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Introduction

I have tried to write a consistent story based on some highlights taken from my
results since my PhD thesis. The story begins with a question: what is randomness,
and tries to give some answers from different perspectives.

A first perspective dates back to concepts from theory of information: according
to Martin-Löf and others, a sequence is random if no part of it can be predicted
by an algorithm. In this document we shall adopt a point of view coming from
computational complexity: hence the predicting algorithm will be required to be
“efficient”.

But an efficient algorithm that predicts parts of a sequence can compress it at least
a little. Thus a sequence may be considered random if it cannot be compressed by
an efficient algorithm. This is our first answer and the object of the first chapter,
where we will study and compare classical compression algorithms.

Of course, this study is not only for the beauty of defining randomness. Com-
pression algorithms have wide applications in practice and it is essential to under-
stand their abilities. They also have links with dimension of complexity classes
among others, as we will see.

The other perspective I wanted to develop is more about using randomness.
With a central motivation: does it speed algorithms up, or on the contrary is it
always possible do get rid of random bits and obtain deterministic algorithms that
run as fast as probabilistic ones? The latter option is called derandomisation. This
question is particularly interesting for one of the few natural problems that are not
derandomised yet, namely polynomial identity testing.

Studying this problem goes through understanding what kind of polynomials
can efficiently be computed by arithmetic circuits. This is the goal of algebraic
complexity, which has enjoyed an increase of interest over the last fifteen years.
This is due in part to a general strategy, called geometric complexity theory, to tackle
the main open question of complexity, P versus NP, via algebraic means (see the
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survey [Bür+11]). One of its intermediate goals is to prove that computing the per-
manent cannot be efficiently reduced to computing the determinant. This question
can naturally be seen as an analogue of P versus NP when using arithmetic circuits
as model of computation.

Interest in arithmetic circuits was also sparked by a string of applications of a
measure based on partial derivatives that allowed to prove encouraging lower bounds
(see the surveys [SY10b; CKW11]). Lower bounds are actually deeply connected
to derandomisation, and these two topics are the objects of our second chapter.

The purpose of the present document is not to give all the details of the theorems
and the proofs: the interested reader is suggested to read the original articles for
technicalities. Instead, the goal is to look at these different statements and proof
techniques with hindsight, and to tell the story of selected results and domains that
might seems far apart but finally draw together a consistant picture. Thus I have
chosen to write a high-level review, but to include nevertheless some ideas of the
proofs, since it is part of the journey and without these ideas the significance of the
results would seriously decrease.
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Chapter 1

Randomness Through the Lens of
Compression

In order to be random, a sequence has to be somehow impredictible. But of course this
notion depends on the power of the “predictor”, thus a variety of randomness no-
tions have emerged. Instead of impredictibility, we can also think of compression, since
predicting the bits of a sequence enables to compress it. In other words, different
notions of randomness arise from different classes of compressors. And comparing
these notions amounts to comparing the compressors. This is what we shall do in
Section 1.1 for three resource-limited compressors, namely pushdown transducers,
polylog-space compression, and the Lempel-Ziv algorithm (LZ’78).

Then, as another way to understand its power, we shall focus on LZ’78 to study
its robustness to small perturbations, and solve the so-called “one-bit catastrophe”
question (Section 1.2).

Finally, our perspectives (Section 1.3) will center on a particular type of (ar-
guably) pseudo-random sequences, namely normal sequences: what resources do they
need to be compressed? And what about the normality of the famous Ehrenfeucht-
Mycielski sequence?

Randomness, Compression, Dimension

As mentioned above, compression can be used to define notions of randomness.
Martin-Löf randomness, for instance, can be defined in terms of Kolmogorov com-
plexity: an infinite sequence u is random iff there exists no algorithm that compresses
its prefixes. In symbols:

∃c > 0, ∀n,K(u[0..n− 1]) > n− c.
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Here, the compressors need only be computable and have no further restriction (i.e.
no resource bounds).

But unbounded compressors do not allow to discriminate between computable
sequences: all computable sequences are indeed fully compressible. Thus, other
complexity measures have emerged, like for instance Lempel-Ziv complexity that
measures the “complexity” of a sequence in a similar way as Ziv and Lempel algo-
rithm LZ’78 works and that we shall present later in this chapter.

As a wide field of application of these considerations, Lutz [Lut03] proposed the
notion of effective Hausdorff dimension to study the structure of complexity classes. It has
subsequently been developed into a rich theory by him and others (see, e.g., [LM13]
for the links with compression and the Lempel-Ziv algorithm). Here, computation
resource bounds are imposed on the compressor (or more or less equivalently on
the “betting strategies”) in order to define a fractal dimension adapted to (decidable)
complexity classes.

We see that (resource bounded) compressors are central in this picture, and that
is what we propose to study in the following.

Why Resource-Limited Compressors?

In what follows, we will focus on compressors with very limited resources (like poly-
log space computation or pushdown automata). As we said, this is necessary so as to
hope capture the dimension of small complexity classes for instance. But this is ob-
viously not the only reason. On the practical side, the compression algorithms need
to be efficient so that it does not take five weeks to compress your latest video. This
is all the more true that data are always more massive and, as of 2022, each year
dozens of zettabytes (1021 bytes) are produced worldwide. That’s why inefficient
compression algorithm is not an option (has it ever been?).

Some other restrictions, such as pushdown compression or polylog-space com-
pression that we will study below, are also motivated by the format of data: a stack
may prove useful to parse and compress XML-like document, while small space is
necessary for data streams for example.

In this perspective, the present chapter will focus on three efficient compres-
sors: Lempel-Ziv algorithm LZ’78, a general-purpose lossless compressor; push-
down transducers that may use a stack but otherwise have only finite memory; and
polylog-space compressors that prove useful in the streaming model. So as to un-
derstand the power, strengths and weaknesses of these compressors and which se-
quences they can indeed compress, in the next two sections we will:

• pairwise compare these algorithms by exhibiting sequences compressible by
one but not the other;
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• focus on Lempel-Ziv algorithm (LZ’78) and study its robustness to small per-
turbations.

Most of the results of this chapter come from [MMP11] (Propositions 2-7 below)
and [LP18] (Section 1.2), the details can be found in these papers.

1.1 Three Resource-Limited Compressors

1.1.1 Lempel-Ziv and Automata

Lempel-Ziv Algorithm

Introduction LZ’78 is a generic lossless compressor, that is, an algorithm to com-
press files of any type without losing information. In [ZL78] where it is introduced,
Ziv and Lempel compare its performance to finite-state lossless compressors and
show it achieves the best possible compression ratio, as we will do in Section 1.1.1
below. Together with its cousin algorithm LZ’77 [ZL77], they have paved the way
to many dictionary coders, some of them still widely used in practice today. For
instance, the deflate algorithm at the heart of the open source compression pro-
gram gzip uses a combination of LZ’77 and Huffman coding; or the image format
GIF is based on a version of LZ’78. As another example, methods for efficient
access to large compressed data on internet based on Ziv-Lempel algorithms have
been proposed [HPZ11].

Besides its pratical interest, the algorithm LZ’78 was the starting point of a
long line of theoretical research, triggered by the aforementioned optimality result
among finite-state compressors. In particular, we will compare it with pushdown
finite-state compressors in Section 1.1.2. And for instance in other recent works,
the article [Kär+17] studies Lempel-Ziv and Lyndon factorisations of words; or
the efficient construction of absolutely normal numbers of [LM21] makes use of
the Lempel-Ziv parsing. Some works of bioinformatics have also focussed on Ziv-
Lempel algorithms, since their compression scheme makes use of repetitions in a
sequence in a way that proves useful to study DNA sequences (see e.g. [Zha+09]),
or to measure the complexity of a discrete signal [Abo+06] for instance.

For convenience, often in what follows we shall merely write LZ to refer to the
LZ’78 algorithm.

The algorithm Let us now describe this general purpose compression algorithm
LZ’78. “Files” to be compressed will be words u over an alphabet Σ. The idea is
to take advantage of repetitions in u in order to build a compressed representation1

1Of course, only some sequences will have a shorter representation since it is impossible to com-
press all sequences.
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of u. LZ splits u in many blocks u = u1 · · · uk so that ui is the extension of a previous
block uj by only one letter ( j < i, ui = uja for some a ∈ Σ). Thus we can encode ui
by giving j in binary and the letter a. If the block sizes keep growing, j will not be too
large: j in binary will take much less bits than ui and we will save space. Consider
the following example over the alphabet Σ = {a, b}: the word u = aaababbabaaaab
is parsed as

Blocks a aa b ab ba baa aab
Block number 0 1 2 3 4 5 6
Extension of block # ε 0 ε 0 2 4 1

by letter a a b b a a b

and thus is encoded as

(ε, a); (0, a); (ε, b); (0, b); (2, a); (4, a); (1, b).

Thus LZ parses a word u into k blocks u1, . . . , uk that constitute the dictionary
(in the example, Dict(u) = {a, b, aa, ab, ba, aab, baa}). The LZ-compression of u is the
ordered list of k pairs (pi, ai), where pi is the binary representation of the unique
integer j < i such that uj = ui[0..(|ui| − 2)], and ai the last letter of ui (that is, the
letter such that ui = ujai). Of course when the LZ-compression is given, the word u
can easily be reconstructed.

Remark 1. • If x is a word, we define Pref(x) the concatenation of all its prefixes in
ascending order, that is,

Pref(x) = x0.x0x1.x0x1x2. · · · .x0 · · · xn−2xn−1.

Then the parsing of the word u = Pref(x) is exactly the prefixes of x, thus the size of the
blocks increases each time by one: this is the optimal compression. In that case, the number
of blocks is

k = |x| =
√
2
√
|u| − O(1).

