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Figure: A maximum k-vertex cover problem with k = 2
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Maximum k Vertex Cover

Figure: A maximum k-vertex cover problem with k = 2, the value of
the coveris 124+2+1+44+3+2+5




Introduction

Maximum k Vertex Cover
Let G = (V, E) be a graph.

a non-negative weight w(e) is associated to each edge e € E

an edge e = (u,v) is called covered by a set S C V' if at
least one of its endpoints is in S, i.eu € Sor v € §

we will denote Eg(S) the sum of the weights of the edges
covered the set S C V, i.e.

Eq(S) = > w(e)

e=(u,v)EE,{u,v}NS#£D

in the mazimum k-vertex cover problem, we want a set
containing at most k elements maximizing Fg, i.e.

argmax Eg(S)
SCV,|S|<k
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Matroid-Constrained Maximum Vertex Cover
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Figure: A maximum matroid-constrained vertex cover problem (one
vertex per color can be taken)
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Matroid-Constrained Maximum Vertex Cover
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Figure: A maximum matroid-constrained vertex cover problem (one

vertex per color can be taken), the value of the cover is
12+4+3+2+5
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Matroid-Constrained Maximum Vertex Cover

M = (V,I) is a matroid on the ground set V' if these conditions

hold for Z C P(V):

Q0 VeI,

@ if XCYeZ, then X €7,

@ if X,Y €Z,|Y]| > |X|, there exists an element e € Y\ X so
that X U{e} € Z,

the sets in 7 are the independent sets and the rank r a4 of the

matroid M is defined as maxxer | X|.
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Matroid-Constrained Maximum Vertex Cover

Let G = (V, E) be a graph and M = (V,Z) a matroid over V:

@ in the matroid-constrained mazrimum vertex cover problem,
we want a set independent in M maximizing Eq, i.e.

argmax Eg(95)
SCV,SeT
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General Outline

o this work generalizes a kernelization method developed for
maximum coverage under cardinality constraint to the
more general matroid constraint

o to simplify this presentation, instead of considering a
frequency-bounded coverage function we only consider a
vertex-cover function
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Interest of the Problem

The problem of maximizing a submodular function under
matroid constraint has been studied extensively
o the problem is easy when:
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Introduction

Interest of the Problem

The problem of maximizing a submodular function under
matroid constraint has been studied extensively
o the problem is easy when:
o the submodular function is linear
@ in our work, we study a slightly more complicated case:
e the function is a cover function of bounded frequency

N\

Figure: Vertex cover function
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Introduction

Previous Results

For the maximum k-vertex cover problem:
e greedy provides a 1 — 1/e approximation [Hochbaum and
Pathria, 1998|
e a LP-based approach and a technique of pipage rounding
give a ratio of 3/4 [Ageev and Sviridenko, 2000]

o the current best ratio is 0.92, attained using a kernelization
method [Manurangsi, 2018|

@ it is not possible to have a Polynomial Time Approximation
Scheme [Guo, Niedermeier, and Wernicke, 2005]
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Previous Results
Here we recall the definition of an FPT-AS [Marx, 2008]:

Definition

Given a parameter function x associating a natural number to
each instance x € I of a given problem, a Fized-Parameter
Tractable Approximation Scheme (FPT-AS) is an algorithm that
can provide a (1 — ¢) approximation in f(e, k(z)) - |2|°() time.
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Introduction

Previous Results
Here we recall the definition of an FPT-AS [Marx, 2008]:

Definition

Given a parameter function x associating a natural number to
each instance x € I of a given problem, a Fized-Parameter
Tractable Approximation Scheme (FPT-AS) is an algorithm that
can provide a (1 — ¢) approximation in f(e, k(z)) - |2|°() time.

@ in our case k is the rank £k of the matroid

e FTP-AS for k-vertex cover [Marx, 2008; Manurangsi, 2018]

e approximate kernel of size k/e for k-vertex-cover
[Manurangsi, 2018]

e approximate kernels of size O(k/e) for partition and
laminar matroids [Huang and Sellier, 2022 and for
transversal matroids [Kamiyama, 2022]
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Our Contribution

Theorem

Let M = (V,Z) be a matroid and let G = (V, E) be a weighted
graph. We can compute in polynomial time an approximate
kernel V' of size k- p containing a 1 — 1/p approzimate solution
of the matroid-constrained mazximum vertex cover problem for
any integer p.

