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Maximum k-vertex cover
Let G = (V, E) be a graph.

a non-negative weight w(e) is associated to each edge e ∈ E

an edge e = (u, v) is called covered by a set S ⊆ E if at
least one of its endpoints is in S, i.e u ∈ S or v ∈ S

we will denote EG(S) the sum of the weights of the edges
covered the set S ⊆ V , i.e.

EG(S) =
∑

e=(u,v)∈E,{u,v}∩S ̸=∅
w(e)

in the maximum k-vertex cover problem, we want a set
containing at most k elements maximizing EG, i.e.

argmax
S⊆V,|S|≤k

EG(S)
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Maximum k-vertex cover
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Figure: A maximum k-vertex cover problem with k = 2
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Figure: A maximum k-vertex cover problem with k = 2
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Matroid-Constrained Maximum Vertex Cover

M = (V, I) is a matroid on the ground set V if these conditions
hold for I ⊆ P(V ):

1 ∅ ∈ I,
2 if X ⊆ Y ∈ I, then X ∈ I,
3 if X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so

that X ∪ {e} ∈ I,
the sets in I are the independent sets and the rank rM of the
matroid M is defined as maxX∈I |X|.
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Matroid-Constrained Maximum Vertex Cover

Let G = (V, I) be a graph and M = (V, I) a matroid:
in the matroid-constrained maximum vertex cover problem,
we want a set independent in M maximizing EG, i.e.

argmax
S⊆V,S∈I

EG(S)
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Matroid-Constrained Maximum Vertex Cover

Some examples of matroids:
uniform matroid of rank k: S ∈ I iff |S| ≤ k

partition matroid defined by a partition V1, . . . , Vr and
bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki

laminar matroid defined by a laminar family V1, . . . , Vr

and bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki

(for Vi ∩ Vj ̸= ∅ then either Vi ⊆ Vj or Vj ⊆ Vi)
transversal matroid defined by a family V1, . . . , Vk: S ∈ I
iff there exists an injective function ϕ : S → {1, . . . , k} such
that for all v ∈ S, v ∈ Vϕ(v)
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Matroid-Constrained Maximum Vertex Cover
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Figure: Representation of a uniform matroid

uniform matroid of rank k: S ∈ I iff |S| ≤ k
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Matroid-Constrained Maximum Vertex Cover
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Figure: Representation of a partition matroid

partition matroid defined by a partition V1, . . . , Vr and
bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki
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Matroid-Constrained Maximum Vertex Cover
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Figure: Representation of a laminar matroid

laminar matroid defined by a laminar family V1, . . . , Vr

and bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki

(for Vi ∩ Vj ̸= ∅ then either Vi ⊆ Vj or Vj ⊆ Vi)
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Matroid-Constrained Maximum Vertex Cover
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Figure: Representation of a transversal matroid

transversal matroid defined by a family V1, . . . , Vk: S ∈ I
iff there exists an injective function ϕ : S → {1, . . . , k} such
that for all v ∈ S, v ∈ Vϕ(v)
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Interest of the Problem

The problem of maximizing a submodular function under
matroid constraint has been studied extensively

the problem is easier when:
either the submodular function is linear
or the matroid is a simple uniform matroid (i.e., cardinality
constraint)

in our work, we study cases that are slightly more
complicated:

the function is a cover function of bounded frequency (but
still we have decreasing marginal returns)
and the matroid is a partition, laminar, or transversal
matroid (but still it is not a simple cardinality constraint)
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Previous Results

For the maximum k-vertex cover problem:
greedy provides a 1 − 1/e approximation [Hochbaum and
Pathria, 1998]
a LP-based approach and a technique of pipage rounding
give a ratio of 3/4 [Ageev and Sviridenko, 2000]
the current best ratio is 0.92, attained using a kernelization
method [Manurangsi, 2018]
it is not possible to have a Polynomial Time Approximation
Scheme [Guo, Niedermeier, and Wernicke, 2005]
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Previous Results

Here we recall the definition of an FPT-AS [Marx, 2008]:

Definition
Given a parameter function κ associating a natural number to
each instance x ∈ I of a given problem, a Fixed-Parameter
Tractable Approximation Scheme (FPT-AS) is an algorithm that
can provide a (1 − ε) approximation in f(ε, κ(x)) · |x|O(1) time.

in our case κ is the rank k of the matroid
FTP-AS have been developed for maximum k-vertex cover
in [Marx, 2008; Manurangsi, 2018]
Munurangsi builds a kernel of size k/ε in [Manurangsi,
2018]
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Previous Results

For the matroid-constrained maximum vertex cover problem:
local search provides a 1 − 1/e approximation [Filmus and
Ward, 2012]
a LP-based approach and a technique of pipage rounding
give a ratio of 3/4 [Cunningham, 1984; Ageev and
Sviridenko, 2000; Calinescu, Chekuri, Pál, and Vondrák,
2011]
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Our Contribution

Theorem
For every ε > 0, we can extract an approximate kernel V ′ ⊆ V
in polynomial time so that a (1 − ε)-approximate solution is
contained in V ′, such that: M.

i |V ′| ≤ k
ε when M is a partition matroid;

ii |V ′| ≤ 2k
ε when M is a laminar matroid;

iii |V ′| ≤ k
ε + k(k − 1) when M is a transversal matroid.

Using a brute force enumeration, we can find the desired 1 − ε

approximation in
(

1
ε

)O(k)
nO(1) time for partition and laminar

matroids and
(

1
ε + k

)O(k)
nO(1) time for transversal matroids.
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Our Contribution

Corollary
Suppose that we are given a hypergraph G = (V, E) with edge
size bounded by a constant η ≥ 2. We can compute a
(1 − (η − 1) · ε) approximation using

(
1
ε

)O(k)
nO(1) time for

partition and laminar matroids and
(

1
ε + k

)O(k)
nO(1) time for

transversal matroids.

if η is unbounded, one cannot obtain an approximation
ratio better than 1 − 1/e + ε, assuming GAP-ETH, in FPT
time (the parameter being the rank k), even for the
simplest uniform matroid [Manurangsi, 2020]
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Kernelization Framework

The idea is to:
build an approximate kernel, i.e., a smaller graph
containing a (1 − ε)-approximation of the optimal solution
find the optimal solution in that smaller graph using
bruteforce
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Previous Kernelization Technique
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Figure: Kernelization technique developed in [Manurangsi, 2018] for
the maximum k-vertex cover problem

V ′ contains the k/ε vertices having the largest weighted
degrees

the elements in Oout are replaced by random elements
drawn from V ′
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Previous Kernelization Technique

The idea in random sampling is that:
a vertex in O is replaced by a vertex in V ′ having a larger
weighted degree
however, even if the overall sum of the weighted degrees of
the selected vertices is always it least equal to that of the
vertices in O, some edges may have been double-counted
using random sampling, in expectation the proportion of
the double-counted edges is 1/ε
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Kernelization Framework

Definition
Let M = (V, I) be a matroid with weights ω : V → R+. We say
V ′ ⊆ V is t-robust if given any base O ∈ I, there is a bijection
from the elements u1, · · · , ut ∈ O\V ′ to subsets
Uu1 , · · · , Uur ⊆ V ′\O so that

i the Uuis are mutually disjoint and |Uui | = t,
ii all elements in Uui have weights no less than ui,
iii by taking an arbitrary element u′

i ∈ Uui for all i,
(V ′ ∩ O) ∪ {u′

i}r
i=1 is a base in M.
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Kernelization Framework
O

Oin

Oout : u1 · · · ur

V ′ : Uu1 :
v1
v2
v3

· · ·

Uur :
v7
v8
v9

v10
v11

v12
· · ·

Figure: Representation a robust decomposition, for t = 3

∀ 1 ≤ i ≤ r, ∀ v ∈ Uui , ω(ui) ≤ ω(v)
by taking an arbitrary element u′

i ∈ Uui for all i,
(V ′ ∩ O) ∪ {u′

i}r
i=1 is independent in M
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Kernelization Framework

Definition
Suppose that M = (V, I) is a matroid. Then we can define
τM = (V, Iτ ) as the union of τ matroids M, as follows: S ∈ Iτ

if S can be partitioned into S1 ∪ · · · ∪ Sτ so that each Si ∈ I.