Actually, it is easy to see that this optimal compression is attained only for the words u of
the form Pref(x).

• On the other hand, if u is the concatenation, in length-lexicographic order, of all words of
size ≤ n (u = a.b.aa.ab.ba.bb.aaa.aab . . . ), then it has size

|u| =
n∑

i=1

i2i = (n− 1)2n+1 + 2,
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and its parsing consists of all the words up to size n, therefore that is the worst possible case
and the number of blocks is

k = 2n+1 − 2 =
|u|

log |u|
+ O

(
|u|

log2 |u|

)
.

(And that is clearly not the only word achieving this worst compression.)

The number of bits needed in the LZ-compression is

k∑
i=1

(|pi|+ 1) + O(k) = k log k+ O(k),

where k is the number of blocks. As the two previous extremal cases show (Re-
mark 1),

k log k = Ω(
√
|w| log |w|) and k log k = O(|w|).

Definition 1. The compression ratio of a word u is

ρLZ(u) =
#Dict(u) log#Dict(u)

|u|
.

Again, as Remark 1 shows,

ρLZ(u) = Ω

(
log |u|√

|u|

)
and ρLZ(u) ≤ 1+ O

(
1

log |u|

)
.

A sequence of words (un) is said LZ-compressible if ρLZ(un) tends to zero, i.e.,

kn log kn = o(|un|),

and consistently it will be considered LZ-incompressible if lim infn→∞ ρLZ(un) > 0,
or in other terms,

kn log kn = Ω(|un|).

Actually, the (log k) factor is not essential in the analysis of the algorithm, there-
fore we shall drop it in what follows (moreover, most of the time we will focus directly
on the size of the dictionary rather than the compression ratio).

Definition 2. The size of the LZ-compression of u (or compression size, or also com-
pression speed when speaking of a sequence of words) is defined as the size of Dict(u), that is,
the number of blocks in the LZ-parsing of u.
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Recall (Remark 1) that

#Dict(u) = Ω(
√
|u|) and #Dict(u) = O(|u|/ log(|u|)).

We can now restate the definition of incompressibility of a sequence of words in
terms of compression speed instead of the number of bits in the LZ-compression.

Definition 3. A sequence of words (un) is said incompressible iff

#Dict(un) = Θ

(
|un|

log(|un|)

)
.

In those definitions, we have to speak of sequences of finite words since the
asymptotic behaviour is considered. That is not needed anymore for infinite words,
of course, but then two notions of compression ratio are defined, depending on
whether we take the lim inf or lim sup of the compression ratios of the prefixes. In
this document, for simplicity we shall only consider one of them arbitrarily (the
results in [MMP11] and [LP18] take into account both definitions in the strongest
possible combination).

Definition 4 (LZ compression ratio for infinite words). If u ∈ {0, 1}N is an infinite
word,

ρLZ(u) = lim inf
n→∞

ρLZ(u[0..n− 1]).

An easy lemma We begin with a lemma relating the parsing of LZ to the num-
ber of distinct factors in a word. This lemma will be used later (for the proof of
Propositions 2 and 4) but more importantly it is an illustration of how to bound the
compression size of LZ on a given word.

Lemma 1. Let m be an integer, Σ an alphabet and u ∈ Σ∗ a word. Let M =
√

2|u|/m +
log|Σ| m. Suppose the number of distinct factors in u of each size i ≤ M is bounded by m. Then
LZ parses u in at most mM =

√
2m|u|+ m log|Σ| m blocks.

Proof. LZ parses u into pairwise distinct blocks. The largest number of blocks is
obtained when the blocks are of minimal size. All the possible blocks of size ≤ M
add up to a length

M∑
i=0

min(|Σ|i,m)i ≥
M∑

i=log|Σ| m
mi ≥ m(M2 − log2|Σ| m)/2 ≥ |u|.

Thus the number of blocks in the LZ parsing is at most mM =
√

2m|u|+m log|Σ| m.
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LZ’78 Beats Finite-State Compressors

In their paper [ZL78], Ziv and Lempel showed their seminal result that their algo-
rithm is asymptotically at least as good as finite-state compressors. This contributed
to the reputation of LZ’78 algorithm. We include this result here as a natural first
step to the next section. First we need to define finite-state compressors.

Definition 5 (informal). A (finite-state) transducer is a finite-state automaton with output
words on each transition. While reading a word u, an output w is built step by step following
the transitions as in the example of Figure 1.1. Thus, in addition to the closure of the transition
function

δ∗ : Q× Σ∗ → Q

giving the last state δ∗(q0, u) ∈ Q reached after reading a word u, a transducer T over an alphabet
Σ also computes a (possibly partial) function fT : Σ∗ → Σ∗.

s0 s1

b|ε a|bb
a|b

b|aa

Figure 1.1: A transducer over the alphabet {a, b}. The image of the word aabba is
the word b.bb.aa.ε.b = bbbaab.

Obviously, when a transducer is used to “compress” words, it should stall on
no word and we would like to be able to recover the initial word from its (hope-
fully compressed) image and the last state reached: compressors must be total and
injective.

Definition 6. A transducer T is information lossless (IL) if the following function is total
and injective:

f : Σ∗ → Σ∗ × Q
u 7→ ( fT(u), δ∗(q0, u)).

In that case we say that T is an information lossless finite-state transducer (ILFST).

We need now define in a natural way the size of the compression of an ILFST.

Definition 7. The compression size of a word u by an ILFST T is merely the size of the
output, i.e.,

CT(u) = | fT(u)|.
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The compression size of a word u by ILFST with s states is the shortest image obtained by an
ILFST with s states, namely

CFS
s (u) = min

T ILFST with s states
(CT(u)).

The following proposition shows that ILFST do not compress well sequences
that can be cut in many pairwise distinct blocks. Even though the proof comes
from [ZL78], we include it here for the sake of completeness and because it illus-
trates the kind of techniques we can use for dealing with LZ parsings. From this
result will immediately follow that LZ performs at least as well as ILFST.

Proposition 1 (Ziv, Lempel [ZL78]). Suppose u ∈ Σ∗ is parsed into k pairwise distinct
blocks u = u1 . . . uk. Then

CFS
s (u) ≥ k(log k− 2 log s− 2).

Proof. Fix an ILFST T with s states. Let bi the number of blocks uj whose output by
T is of size i. Since the transducer is IL, two distinct blocks starting from the same
state can output the same word only if they reach different states. Hence

bi ≤ s22i.

The best case for the compression is when the outputs are the smallest possible,
that is, when there exists l such that b0, . . . , bl are “full” (bi = s22i for i ≤ l), and
bl+2, . . . are “empty” (bi = 0 for i ≥ l + 2). For convenience, let us call b = bl+1,
0 ≤ b < s22l+1 (remark that b ≤ k/2). In that case,

CFS
s (u) =

∑
ibi =

l∑
i=0

is22i + (l+ 1)b ≥ s2(l− 1)2l+1 + (l+ 1)b. (1.1)

But of course

k =
∑

bi =
l∑

i=0

s22i + b ≤ s22l+1 + b,

that is,

l ≥ log
(
k− b
s2

)
− 1. (1.2)

Combining Equations (1.1) and (1.2) we obtain

CFS
s (u) ≥ 2b+ k(log(k− b)− 2 log s− 2)

= k(2x+ log k+ log(1− x)− 2 log s− 2)

where x = b/k ∈ [0, 1/2]. Since 2x + log(1 − x) ≥ 0 over [0, 1/2], we obtain the
desired result.
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In other words, for all parsings of u into k pairwise distinct blocks, for fixed s ∈ N
we have

CFS
s (u) ≥ k log k− O(k).

Since LZ parses u in pairwise distinct blocks and the number of bits in the LZ-
compression is k log k+ O(k), the result follows.

Corollary 1. Asymptotically, LZ performs at least as well as IL finite-state transducers.

1.1.2 Pushdown Compression

Now that LZ performs better than finite-state transducers, the next natural question
is whether it also outperforms pushdown transducers. In this section we show that
it is not the case, as actually both compression methods are incomparable. But we
first have to (informally) define what kind of pushdown transducers we use. We refer
the reader to [MMP11] for the details of the definitions and the proofs.

Definition 8 (informal). A pushdown transducer (PDT) is a finite-state transducer
equipped with a stack: transitions thus depend on the input symbol as well as the stack’s top
symbol. At each transition, the top symbol is removed and new symbols can be added to the stack.
Our transducers will be deterministic, meaning that only one transition is possible whatever the
combination of input and top stack symbols.

The stack proves useful for compressing structured documents like, e.g., XML
files: tags are indeed nested, and this nesting can be parsed thanks to the stack. It
is for instance well known that the language

{(〈a〉)nb(〈/a〉)n : n ∈ N}

over the alphabet {〈, 〉, /, a, b} is not regular but can be recognized by a simple
deterministic pushdown automaton that keeps pushing a symbolX on its stack while
reading 〈a〉, and then pops X when reading 〈/a〉, thus ensuring that there are as
many opening as closing tags.

During the run of a PDT, symbols are outputted on each transition: once con-
catenated, together with the last state reached they form the image of the transducer
on the input word. For instance, consider the following transducer T with state set
Q = {q0, q1} (q0 being the initial state), over input/output alphabet Σ = {a, b} and
stack alphabet Γ = {z0,X} (where z0 is the bottom stack symbol):

• in state q0:

– if the input symbol is a, push X onto the stack (and output nothing, or
more formally the empty word ε),
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– else output b and go to state q1;

• in state q1:

– if the input symbol is b, then output b,
– if the input symbol is a and the stack’s top symbol is X, then output a

and pop X,
– otherwise stop.