Using a brute force enumeration, we can find a 1 — ¢
approximation in (1/5)O(k) n?M time, i.e., an FPT-AS.
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Kernelization Framework

Kernelization Framework

The idea is to:
o build an approximate kernel, i.e., a smaller graph
containing a (1 — e)-approximation of the optimal solution

e find the optimal solution in that smaller graph using
bruteforce
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Kernelization Framework

Previous Kernelization Technique
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Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

e V' contains the k/e vertices having the largest weighted
degrees

Frangois Sellier Matroid-Constrained Maximum Coverage



Kernelization Framework

Previous Kernelization Technique
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Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

e V' contains the k/e vertices having the largest weighted
degrees
e the elements in O°“ are replaced by random elements

drawn from V'
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Kernelization Framework

Previous Kernelization Technique
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Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

e a vertex in O°“ is replaced by a vertex in V' having a
larger weighted degree, i.e. for instance,

degw(ul) < degw (v1)7 s degw(ur) < degw(U12)
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Kernelization Framework

Previous Kernelization Technique
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Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

e there is two types of double counting: (i) edges between
O™ and sampled vertices, and (ii) edges between sampled
vertices
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Kernelization Framework

Kernelization Framework

To go from k-vertex-cover to matroid constrained vertex cover:
o the sampling cannot be done the same way, as we have to
sample independent sets
@ hence the kernel V' also has to be built differently
(example: we should not take only vertices of one color in
our kernel V)
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Figure: A maximum matroid-constrained vertex cover problem
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Kernelization Framework

Kernelization Framework

The sampling procedure has to:
o select independent sets

o the elements of the kernel must have the same
probability to be sampled

o these events have to be pairwise negatively correlated
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Kernelization Framework

Kernelization Framework

Definition
Suppose that M = (V,Z) is a matroid. Then we can define

TM = (V,Z;) as the union of 7 matroids M, as follows: S € Z,
if S can be partitioned into S; U ---U S, so that each S; € Z.

Let M = (V,Z) be a matroid and let G = (V, E) be a weighted
graph. Let V' be a mazimum weight independent set in pM,
with respect to the weighted degrees deg,,(v). Then V' contains
a 1 —1/p approximate solution of the matroid-constrained
maximum vertex cover problem.

For uniform matroids, we get exactly the same kernel as in
[Manurangsi, 2018].
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Kernelization Framework

Kernelization Framework

Definition
The density of a subset U C V in the matroid M is defined as

pan(0) = L0
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Kernelization Framework

Definition
The density of a subset U C V in the matroid M is defined as

pan(0) = L0

Definition

Let M = (V,Z) be a matroid, and p be a positive integer. A
subset V! C V is called a p-DBS in M if pp (V') = p and for all
UCV, pm(U) <p.
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Kernelization Framework

Kernelization Framework

Definition
The density of a subset U C V in the matroid M is defined as

pan(0) = L0

Definition

Let M = (V,Z) be a matroid, and p be a positive integer. A
subset V! C V is called a p-DBS in M if pp (V') = p and for all
UCV, pm(U) <p.

These Density-Balanced Subset have nice sampling and
contraction properties that allow to adapt the previous
sampling technique. These subsets appear naturally when
building matroid unions.
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Kernelization Framework

Let M = (V,Z) be a matroid, and p be a positive integer. A
subset V' C V is called a p-DBS in M if pp (V') = p and for all
UcVv’, pmU) <p.

V'

V9

V11
V12

Figure: The subset spanned in V’ by {vy,vs} is of size bounded by
2 - p, meaning that there are at least (rp (V') — 2) - p elements still
usable for the sampling.




Conclusion

Conclusion

Results:

e natural generalization of the kernelization process used
in the k-vertex-cover problem

@ closes the gap between the cardinality constraint and
the more general matroid constraint

Theorem

Let V' be a maximum weight independent set in pM, with
respect to the weighted degrees. Then V' contains a 1 —1/p
approzimate solution of the matroid-constrained mazximum
vertex cover problem.
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