalizes a kernelization method developed for
maximum coverage under cardinality constraint to the
more general matroid constraint
to simplify this presentation, instead of considering a
frequency-bounded coverage function we only consider a
vertex-cover function
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Interest of the Problem
The problem of maximizing a submodular function under
matroid constraint has been studied extensively

the problem is easy when:

the submodular function is linear
in our work, we study a slightly more complicated case:

the function is a cover function of bounded frequency

Figure: Vertex cover function

10/23
François Sellier Matroid-Constrained Maximum Coverage



Introduction
Kernelization Framework

Conclusion

Interest of the Problem
The problem of maximizing a submodular function under
matroid constraint has been studied extensively

the problem is easy when:
the submodular function is linear

in our work, we study a slightly more complicated case:

the function is a cover function of bounded frequency

Figure: Vertex cover function

10/23
François Sellier Matroid-Constrained Maximum Coverage



Introduction
Kernelization Framework

Conclusion

Interest of the Problem
The problem of maximizing a submodular function under
matroid constraint has been studied extensively

the problem is easy when:
the submodular function is linear

in our work, we study a slightly more complicated case:

the function is a cover function of bounded frequency

Figure: Vertex cover function

10/23
François Sellier Matroid-Constrained Maximum Coverage



Introduction
Kernelization Framework

Conclusion

Interest of the Problem
The problem of maximizing a submodular function under
matroid constraint has been studied extensively

the problem is easy when:
the submodular function is linear

in our work, we study a slightly more complicated case:
the function is a cover function of bounded frequency

Figure: Vertex cover function

10/23
François Sellier Matroid-Constrained Maximum Coverage



Introduction
Kernelization Framework

Conclusion

Previous Results

For the maximum k-vertex cover problem:
greedy provides a 1 − 1/e approximation [Hochbaum and
Pathria, 1998]
a LP-based approach and a technique of pipage rounding
give a ratio of 3/4 [Ageev and Sviridenko, 2000]
the current best ratio is 0.92, attained using a kernelization
method [Manurangsi, 2018]
it is not possible to have a Polynomial Time Approximation
Scheme [Guo, Niedermeier, and Wernicke, 2005]
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Previous Results
Here we recall the definition of an FPT-AS [Marx, 2008]:

Definition
Given a parameter function κ associating a natural number to
each instance x ∈ I of a given problem, a Fixed-Parameter
Tractable Approximation Scheme (FPT-AS) is an algorithm that
can provide a (1 − ε) approximation in f(ε, κ(x)) · |x|O(1) time.

in our case κ is the rank k of the matroid
FTP-AS for k-vertex cover [Marx, 2008; Manurangsi, 2018]
approximate kernel of size k/ε for k-vertex-cover
[Manurangsi, 2018]
approximate kernels of size O(k/ε) for partition and
laminar matroids [Huang and Sellier, 2022] and for
transversal matroids [Kamiyama, 2022]
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Our Contribution

Theorem
Let M = (V, I) be a matroid and let G = (V, E) be a weighted
graph. We can compute in polynomial time an approximate
kernel V ′ of size k · ρ containing a 1 − 1/ρ approximate solution
of the matroid-constrained maximum vertex cover problem for
any integer ρ.

Using a brute force enumeration, we can find a 1 − ε
approximation in (1/ε)O(k) nO(1) time, i.e., an FPT-AS.
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Kernelization Framework

The idea is to:
build an approximate kernel, i.e., a smaller graph
containing a (1 − ε)-approximation of the optimal solution
find the optimal solution in that smaller graph using
bruteforce
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Previous Kernelization Technique

O

Oin

Oout : u1 · · · ur

V ′ : v1

v2

v3 · · ·

v11
v12

· · ·

Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

V ′ contains the k/ε vertices having the largest weighted
degrees

the elements in Oout are replaced by random elements
drawn from V ′
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Previous Kernelization Technique

O

Oin

Oout : u1 · · · ur

V ′ : v1

v2

v3 · · ·

v11
v12

· · ·

Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

a vertex in Oout is replaced by a vertex in V ′ having a
larger weighted degree, i.e. for instance,

degw(u1) ≤ degw(v1), . . . , degw(ur) ≤ degw(v12)
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Previous Kernelization Technique

O

Oin

Oout : u1 · · · ur

V ′ : v1

v2

v3 · · ·

v11
v12

· · ·

Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

there is two types of double counting: (i) edges between
Oin and sampled vertices, and (ii) edges between sampled
vertices
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Kernelization Framework
To go from k-vertex-cover to matroid constrained vertex cover:

the sampling cannot be done the same way, as we have to
sample independent sets
hence the kernel V ′ also has to be built differently
(example: we should not take only vertices of one color in
our kernel V ′)

Figure: A maximum matroid-constrained vertex cover problem

18/23
François Sellier Matroid-Constrained Maximum Coverage



Introduction
Kernelization Framework

Conclusion

Kernelization Framework

The sampling procedure has to:
select independent sets
the elements of the kernel must have the same
probability to be sampled
these events have to be pairwise negatively correlated
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Kernelization Framework

Definition
Suppose that M = (V, I) is a matroid. Then we can define
τM = (V, Iτ ) as the union of τ matroids M, as follows: S ∈ Iτ

if S can be partitioned into S1 ∪ · · · ∪ Sτ so that each Si ∈ I.

Theorem
Let M = (V, I) be a matroid and let G = (V, E) be a weighted
graph. Let V ′ be a maximum weight independent set in ρM,
with respect to the weighted degrees degw(v). Then V ′ contains
a 1 − 1/ρ approximate solution of the matroid-constrained
maximum vertex cover problem.

For uniform matroids, we get exactly the same kernel as in
[Manurangsi, 2018].
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Kernelization Framework
Definition
The density of a subset U ⊆ V in the matroid M is defined as

ρM(U) = |U |
rM(U) .

Definition
Let M = (V, I) be a matroid, and ρ be a positive integer. A
subset V ′ ⊆ V is called a ρ-DBS in M if ρM(V ′) = ρ and for all
U ⊆ V ′, ρM(U) ≤ ρ.

These Density-Balanced Subset have nice sampling and
contraction properties that allow to adapt the previous
sampling technique. These subsets appear naturally when
building matroid unions.
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Kernelization Framework
Definition
Let M = (V, I) be a matroid, and ρ be a positive integer. A
subset V ′ ⊆ V is called a ρ-DBS in M if ρM(V ′) = ρ and for all
U ⊆ V ′, ρM(U) ≤ ρ.

V ′ : v1
v2

v3 · · ·

v11
v12

· · ·

Figure: The subset spanned in V ′ by {v1, v2} is of size bounded by
2 · ρ, meaning that there are at least (rM(V ′) − 2) · ρ elements still
usable for the sampling.
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Conclusion

Results:
natural generalization of the kernelization process used
in the k-vertex-cover problem
closes the gap between the cardinality constraint and
the more general matroid constraint

Theorem
Let V ′ be a maximum weight independent set in ρM, with
respect to the weighted degrees. Then V ′ contains a 1 − 1/ρ
approximate solution of the matroid-constrained maximum
vertex cover problem.
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