Then the image of ambnak, is

T(ambnak) =

{
(bnak, q1) if k ≤ m
undefined otherwise

Thus, a PDT can be seen as a (partial) function T : Σ∗ → Σ∗ × Q.
Of course, a “valid” compressor must be a total function and cannot send two

distinct words on the same image, otherwise the image could not be decompressed.

Definition 9. We say that a PDT T is information lossless (ILPDT) if the function
T : Σ∗ → Σ∗ × Q is total and injective. That way the input can be recovered (“decompressed”)
from the output and the final state. We shall write TΣ for the projection of T on Σ∗, that is, we
only keep the output word and not the final state.

Note that our example is not IL for two reasons: it is not total on the one hand,
and it is not injective on the other (T(ab) = T(aab) = (b, q1) for example).

Definition 10. As for IL finite-state transducers, we naturally define the compression size
of an ILPDT T on a word u as:

CPD
T (u) = |TΣ(u)|.

We finally define the compression ratio as a measure of how well the word is
compressed.

Definition 11. The compression ratio of an ILPDT T on a finite word u is:

ρPDT (u) =
CPD
T (u)
|u|

.

If u is infinite, we take the limit of the compression ratios of its prefixes:

ρPDT (u) = lim inf
n→∞

ρPDT (u[0..n− 1]).

Note that in the above definition we could take lim sup instead of lim inf. For sim-
plicity we have arbitrarily taken the lim inf but both options are valid and in [MMP11]
we always show our results with the least favourable of the two.
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LZ vs Pushdown

Comparing ILPDT to LZ amounts to reviewing the strengths and weaknesses of
each method.

• LZ compresses well repeated factors, even if they are not consecutive. For ex-
ample, for integers n, s satisfying log n < s ≤

√
n, if u is the concatena-

tion of n words xi1 , . . . , xin among
√

2n/s possible words x1, . . . , x√2n/s of
size s, then u has at most 2n/s distinct factors of each length i ≤ s (since
such a factor overlaps at most two consecutive xj). Thus for m = 3n/s and
M =

√
2ns/(3n/s) + log(3n/s), we haveM < s and hence Lemma 1 teaches

that u (of size ns) is parsed into at most mM < ms = 3n blocks. Therefore u is
highly compressible provided s is sufficiently large.

• But in the preceding construction the words xj are arbitrary and can be cho-
sen Kolmogorov random and independent. Then by carefully choosing their
order xi1 , . . . , xin , we can actually diagonalise over all ILPDT with log n states
so that none of them can compress u at all.

This gives the following result that LZ can compress sequences that ILPDT cannot.

Proposition 2 ([MMP11, Thm 1]). There is an infinite word u such that ρLZ(u) = 0
but ρPD(u) = 1.

On the other hand, LZ also has weaknesses that ILPDT don’t have.

• A palindrome u#ū can always be compressed at least to half its size (CPD(u#ū) ≤
|u| for any u) since we can use the stack to remember u and then check that
the second part is indeed ū.

• There is no such guarantee for LZ. Suppose indeed that at some point in the
parsing of a word, the dictionary contains exactly (all) the words of size < k.
Now among the words of size k, consider the palindromes Ak and split the
rest into Bk and B̄k such that words in B̄k are exactly the mirrors of words
in Bk. Then the concatenation of Bk, then Ak and finally B̄k (in the order
symmetric to that of Bk), is a palindrome whose parsing by LZ adds to the
dictionary exactly all words of size k. We can therefore build that way an
infinite sequence made of palindromes that cannot be compressed by LZ.

Formally we obtain the following proposition.

Proposition 3 ([MMP11, Thm 5]). For all ε > 0, there exists an infinite word u such
that ρLZ(u) > 1− ε but ρPD(u) ≤ 1/2.

Propositions 2 and 3 together show that LZ and ILPDT are incomparable.
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1.1.3 Polylog-Space Compressors

We can now do the same study for another class of resource-limited compressors,
namely polylog-space compressors. Here we want to be able to compress a large
stream: the input can only be read once from left to right, and so as to avoid running
out of memory, memory usage is limited to a number of bits polylogarithmic in the
length of the input. We shall call this class of algorithms plogon transducers.

Definition 12 ([HIM78]). A plogon transducer is a Turing machine M with the following
properties:

• M reads its input u from left to right (no turning back);

• M(u) is given |u| in binary on a special tape;

• M(u) writes the output from left to right on a write-only tape;

• M(u) uses memory bounded by logc |u| for some constant c.

As for finite-state transducers and pushdown transducers, our compressors must
be information lossless.

Definition 13. A plogon transducer M is information lossless if it computes a total and
injective function. In that case we say that M is an information lossless plogon transducer (ILplog).

And of course we can define the compression size and compression ratio of
ILplog.

Definition 14. The compression size of a finite word u by an ILplog M is

CPlog
M (u) = |M(u)|,

and its compression ratio is

ρ
Plog
M (u) =

CPlog
M (u)
|u|

.

If u is an infinite word, we take the limit of the compression ratios of its prefixes:

ρ
Plog
M (u) = lim inf

n→∞
ρ
Plog
M (u[0..n− 1]).

The same remark as for LZ and ILPDT applies here on the arbitrary choice of
lim inf instead of lim sup in the definition of the compression ratio of infinite words.

While having a polylog memory may seem rather powerful in comparison to
PDT or even LZ, we sketch the ideas why it is actually incomparable with these two
compressors.

14



LZ vs Plogon

• As we have already seen in Section 1.1.2, LZ compresses very well repetitions.
Indeed, Lemma 1 implies that for v = un for any word u of size n (let’s say a
Kolmogorov random one), CLZ(v) = O(n3/2) = O(|v|3/4).

• But with only logO(1) |v| = logO(1) n bits of memory, an ILplog L won’t be
able to compress v. Even more, it won’t compress any of the copies of u in-
side v. Indeed, call ci the configuration of L after processing ui−1. Then ci
is of size logα n for some α. Suppose for contradiction that the output of L
while processing the i-th copy of u is a word zi of size< n− 2 logα n. If, on an
input y of size n, L starting from ci outputs zi, then y = u (otherwise the total
output of L would be the same on ui−1y and on ui, which is impossible since
L is IL). Hence the following program of size |zi| + |ci| < n − logα n would
describe the Kolmogorov random word u of size n, a contradiction: find by
enumeration the (only) word y of size n on which L starting from ci outputs zi.
Hence, no copy of u in v can be compressed to a word of size < n− 2 logα n.

This shows that LZ sometimes outperforms ILplog.

Proposition 4 ([MMP11, Thm 2]). There exists an infinite word u such that ρLZ(u) = 0
but ρPlog(u) = 1.

But the opposite is true as well.

• LZ does not compress the concatenation v of all words of size ≤ n in lexico-
graphic order, because each block in the parsing is then exactly one of these
words.

• But there is a simple ILplog that can compress this sequence: it can keep in
memory the preceding word (of logarithmic size) and simply check that the
current word is indeed its successor in the lexicographic order. If so, it outputs,
say, 01, otherwise it outputs the current word with all its bits doubled, followed
by 10. It is clearly injective and compresses v very well.

Thus ILplog can also outperform LZ.

Proposition 5 ([MMP11, Thm 6]). There exists an infinite word u such that ρPlog(u) = 0
but ρLZ(u) = 1.

Plogon vs Pushdown

Finally, we can compare ILPDT and ILplog.
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• If u is a Kolmogorov random word of size n, then CPD(u#ū) ≤ n, thus the
compression ratio is at most 1/2.

• But for the same reason as above (second item leading to Proposition 4), an
ILplog cannot compress u#ū.

Hence we obtain the following.

Proposition 6 ([MMP11, Thm 3]). For all ε > 0 there exists an infinite word u such that
ρPD(u) ≤ 1/2 but ρPlog(u) > 1− ε.

And again we can do a last time the same exercise in the opposite direction.

• As in the second item leading to Proposition 2, out of n2 Kolmogorov random
words x1, . . . , xn2 of size n, we can choose 2n indices ij ∈ [1, n2] such that the
sequence

v = x1 . . . xn2 i1xi1 . . . i2nxi2n ,

where the indices ij are written in binary, diagonalises against all ILPDT with
log n states, so that none can compress it.

• But this sequence is well compressed by an ILplog, since it is enough to keep
in memory x1, . . . , xn2 (of size polylog compared to |v|) and to check whether
the index ij indeed corresponds to the word xij .

This last result ends the comparison of our three resource-limited compressors.

Proposition 7 ([MMP11, Thm 7]). There exists an infinite word u such that ρPlog(u) = 0
but ρPD(u) = 1.

1.2 A One-Bit Catastrophe

1.2.1 The Question and an Overview of the Results

Suppose you compressed a file using your favorite compression algorithm, but you
realize there were a typo that makes you add a single bit to the original file. Com-
press it again and you get a much larger compressed file, for a one-bit difference
only between the original files. Most compression algorithms fortunately do not
have this strange behaviour; but if your favorite compression algorithm is called
LZ’78, one of the most famous and studied of them, then this surprising scenario
might well happen… In rough terms, that is what we show in [LP18] and what
we will sketch in this section, thus closing a question advertised by Jack Lutz under

16



the name “one-bit catastrophe” and explicitly stated for instance in papers of Lath-
rop and Strauss [LS97], Pierce II and Shields [PS00], as well as more recently by
López-Valdés [Lop06].

Actually, both in theory and in practice, Ziv-Lempel algorithms are undoubt-
edly among the most studied compression algorithms. Yet, the robustness of LZ’78
remained unclear: the question of whether the compression ratio of a sequence
could vary by changing a single bit appears already in [LS97], where the authors
also ask how LZ’78 will perform if a bit is added in front of an optimally com-
pressible word. Since the Hausdorff dimension of complexity classes introduced by
Lutz [Lut03] can be defined in terms of compression (see [LM13]), this question
is linked to finite-state and polynomial-time dimensions as [Lop06] shows. As a
practical illustration of the issue the (lack of) robustness can cause, let us mention
that the deflate algorithm tries several starting points for its parsing in order to
improve the compression ratio.