24/32
Chien-Chung Huang, François Sellier* Matroid-Constrained Maximum Vertex Cover



Introduction
Kernelization Framework

Proof of Robustness
Conclusion

Kernelization Framework
Let M = (V, I) be a matroid with weights ω : V → R+ and
rank k. Consider the following greedy procedure on
τM = (V, Iτ ) to construct V ′:

initially V ′ = ∅
process the elements in V by non-increasing weights ω

for each element u, if V ′ ∪ {u} ∈ Iτ (independent in
matroid union), add u into V ′, otherwise, ignore it.

Theorem
The final V ′ is t-robust

i if M is a partition matroid and τ ≥ t,
ii if M is a laminar matroid and τ ≥ 2t,
iii if M is a transversal matroid and τ ≥ t + k − 1.
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Kernelization Framework

Assuming the previous theorem, we proceed as follows:
let the weight ω : V → R+ be the weighted degrees in the
graph G = (V, E), that is, ω(u) = degw(u)
apply the previous theorem by setting t = 1

ε

then V ′ is 1
ε -robust

Lemma
V ′ contains a set S such that S ∈ I and EG(S) ≥ (1 − ε)EG(O)
where O denotes an optimal solution of the problem.
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Kernelization Framework
Let O ∈ I be an optimal solution:

we denote Oin = O ∩ V ′, Oout = O\Oin

by 1
ε -robustness, we have mutually disjoint sets Uv ⊆ V ′\O

for each v ∈ Oout, each of size 1
ε

set U = ∪v∈OoutUv

We construct a set S ⊆ V ′ as follows:
S is initialized as Oin

from each set Uv, for all v ∈ Oout, pick an element at
random and add it into S

hence, by definition of 1
ε -robustness, S ∈ I.

Then we can show that:

E[EG(S)] ≥ (1 − ε) · E[EG(O)].
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Proof of Robustness

For partition matroids, τ = t, and the proof is easy:
recall that a partition matroid is defined by a partition V1,
. . . , Vr and bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r,
|S ∩ Vi| ≤ ki

if there are elements in (O ∩ Vi)\V ′, then it means that
|Vi ∩ V ′| = τ · ki (some elements were ignored)
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Proof of Robustness
For laminar matroids, the situation is a bit more complex:

recall that a laminar matroid is defined by a laminar family
V1, . . . , Vr and bounds k1, . . . , kr: S ∈ I iff ∀ 1 ≤ i ≤ r,
|S ∩ Vi| ≤ ki (for Vi ∩ Vj ̸= ∅ then either Vi ⊆ Vj or Vj ⊆ Vi)

v1 v2 v3

≤ 1

v4 v5 v6 v7 v8 v9 v10

≤ 2

≤ 1 ≤ 1

Figure: Example of set V ′ extracted from a laminar matroid of rank k
(extracted with parameter τ = 5): V ′ is not 5-robust.
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Proof of Robustness
Key ideas:

set τ = 2 · t
the laminar tree can be binarized
an element u ∈ O\V ′ can be associated to a blocking node:
the node in the laminar tree that would have violated its
cardinality constraint if u was added to V ′ at that time

T0

T1 T2

T3 · · ·

u

|V ′ ∩ V1| = k1 · τ

Figure: A blocking node
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Proof of Robustness
Key ideas:

allocate the sets from bottom blocking nodes to top ones

T0

T1 T2

T3 · · ·

· · · · · ·

u1, u2

u3

Figure: Building the associated sets (example, might not reflect a real
situation)
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Conclusion

generalization of cardinality constraint to a larger set of
constraints
possible to generalize this framework to other kinds of
matroids?
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