In this section we will show the existence of an infinite sequence w which is
compressible by LZ’78, but the addition of a single bit (the alphabet now is {0, 1})
in front of it makes it incompressible (the compression ratio of 0w is non-zero, see
Theorem 1), thus we settle the “one-bit catastrophe” question. To that end, we
study the question over finite words, which enables stating more precise results. For
a word w and a letter a ∈ {0, 1}, we first prove in Theorem 2 that the compression
ratio ρLZ(aw) of aw cannot deviate too much from the compression ratio ρLZ(w) of
w:

ρLZ(aw) ≤ 3
√
2
√
ρLZ(w) log |w|.

In particular, aw can only become incompressible (ρLZ(aw) = Θ(1)) if w is already
poorly compressible, namely ρLZ(w) = Ω(1/ log n). This explains why the one-bit
catastrophe cannot be “a tragedy” as we point out in the title of [LP18].

However, our results are tight up to a constant factor, as we show in Theorem 4:
there are constants α, β > 0 such that, for any l(n) ∈ [902 log2 n,

√
n], there are

infinitely many words w satisfying

ρLZ(w) ≤ α
log |w|
l(|w|)

whereas ρLZ(0w) ≥ β
log |w|√
l(|w|)

.

In particular, for l(n) = 902 log2 n, these words satisfy

ρLZ(w) ≤ 1
log |w|

and ρLZ(0w) ≥ β

90

(this is the one-bit catastrophe over finite words). But actually the story ressembles
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muchmore a tragedy for well-compressible words. Indeed, for l(n) =
√
nwe obtain:

ρLZ(w) ≤ α
log |w|√

|w|
whereas ρLZ(0w) ≥ β

log |w|
|w|1/4

,

that is to say that the compression ratio of 0w is much worse than that of w (which
in that case is optimal).

This “catastrophe” shows that LZ’78 is not robust with respect to the addition
or deletion of bits. Since a usual good behaviour of functions used in data represen-
tation is a kind of “continuity”, our results show that, in this respect, LZ’78 is not a
good choice, as two words that differ in a single bit can have images very far apart.

1.2.2 More Details

The one-bit catastrophe question is originally stated only on infinite words. It asks
whether there exists an infinite word w whose compression ratio changes when a
single letter is added in front of it. More specifically, a stronger version asks whether
there exists an infinite word w compressible (compression ratio equal to 0) for which
0w is not compressible (compression ratio> 0). At Section 1.2.6 we will answer that
question positively:

Theorem 1. There exists w ∈ {0, 1}N such that

ρLZ(w) = 0 and ρLZ(0w) ≥ 1
6 075

.

But before proving this result, most of the work will be on finite words (only in
Section 1.2.6 will we show how to turn to infinite words). Let us therefore state
the corresponding results on finite words. Actually, on finite words we can have
much more precise statements and therefore the results are interesting on their own
(perhaps even more so than the infinite version).

In the following sections we give the ideas of the proofs (the complete proofs can
be found in [LP18]). In Section 1.2.3, we show the easy direction: the compression
ratio of aw cannot bemuchmore than that ofw. In particular, all words “sufficiently”
compressible (compression speed o(|w|/ log2 |w|)) cannot become incompressible
when a letter is added in front (in some sense, thus, the one-bit catastrophe cannot
happen for those words, see Remark 3).

Theorem 2. For all word w ∈ {0, 1}⋆ and any letter a ∈ {0, 1},

#Dict(aw) ≤ 3
√

|w|.#Dict(w).

18



Remark 2. When stated in terms of compression ratio, using the fact that#Dict(w) ≥
√
|w|,

this result reads as follows:

ρLZ(aw) ≤ 3
√
2
√
ρLZ(w) log |w|.

Then in Section 1.2.4 we show that this result is tight up to a multiplicative
constant, since Theorem 5 implies the following result.

Theorem 3. For an infinite number of words w ∈ {0, 1}⋆,

#Dict(0w) ≥ 1
35
√
|w|.#Dict(w).

This is actually a warm-up for the more general result proved in Section 1.2.5:

Theorem 4. Let l : N → N be a function satisfying l(n) ∈ [(90 log n)2,
√
n]. Then for

an infinite number of words w:

#Dict(w) ≤ 3+
√
3

2
· |w|
l(|w|)

and #Dict(0w) ≥ 1
54

· |w|√
l(|w|)

.

This shows that the upper bound is tight (up to a multiplicative constant) for any
possible compression speed. This also provides an example of compressible words
that become incompressible when a letter is added in front (see Remark 3), thus
showing the one-bit catastrophe for finite words.

Remark 3. In particular, the following three cases are of interest (the last two being the two
“extremal” applications of Theorem 4):

• Theorem 2 implies that, if an increasing sequence of words (wn) satisfies

#Dict(wn) = o(|wn|/ log2 |wn|),

then for any letter a ∈ {0, 1}, awn remains fully compressible:

#Dict(awn) = o(|wn|/ log |wn|).

• however, by Theorem 4, there is an increasing sequence of words (wn) such that

#Dict(wn) = Θ(|wn|/ log2 |wn|) (compressible)

but
#Dict(0wn) = Θ(|wn|/ log |wn|) (incompressible),

which is the one-bit catastrophe on finite words;
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• the following interesting case is also true: there is an increasing sequence of words (wn) such
that

#Dict(wn) = Θ(
√

|wn|) (optimal compression)

but
#Dict(0wn) = Θ(|wn|3/4).

This special case is treated extensively in Theorem 5.

In what follows we will often compare the parsing of a word w and the parsing
of aw for some letter a: let us introduce some notations (see Figure 1.2).

• The blocks of w will be called the green blocks.

• The blocks of aw will be called the red blocks and are split into two categories2:

– The junction blocks, which are red blocks that overlap two or more green
blocks when we align w and aw on the right (that is, the factor w of aw
is aligned with the word w, see Figure 1.2).

– The offset-i blocks, starting at position i in a green block and completely
included in it. If not needed, the parameter i will be omitted.

0 0 1 0 1 0 1 0 0 0 1 1

0 0 0 1 0 1 0 1 0 0 0 1 1

offset-1 offset-0 junction

Figure 1.2: The green blocks of w and red blocks of 0w for w = 001010100011.

1.2.3 Upper Bound

In order to show Theorem 2, we need two simple lemmas. The first is obtained by
examining the parsing tree of the word.

Lemma 2. For any i, the number of different words of size i that are factors of some blocks of
the LZ-parsing of a word w is at most#Dict(w).

The second lemma is obtained by counting in a similar way as in Lemma 1. It
claims that, in an LZ-parsing, if there are few different blocks of same size, then the
size of the blocks must grow fast hence the total number of blocks is small.

2Except the first block of aw, which is the word a and which is just called a red block.

20



Lemma 3. Let F be a family of distinct words such that for each i, the number of words of size
i in F is bounded by a constant N. Suppose that a word w is partitioned into distinct words from
F . Then the number of words used in the partition is at most 2

√
N |w|.

These lemmas enable to show Theorem 2.

Proof of Theorem 2. Let D = Dict(aw) be the set of red blocks. We partition D into
D1 and D2, where D1 is the set of junction blocks together with the first red block
(consisting only of the letter a), and D2 is the set of offset blocks.

• Bound onD1: The number of junction blocks is less than the number of green
blocks, therefore

#D1 ≤ #Dict(w) ≤
√
#Dict(w).|w|

(recall that#Dict(w) ≤ |w|).

• Bound on D2: Consider w̃ the word w where all the junction blocks have been
replaced by the empty word ε. We know that w̃ is partitioned into distinct
words by D2. But D2 ⊂ F , where F is the set of factors of Dict(w) (the set
of factors contained in the green blocks). By Lemma 2, the number of words
of size i in F is bounded by #Dict(w). Finally, Lemma 3 tells us that the
number of words in any partition of w̃ by words of F is bounded by

2
√

#Dict(w).|w̃| ≤ 2
√
#Dict(w).|w|.

In the end, #D = #D1 +#D2 ≤ 3
√
|w|.#Dict(w).

1.2.4 Optimally Compressible Sequences

Before the proof of Theorem 4, we first present a “weak catastrophe”, namely the
third item of Remark 3 in which the compression speed of a sequence changes from
O(

√
n) (optimal compression) toΩ(n3/4) when a letter is added in front, thus match-

ing the upper bound of Theorem 2.

Theorem 5. For an infinite number of words w:

#Dict(w) ≤ 1.9
√

|w| and #Dict(0w) ≥ 0.039|w|3/4.

Observe that this weak catastrophe is a special case of Theorem 4 (with better
constants, though). The aim of this section is twofold: first, it will be a constructive
proof, whereas the main theorem will use the probabilistic method; second, this
section will set up the main ideas and should help understand the general proof.

A main ingredient in the construction is de Bruijn sequences, that we introduce
shortly before giving the overview of the proof.
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De Bruijn Sequences

A de Bruijn sequence of order k (or DB(k) for short, notation that will also designate
the set of all de Bruijn sequences of order k) is a word x of size 2k + k − 1 in which
every word of size k occurs exactly once as a substring. For instance, 0001011100
is an example of a DB(3). Such words exist for any order k as they are, for instance,
Eulerian paths in the regular directed graph whose vertices are words of size (k−1)
and where there is an arc labeled with letter a from u to v iff v = u[1..k− 2]a.

Given any x ∈ DB(k), the following well-known (and straightforward) property
holds:

(⋆) Any word u of size at most k occurs exactly 2k−|u| times in x.

Thus, a factor of size l ≤ k in x will identify exactly 2k−l positions in x (the i-th
position is the beginning of the i-th occurence of the word).

The use of de Bruijn sequences is something common in the study of this kind
of algorithms: Lempel and Ziv themselves use it in [LZ76], as well as later [LS97]
and [PS00] for example.

Overview of the Proof

Recall that a wordw is optimally compressed iff it is of the formw = Pref(x) for some
word x (Remark 1). Thus we are looking for an x such that 0Pref(x) has the worst
possible compression ratio. In Section 1.2.3 the upper bound on the dictionary size
came from the limitation on the number of possible factors of a given size: it is
therefore natural to consider words x where the number of factors is maximal, that
is, de Bruijn sequences.

Although we conjecture that the result should hold for w = Pref(x) whenever x
is a de Bruijn sequence beginning with 0, we were not able to show it directly. In-
stead, we need to (possibly) add small words, that we will call “gadgets”, between
the prefixes of x.

For some arbitrary k, we fix x ∈ DB(k) and start with the word w = Pref(x)
of size n. The goal is to show that there are Ω(n3/4) red blocks (i.e that the size of
the dictionary for 0w is Ω(n3/4)): this will be achieved by showing that a significant
(constant) portion of the word 0w is covered by “small” red blocks (of size O(n1/4)).
Let s = |x|, so that n = Θ(s2). More precisely, we show that, in all the prefixes y of x
of size ≥ 2s/3, at least the last third of y is covered by red blocks of size O(

√
s) =

O(n1/4).
This is done by distinguishing between red blocks starting near the beginning of

a green block (offset-i for i ≤ γk, where γ ≥ 3 is a constant) and red blocks starting
at position i > γk:
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• For the first, what could happen is that by coincidence the parsing creates
most of the time an offset-i red block, which therefore would increase until
it covers almost all the word w. To avoid this, we introduce gadgets: we
make sure that this happens at most half of the time (and thus cannot cover
more than half of w). More precisely, the insertion of gadgets “kills” some
starting positions i if necessary, by “resynchronizing” the parsing at a different
position, thus ensuring that at most half of the prefixes of x contain offset-i
blocks for any fixed i ≤ γk.

• On the other hand, red blocks starting at position i > γk are shown to be of
small size. This is due to the structure of the DB(k) (few repetitions of factors)
which implies that few junction red blocks can go up to position (i − 1) and
precede an offset-i block.

Since all large enough prefixes of x have a constant portion containing only red
blocks of size O(n1/4), the compression speed is Ω(n3/4) (Theorem 5).

Gadgets must satisfy two conditions:

• they must not disturb the parsing of w;

• the gadget gi must “absorb” the end of the red block ending at position (i−1),
and ensures that the parsing restarts at a controlled position different from i.

The insertion of gadgets inw is not trivial because we need to “kill” positions without
creating too many other bad positions, that is why gadgets are only inserted in the
second half of w. Moreover, gadget insertion depends on the parsing of 0w andmust
therefore be adaptative, which is the reason why in [LP18] we give an algorithm to
describe the word w.

1.2.5 General Case

The proof of Theorem 4 first goes through the existence of a family F of “indepen-
dent” de Bruijn-style words which will play a role similar to the de Bruijn word x in
the proof of Theorem 5. The existence of this family is shown using the probabilistic
method: with high probability, a family of random words satisfies a relaxed version
(P1) of the “local” property (⋆), together with a global property (P2) that forbids
repetitions of large factors throughout the whole family.

The word w that we will consider is the concatenation of “chains” roughly equal
to Pref(x) for all words x ∈ F, with gadgets inserted if necessary as in Section 1.2.4.
(The construction is actually slightly more complicated because in each chain we
must avoid the first few prefixes of x in order to synchronise the parsing of w; and
the gadgets are also more complex.) Properties (P1) and (P2) guarantee that each
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of the chains of w are “independent”, so that the same kind of argument as in Sec-
tion 1.2.4 will apply individually. By choosing appropriately the number of chains
and their length, we can obtain any compression speed for w up toΘ(n/ log2 n) and
the matching bound for 0w (see Theorem 4).

1.2.6 Infinite Words

The techniques on finite words developed in the preceding sections can almost be
used as a black box to prove the one-bit catastrophe for infinite words (Theorem 1).
Our aim is to design an infinite word w ∈ {0, 1}N for which the compression ratios
of the prefixes tend to zero, whereas the compression ratios of the prefixes of 0w tend
to ϵ > 0. In Section 1.2.5, we concatenated the bricks obtained in Section 1.2.4;
now, we concatenate an infinite number of bricks of Section 1.2.5 of increasing size
(with the parameters that gave the one-bit catastrophe on finite words). As before,
each chain of size l will be parsed in Θ(l) green blocks and Θ(l3/2) red blocks. To
guarantee that the compression ratio always remains close to zero in w and never
goes close to zero in 0w, the size of the bricks mentioned above will be adjusted to
grow neither too fast nor too slow, so that the compression speed will be locally the
same everywhere.

The “base” word from which w will be constructed is of the following type.

Definition 15. Given a sequence F = (Fi)i≥0 where each Fi is a family of words, we denote
by wF the word

wF =

∞∏
i=0

∏
x∈Fi

Pref>qix(x)

where Pref>q(x) denotes the concatenation of all prefixes of x starting from size q+ 1, and

qix = max{a : x[0..a− 1] is a prefix of a word in ∪j<i Fj}.

For a particular sequence F = (Fi), the word w will be equal to wF with some
gadgets inserted between the prefixes as in the previous sections. The sequence F
that we shall consider will be a sequence of families of random words which will
satisfy two properties (generalisation of (P1) and (P2) above):

(P2’) guarantees a kind of “independence” of the families F0, F1, . . . ;

(P1’) is a de Bruijn-style “local” property on each word of each family Fi.

The existence of a sequence F satisfying these two properties is shown by a proba-
bilistic method. This shows the one-bit catastrophe. In this exposition we have only
sketched ideas and many details remain hidden: they are given in [LP18].

We now present some future work linked to the present chapter.
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1.3 Perspective: Normality

When you cast a die a large number of times, any value i among {1, . . . , 6} is ex-
pected to be obtained with frequency one sixth. More generally, for any x1, . . . , xk ∈
{1, . . . , 6}, the sequence of consecutive values x1 . . . xk is expected to appear with
frequency 6−k.

This particular behaviour of random series is what Borel [Bor09] named “nor-
mality”. More precisely, an infinite word u over an alphabet Σ is called normal if for
any finite word v ∈ Σ∗, v appears as a factor in u with frequency (#Σ)−|v|. Such
a word u thus behaves like a random word if we only consider the frequency of its
factors.

Historically this notion concerned the expansion of real numbers in a given base,
and has drawn a lot of attention in the last hundred years, but it is still unknown
whether π, e or even

√
2 are normal numbers. Many characterisations have been

proposed, see [BC18]. It was of course only natural to look at it in the broader
context of arbitrary infinite words and not only real numbers, enabling in particular
to make a bridge between this number-theoretic notion and automata theory, as we
shall see.

1.3.1 Can Automata Compress Normal Sequences?

“True” random sequences cannot be compressed at all by algorithms. What about
normal sequences? They indeed have a “random flavour”: does it prevent them
from being compressible?

One of themost well-known normal sequence is Champernowne number [Cha33],
defined in base 10 (and accordingly in any other base) as:

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 . . . 99 100 101 . . .

This sequence does not look exactly random and is obviously compressible since it
has this simple description: “concatenate in ascending order all the natural numbers
written in base 10”.

But, as mentioned in the introduction, the notion of randomness actually de-
pends on the power of the compressor. It can be shown that weak compressors
such as finite-state transducers are not able to compress this sequence. This is in
fact a more general result: it is a characterisation of normal sequences (the result
follows from [SS72] and [Dai+04], see [BC18] for a survey and a proof).

Theorem 6. An infinite word is normal iff it cannot be compressed by a finite-state transducer.

In other words, if we define randomness as incompressibility, normal sequences
are the random sequences for finite-state transducer, and therefore are among the
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most basic “random” sequences since the compressors involved in Theorem 6 are
among the weakest.

What if our compressors had more power, would they then be able to compress
normal sequences? The answer is no if we only allow nondeterminism: nondeter-
ministic finite-state transducers can compress no normal sequences. But if moreover
we allow for a stack, then the answer is yes: nondeterministic pushdown transduc-
ers can compress some normal sequences. Before Proposition 8 below, the state
of our knowledge concerning the compressibility of normal sequences by various
finite-state transducers was like in Table 1.1 (see [BCH15]).

Finite-state transducer det. non-det. non-real-time
No extra memory N N N
One counter N N N
More than one counter N N Y
One stack ? Y Y
One stack and one counter Y Y Y

Table 1.1: Compressibility of normal sequences by different kinds of transducers
(before this work).

In an ongoing work with Olivier Carton, we complete the missing result in this
table. More precisely, we come up with a normal sequence that can be compressed
by a deterministic pushdown transducer.

Proposition 8. There exist a deterministic ILPDT T and an infinite word w such that:

• w is normal;

• ρPDT (w) < 1.

Indeed, it turns out that the naïve way to use the stack is enough to compress
a palindromic variant of Champernowne sequence: roughly speaking, if the input
letter and the top stack letter coincide, then pop and, only every two steps, output a
particular symbol (thus keeping injectivity); if the input letter and the top stack letter
do not coincide, then output and push the input letter (no compression occurs here).
That way, consecutive pops are “shrunk” by half, and this is enough to compress
a little when the input sequence contains a lot of large palindromes. This is in
particular the case of the following sequence:

w = w1w̃1w2w̃2w3w̃3 . . .

where wi is the concatenation of all words of size i, and w̃i is the mirror of wi. This
sequence is a variation on Champernowne’s and happens to remain normal.
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1.3.2 Ehrenfeucht-Mycielski Sequence

As Borel [Bor09] showed, almost all real numbers are normal (and even absolutely
normal, meaning normal in any base). We can construct some absolutely normal
numbers efficiently, in “nearly linear time”, see [LM21]. Despite these rather en-
couraging facts, apart perhaps from (variations on) Champernowne sequence al-
most no “natural” normal number is known. Of course π, e and ln 2 are good can-
didates but any proof seems elusive. It has furthermore been conjectured by Borel
himself [Bor50] that irrational algebraic numbers are absolutely normal, but it is
not even known for example whether the asymptotic frequency of zeroes and ones
is 1/2 in the binary expansion of

√
2 (i.e., whether

√
2 is simply normal in base 2).

Open question 1. Is
√
2 simply normal in base 2?

This question seems out of reach. But the quest for “natural” normal numbers
does not restrict to famous mathematical constants. The following well-known se-
quence might be a simpler candidate, at least with a more combinatorial flavour.
In particular, its definition reminds of the LZ parsings. It has been introduced
in [EM92] and has drawn a lot of attention since then, due to its seemingly “pseudo-
random” behaviour.

Definition 16. The Ehrenfeucht-Mycielski sequence is the infinite word EM over the
alphabet {0, 1} that starts with 010 and whose (i+ 1)-th bit xi (i > 2) is defined iteratively as
follows.

Find the largest k such that the suffix xi−k · · · xi−1 already appears as a factor in x0 · · · xi−2.
Call j < i− k the largest position where it appears (xj · · · xj+k−1 = xi−k · · · xi−1).
Then xi = 1−xj+k (i.e. we flip the bit following the previous occurrence of the longest possible

suffix). See Figure 1.3.

01001 1 0101110 001 0

=

Figure 1.3: The beginning of EM and how to define the next bit.

This sequence seems to be somehow “pseudo-random”, and it is conjectured to
be normal, but so far only the following two weak evidences of this fact have been
shown.

Proposition 9. • Every finite word over the alphabet {0, 1} appears infinitely many
times as a factor of EM ([EM92]).
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• If Mn(1) denotes the number of ones in EM[0..n− 1], then

lim inf
Mn(1)

n
≥ 1/4 and lim sup

Mn(1)
n

≤ 3/4.

In particular, the asymptotic frequencies of zeroes and ones cannot be too “unbalanced” and
lie in the interval [1/4, 3/4] ([KS07]).

Thanks to the similarity of EM with LZ parsing, the understanding gained from
Section 1.2 on the one-bit catastrophe might be helpful to strengthen Kieffer and
Szpankowski’s result above (Proposition 9, second item) to 1/2 instead of [1/4, 3/4]
and finally settle the following question known as the balance conjecture.

Open question 2. Is EM simply normal in base 2?
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Chapter 2

Randomness Through the Lens of
Algebraic Complexity

The link between randomness and polynomials is perhaps less obvious than with
compression in the previous chapter. Nevertheless, on the one hand randomness
plays a crucial rôle in computational complexity at large and in algebraic complexity
in particular; and on the other hand, we shall focus on the problem of polynomial
identity testing (PIT) with the underlying motivation of understanding whether ran-
domness is necessary to solve it efficiently.

In Section 2.1 we shall review some of the results obtained in [FPV15] (Sec-
tion 2.1.2 below), [Dvi+12] (Section 2.1.3), [LMP19] (Section 2.1.4) and [Bal+21]
(Section 2.1.5) concerning PIT and lower bounds on the circuit complexity of poly-
nomials, without going into much technical details. Then in Section 2.2 we shall
focus on a problem that we think is worth being studied, namely the power of PIT.

Polynomial Identity Testing

In what follows, we shall encounter randomness used in three different ways. First
in the proofs of course, with the use of, e.g., a probabilistic method in Section 2.1.3.
Second in complexity classes likeMA in Section 2.1.2. But the third is more impor-
tant and more obvious: it will appear in algorithms for PIT and will be at the heart
of many results in this chapter as well as of Section 2.2.

Actually this last usage of randomness is connected to the (arguably) main task
in algebraic complexity and computational complexity at large, namely proving
lower bounds. Consider indeed the following example. Suppose your task is to
decide whether a polynomial p(x) computed by an arithmetic circuit C is zero (this
is the problem PIT). You might come up with the following (black box) algorithm
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evaluating p at well-chosen points:

• compute some integers a1, . . . , ak;

• if p(ai) 6= 0 for some i, then reject; otherwise accept.

If your algorithm works for all circuits of size s, this means that the polynomial

q(x) =
k∏

i=1

(x− ai)

does not have circuits of size s, because the algorithm incorrectly accepts such a
non-zero polynomial. Hence you have proved a lower bound.

This easy consideration is just the tip of the iceberg: the links between deran-
domisation and circuit lower bounds are indeed much deeper. A long line of works
by Yao, Nisan, Wigderson, Sudan, Impagliazzo, Kabanets among others (see, e.g.,
the book [AB09] for an exposition) proved that (strong) lower bounds on Boolean cir-
cuits imply derandomisation, and conversely that derandomising PIT gives (weak)
lower bounds.

That is why this chapter focusses on some aspects of lower bounds in algebraic
complexity and of polynomial identity testing.

2.1 Lower Bounds and PIT

2.1.1 Arithmetic Circuits and PIT

Arithmetic Circuits and Valiant’s Classes

We first need to define the basic concepts. As a basic model of computation, we use
arithmetic circuits (see the survey [SY10b]): that is, directed acyclic graphs in which
vertices of indegree zero are called input gates and are labeled by a variable xi or a
constant αi from the underlying field F; all the other vertices (gates) are of indegree
two and labeled with + or ×; and the unique vertex of outdegree zero is called the
output gate. Each gate computes a polynomial in F[x1, . . . , xn] in a natural way, and
the polynomial computed by the circuit is the polynomial computed by the output
gate. When the only constants allowed are {−1, 0, 1}, we say that the circuit is
constant-free.

The size of a circuit is its number of gates (i.e. the number of vertices of the
graph). Remark that, by repeated squaring, polynomials of exponential degree, or
with an exponential number of monomials, or with integer coefficients of exponen-
tial bitsize can be computed by arithmetic circuits: for instance,

p(x) = (1+ x)2
n
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has the arithmetic circuit of size n+ 3 of Figure 2.1.

×

×

×

+

1 x

...

Figure 2.1: Arithmetic circuit of size n+ 3 for the polynomial p(x) = (1+ x)2n .

As for languages, we are usually not interested in a single polynomial, but rather
in families of polynomials like, e.g., the determinant family (detn)n∈N defined by

det
n
(x1,1, . . . , xn,n) =

∑
σ∈Sn

ε(σ)
n∏

i=1

xi,σ(i),

(detn is a polynomial in n2 variables), or its “cousin” the permanent

pern(x1,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

That way we can speak of the asymptotic size of circuits to compute such polynomi-
als, and we can define complexity classes, in a way that is reminiscent of P and NP
(see, e.g., the book of Bürgisser [Bür00a]).

Definition 17 (Valiant’s classes).

• VP is the class of families of (multivariate) polynomials (pn)n∈N where:

– deg(pn) is polynomially bounded,
– (pn) has polynomial-size arithmetic circuits.

• A family (qn)n∈N is in VNP if there exists (pn) ∈ VP and a polynomial r(n) such that:

qn(x1, . . . , xr(n)) =
∑

a1,...,ar(n)∈{0,1}

pn(x1, . . . , xr(n), a1, . . . , ar(n)),

that is, (qn) is an exponential sum of a VP family.
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Note that the number of variables of families in VP is polynomially bounded
(since it must have circuits of polynomial size). As in the Boolean world, the question
VP = VNP? is wide open and is central to the domain. Actually, the permanent
family (pern) is VNP-complete, thus the question is whether the permanent has
arithmetic circuits of polynomial size.

These classes are non-uniform, but we could require that the circuits (Cn) for
(pn) can be built by a Turing machine in time nO(1), and obtain the uniform versions
of VP and VNP.

If (pn) is in uniform VNP, then the function which, on input (m, n), computes
the coefficient of the monomial m in pn, is in GapP. This is a large class (Toda’s
theorem [Tod91] shows that PGapP contains the whole polynomial hierarchy PH).
In Section 2.1.2 we will consider polynomials whose coefficients are in MA: let us
define that now.

The Boolean class of complexity MA (Merlin-Arthur) is a kind of probabilistic
version of NP and lies “just above” NP.

Definition 18. MA is the class of languages L for which there exists A ∈ P and a polynomial
q(n) such that:

• if x ∈ L then ∃y ∈ {0, 1}q(|x|)Prr∈{0,1}q(|x|)((x, y, r) ∈ A) ≥ 2/3;

• if x 6∈ L then ∀y ∈ {0, 1}q(|x|)Prr∈{0,1}q(|x|)((x, y, r) ∈ A) ≤ 1/3.

We say that a family of polynomials (pn) has its coefficients inMA if pn has a polyno-
mial number of variables and a polynomial degree, and its coefficients are integers
computable in MA, that is, the language

{(n,m, i, b) | the i-th bit of the coefficient of the monomial m is b}

is in MA.

Polynomial Identity Testing

A central problem in (Boolean) complexity theory is Polynomial Identity Testing
(PIT), in particular because it is one of the few problems in BPP (actually in coRP)
not (yet) known to be in P. Finding a polynomial-time deterministic algorithm for
problems for which only probabilistic ones are known is called derandomisation.

As its name suggests, PIT is about finding whether polynomials given by arith-
metic circuits are identical, or equivalently whether one polynomial is zero:

• input: a (constant-free) arithmetic circuit C computing a polynomial

p ∈ Z[x1, . . . , xk];
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• question: is p identically zero?

Of course the answer depends on the field (more precisely on its characteristic). In
this chapter we can safely assume the field is R.

As mentioned above, a circuit can compute polynomials of exponential degree,
with exponentially many monomials and with coefficients of exponential bitsize.
Thus writing down p explicitly takes exponential time. The following usual ran-
domised algorithm avoids all these traps:

• pick at random a1, . . . , ak ∈ {0, . . . , 2n2} and r ∈ {2, . . . , 2n2};

• accept iff p(a1, . . . , ak) ≡ 0 mod r.

Overflows are avoided thanks to the modulo r, and the strategy of evaluating at
random points works thanks to Schwartz-Zippel lemma [Zip79; Sch80]:

Lemma 4 (Schwartz-Zippel). Let p ∈ R[x1, . . . , xk] be a nonzero polynomial of degree d
and S ⊆ R a finite set. Then

Pra1,...,ak∈S(p(a1, . . . , ak) = 0) ≤ d
#S

.

Actually, PIT is equivalent to a simpler problem that we call Integer Identity Testing
(IIT) concerning circuits computing integers (i.e. they have no variables):

• input: a (constant-free) arithmetic circuit C computing an integer N ∈ Z;

• question: N = 0?

Obviously, IIT reduces to PIT. The converse is true as well: in a circuitC computing
a polynomial p(x1, . . . , xk), it is enough to replace the variables by integers growing
sufficiently fast thanks to the following lemma.

Lemma 5. Let p ∈ Z[x1, . . . , xk] be a polynomial of degree d whose coefficients are bounded
in absolute value by M. Let α1, . . . , αk ∈ N be integer satisfying:

α1 ≥ M+ 1 and αi+1 ≥ 1+M(d+ 1)iαd
i .

Then:
p ≡ 0 ⇐⇒ p(α1, . . . , αk) = 0.
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2.1.2 Fixed-Polynomial Lower Bounds on “Explicit” Polynomials

General Lower Bounds

Before trying to separate complexity classes, the first natural step is probably to show
that there at least exist some polynomials that are “hard”. As in the Boolean case, it
might at first seem easy to show that for every k there exist polynomial families (pn)
that do not have arithmetic circuits of size nk. This is indeed trivial in some cases:

• if pn has degree > 2nk ;

• if pn has more than nk variables;

• if the coefficients of pn generate a field of transcendence degree > nk over Q.

But these all are “bad” (trivial) reasons. Fortunately, Schnorr [Sch78] shows a more
satisfactory result.

Theorem 7. For all t ∈ N, there exist a1, . . . , at2 ∈ {0, 1} such that the univariate polyno-
mial

p(x) =
∑

aixi

does not have arithmetic circuits over C of size ε t
log t (here, ε > 0 is a constant independent of t).

Note that the proof is more involved than in the Boolean case, because arbitrary
complex constants can be used even if the coefficients are in {0, 1}, and thus a sim-
ple counting argument or diagonalisation is not enough. Schnorr remarks that the
coefficients of a polynomial computed by a circuit using constants α = (α1, . . . , αk)
is given by a polynomial mapping in α. Hence, finding hard polynomials reduces to
finding a point outside the image of the mapping associated to some circuit which
is universal for a given size.

However, this is a nonconstructive result and we have no idea of what the poly-
nomial looks like. Its coefficients are computable in exponential time, which is far
from efficient. We would rather have an “explicit” polynomial, like e.g.

p(x1, . . . , xn) = xd1 + · · ·+ xdn
for which Baur and Strassen [BS83] have shown an n log d lower bound. Alas, this
is currently the best known lower bound for an “explicit” polynomial.

Explicitness

Before presenting the results we obtained in [FPV15] on that problem, we should say
what an “explicit” polynomial is. Unfortunately there is no clear consensus. Some
consider that being able to compute “efficiently” the coefficients of the polynomial is
enough to be explicit. Others would insist that the polynomial has uniform circuits.
We consider both variants in the following results.
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Uniform Circuits

The first result shows that, if our circuits are not allowed to use arbitrary complex
constants, then there is an explicit hard polynomial, where explicit here means uni-
form in VNP.

Theorem 8. For all k > 0, there is a uniform family of polynomials (pn) in VNP, pn ∈
Z[x1, . . . , xn], such that pn has no constant-free arithmetic circuits of size nk.

The proof goes along the following lines. If the permanent polynomial family,
which is VNP-complete, has no circuits of size nk (as is widely conjectured), then
the result is true. Otherwise, the small circuits for the permanent enable to collapse
the whole counting hierarchy to MA (see [FPV15] based on [Lun+92]). But in
the counting hierarchy, thus in MA, we are able to diagonalise against all “sign
conditions” realisable by circuits of size nk. The MA protocol can then be used to
define a VNP family whose sign condition is different.

Easy Coefficients

For the other “definition” of explicitness, we shall consider here the case of circuits
using arbitrary constants from C. This is obviously more entangled and we need to
assume the generalised Riemann hypothesis (GRH) to tackle these constants. That
way we were able to generalise the result of Jansen and Santhanam [JS12] that
there exist polynomials with coefficients inMA (thus, explicit in some sense) but not
computable by arithmetic circuits of size nk over Z. Assuming GRH, we extend
their result to the case of circuits over the complex field.

Theorem 9. Assume GRH is true. For any constant k, there is a family (pn) of polynomials
on n variables, of degree nO(1), with coefficients in {0, 1} computable in MA, and such that pn
has no arithmetic circuits of size nk over C.

The idea is to find coefficients that cannot be obtained by a universal arithmetic
circuit U(a, x) simulating circuits of size nk. Here, a ∈ CN (for N ∼ n2k) encodes the
structure and the constants of the simulated circuit. If we find values γ1, . . . , γd ∈
{0, 1} such that U(a, x) 6=

∑
γixi for all a ∈ CN, then the polynomial pγ(x) =∑

γixi has no circuits of size nk.
But deciding whether a system of equations has no solution over C can be done

in the polynomial hierarchy thanks to [Koi96]. With a few more quantifiers, we can
actually find values γ1, . . . , γd ∈ {0, 1} for which there are no solutions overC, and
hence for which pγ has no circuits of size nk.

This gives a polynomial pγ with coefficients in PH. To bring them down toMA,
we use the same kind of trick as for Theorem 8: if the permanent has no circuits
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of polynomial size, then it is itself the desired polynomial. Otherwise, PH = MA
thanks to [Bür00b] and [Lun+92], and we are done.

Here, GRH is used in Koiran’s result [Koi96] to reduce finding the solutions of
a system of polynomial equations over C to solutions over Fp , for a small prime p,
and hence place the problem in PH.

Other variants of these results can be found in [FPV15]. The next sections are
devoted to the study of restricted models of computation.

2.1.3 ABPs vs Formulas

As can be seen from the previous section, known circuit lower bounds are very lim-
ited and separations of classes like VP and VNP seem completely out of reach for
the moment. That’s why a large area of research focusses on restricted frameworks
where lower bounds are of course easier to prove. The present section and the next
study some usual restrictions and present lower bounds.

We can weaken the framework in two directions: considering weaker models of
computation on the one hand instead of arithmetic circuits, and consider compu-
tations on “limited” algebraic structures on the other hand, like non-commutative
ones. It is hoped that exploring restricted computations and obtaining lower bounds
will help to get results in the general case.

Restricting the Model of Computation

Here we shall consider multilinear ABPs and formulas, terms that we all define now.

Definition 19. A polynomial is multilinear if it has degree at most one in each variable.

Many important polynomials are multilinear, e.g., the determinant, the perma-
nent and matrix product. A natural restricted model for computing multilinear
polynomials is multilinear computation, in which all intermediate stages of the compu-
tation are required to be multilinear as well.

There is a large body of research devoted to multilinear computation, in par-
ticular to proving lower bound for multilinear formulas (for which the underlying
computation graph is a tree). The first result in this direction was the breakthrough
paper of Raz [Raz04a] showing that multilinear formulas for both the permanent
and the determinant must be of super-polynomial size. Later, in [Raz04b], Raz
showed that multilinear circuits are super-polynomially stronger than multilinear for-
mulas (see [RY08] for a simpler proof). Exponential lower bounds for constant depth
multilinear circuits, as well as strong separations based on circuit-depth, were proved
in [RY09]. Super-linear lower bounds for the size of arithmetic circuits were proved
in [RSY08].
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Here we further extend this line of work by proving a super-polynomial sepa-
ration between multilinear algebraic branching programs (ABPs) and multilinear
formulas. As multilinear circuits can efficiently simulate multilinear ABPs, this
strengthens the mentioned results of [Raz04b; RY09]. We first need to define ABPs
and formulas.

Definition 20. • An algebraic branching program (ABP) is a directed acyclic graph
with two special nodes in it: a start-node and an end-node. The edges of the ABP are labeled
by either variables or field elements. Every directed path γ from the start-node to the end-
node computes the monomial fγ which is the product of all labels on the path γ. The ABP
computes the polynomial f =

∑
γ fγ , where the sum is over all paths γ from start-node to

end-node. The size of an ABP is the number of nodes in the graph.

• A formula is a rooted directed binary tree (the edges are directed toward the root). The
leaves of the formula are labeled by either variables or field elements. The inner nodes have
in-degree two and are labeled by either + or ×. A formula computes a polynomial in the
obvious way. The size of a formula is the number of nodes.

Both ABPs and formulas have natural restrictions to the multilinear world. An
ABP is multilinear if on every directed path from start-node to end-node no variable
appears more than once. A formula is multilinear if every sub-formula in it computes
a multilinear polynomial.

ABPs capture the computational power of iterated matrix product: For every
ABP of size s, there are poly(s) many matrices A1,A2, . . . of dimensions poly(s) ×
poly(s)with entries that are either variables or field elements, so that the polynomial
computed by the ABP is the (1, 1) entry in the matrix A1A2 · · · . In the other direc-
tion, for every s matrices of dimensions s× s, there is a (multi-start-node and multi-
end-node) ABP of size poly(s) computing the product of the matrices. In fact, ABPs
also capture the computational power of the determinant: For every ABP of size s,
there is a matrix A of dimension poly(s) with entries that are either variables or field
elements, so that the determinant of A is the polynomial the ABP computes [Val79;
MP08], and the determinant can be computed by a polynomial-size ABP [Ber84;
Sam42; MV97]. The link between the determinant and ABPs was first shown by
Toda [Tod92], using the equivalent model of skew circuits. However, the known
polynomial-size ABPs for the determinant are not multilinear, so the lower bound
of [Raz04a] does not yield our result (by current knowledge).

Formulas, on the other hand, capture a computational model in which every
sub-computation can be used only once (as the underlying computation graph is a
tree). Since formulas can be parallelized to have depth which is logarithmic in their
size, they also capture the parallel time it takes to perform the computation.
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Separating ABPs and Formulas

It is known that ABPs can efficiently simulate formulas [Val79]. Similar ideas show
that multilinear ABPs can efficiently simulate multilinear formulas. A natural question
is thus whether the other direction holds as well. In the multilinear setting, this
question was raised in particular by Jansen in [Jan08]. We show that in the multilin-
ear world it does not (a similar separation is believed to hold for general algebraic
computation).

Theorem 10. For every positive integer n, there is a multilinear polynomial F = Fn in n
variables with zero-one coefficients so that the following holds:

(i) There is a uniform algorithm that, given n, runs in time O(n) and outputs a multilinear ABP
computing F.

(ii) Over any field, every multilinear formula computing F must be of size nΩ(log n).

Our lower bound of nΩ(log n) is tight since any polynomial-size multilinear ABP
can be simulated by a multilinear formula of size nO(log n) (see, e.g., [RY08]).

The proof of Theorem 10 consists of two parts: (i) constructing a small mul-
tilinear ABP computing some polynomial F and (ii) showing that any multilinear
formula computing F is of super-polynomial size. The two parts have conflicting
demands: In part (i) we wish to make the polynomial F simple enough so that a
small ABP can compute it, whereas in part (ii) we will need to rely on the hardness
of F to prove a lower bound. To succeed in both parts we need to take full advantage
of the expressive power that ABPs grant us. Below we give a high-level description
of the proof, focusing on part (ii), which is considerably more complicated. Along
the way we will highlight ideas from previous works that are used in the proof.

The lower bound part of the proof uses several ideas introduced in previous
works [Raz04a; Raz04b; RY08]. Of particular importance is the notion of a full-
rank polynomial. Following a notion defined by Nisan [Nis91] in the case of non-
commutative computations and that we shall also encounter in Section 2.1.4, a poly-
nomial f can be used to define a family of matrices {M(fΠ)}Π, where Π ranges over
all partitions of the variables X into two sets of variables Y,Z of equal size (these are
the so-called partial derivative matrices). The polynomial f is said to have full-rank if
the rank of M(fΠ) is full for every such Π. This property turns out to be useful in
showing complexity lower bounds for f. Indeed, Raz showed that every full-rank
polynomial f cannot have polynomial-size multilinear formulas [Raz04a; Raz04b].

To the best of our knowledge, full-rank polynomials may also require super-
polynomial-size ABPs. Thus, in order to prove our separation we will look for a
property which is weaker than being full-rank and is still useful for proving lower
bounds. One of the main new ideas in our proof is a construction of a special
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subset of partitions, called arc-partitions, which is sufficiently powerful to carry through
the lower bound proof and, at the same time, simple enough to carry part (i) of
the proof. The number of arc-partitions is much smaller than the total number of
partitions. Nevertheless, we are still able to show that every arc-full-rank polynomial
f (i.e., M(fΠ) has full rank for all arc-partitions Π) does not have polynomial-size
multilinear formulas.

We now go into more details as to how this family of partitions is defined and
what makes it useful. We will start by describing a distribution over partitions. The
partitions that will have positive probability of being obtained in this distribution
will be called arc-partitions. The distribution is defined according to the following
(iterative) sampling algorithm (see Figure 2.2). Position the n variables on a cycle
with n nodes so that there is an edge between i and i + 1 modulo n. Start with the
arc [L1,R1] = {0, 1} (an arc is a connected path on the cycle). At step t > 1 of the
process, maintain a partition of the arc [Lt,Rt]. “Grow” this partition by first picking
a pair uniformly at random out of the three possible pairs (Lt − 2, Lt − 1), (Lt −
1,Rt+1), (Rt+1,Rt+2), and then defining the partitionΠ on this pair to map to a
random permutation of the two variables yt+1, zt+1. After n/2 steps, we have chosen
a partition of the n variables into two disjoint, equal-size sets of variables Y,Z.

0 1n − 1

Lt

Rt

0 1n − 1

Lt

Rt = Rt+1

Pt+1

Lt+1

0 1n − 1

Lt

Rt

Pt+1
Lt+1

Rt+1

0 1n − 1

Lt = Lt+1

Rt

Pt+1
Rt+1

Figure 2.2: Incremental definition of a pairing. On the left the arc [Lt,Rt] in the n-cycle. On the right
the three options for the next pair Pt+1 and the corresponding Lt+1,Rt+1.
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The arc-partitions allow us to adapt the key argument in [Raz04a]. Let us re-
mind roughly how this argument works after the simplifications from [SY10a, Sec-
tion 3.6]. Every multilinear formula computes a polynomial which can be seen as a
small sum of polynomials, each polynomial defining a “non-redundant” K-coloring
of the n-variables with K ∼ log n. This is simply a mapping C : [n] 7→ [K] so that the
pre-image of every color k ∈ [K] is not too small. A color k is said to be “balanced”
with respect to a partition Π if the number of Y variables of color k is roughly the
same as the number of Z variables of color k. Now, for a given coloring C, if we
choose a random partition Π from the set of all partitions, simple properties of the
hyper-geometric distribution imply that the probability that all colors in C are “bal-
anced” is at most p = n−Ω(K) = n−Ω(log n). This bound, in turn, proves a roughly
1/p = nΩ(log n) lower bound for the size of multilinear formulas.

Following a similar strategy, we show that for any “non-redundant” K-coloring
C, for a random arc-partition, the probability that all colors in C are “balanced” is at
most n−Ω(K) as well. This turns out to be significantly more difficult than showing it
for a random partition (from the set of all partitions). The hardest part of the proof
is analyzing a random walk on a two-dimensional “distorted chessboard” where we
need to prove certain anti-concentration results.

Let us now turn to another kind of restriction, different from multilinearity.

2.1.4 Unambiguous Circuits

Nisan [Nis91] proved in 1991 exponential lower bounds for non-commutative arith-
metic formulas and more generally for non-commutative algebraic branching pro-
grams. In this section we extend this result to “unambiguous circuits”.

Noncommutativity and Unambiguity

Let F be a field. In the non-commutative ring F〈x1, . . . , xn〉, variables do not commute
so that xixj and xjxi (i 6= j) are distinct monomials1. Non-commutative computations
arise naturally for instance when computing over matrices, but also can have appli-
cations for commutative computations (see [CRS03; Bar00], in particular the use of
non-commutative determinants to approximate the commutative permanent).

Given a (non-commutative) circuit, we can look at the set of monomials it pro-
duces (before any grouping/cancellations). If we pretend that the computation is
also non-associative, a monomial comes with parentheses to indicate the “way” in
which it was computed. The pattern of parentheses for a given monomial (the struc-
ture of the monomial in a sense) can also be seen as a tree. We will focus on circuits

1Nevertheless addition is still commutative and the rules for the constants do not change, according
to the underlying field F.
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where this structure (the shape) is the same for all the monomials computed by the
circuit, and we will call these circuits unambiguous.

+

× × ×

z w + +

× ×

a b c

(a) An unambiguous circuit C.

×

×

(b)The shape of the circuit C, corresponding
to the pattern of parentheses • × (• × •).

Figure 2.3: An unambiguous circuit and its shape.

If one computes an algebraic branching program as a circuit, then monomials
are all obtained by successive multiplication on the right, and they all have the same
structure. Our model is thus more general than the one considered by Nisan.

×

×

×

Figure 2.4: Shape of an ABP turned into an unambiguous circuit.

Let us emphasize that the class of polynomials computable by unambiguous cir-
cuits of polynomial size is quite large and natural: it contains all the ABPs as already
explained (cf. Figure 2.4), as well as for instance the palindrome polynomial used
in [Nis91; LMS15]. It is rich enough to contain, for all k, the polynomial fk defined
in [LMS15] which requires exponential-size circuits of skew-depth k, thus creating
a hierarchy of increasing power inside general non-commutative circuits. A final
example: the Θ(n2n) computation of the permanent, tersely explained by Nisan
in [Nis91], is also unambiguous and is asymptotically as fast as Ryser’s formula (but
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has the advantage of being monotone and non-commutative).

Lower Bound

Nisan’s result was extended in [LMS15] to a more powerful model, so-called skew
circuits, arithmetic circuits where every multiplication involves at most one argument
which is not a variable or a constant. There, non-commutative skew circuits were
shown to be exponentially more powerful than non-commutative branching pro-
grams, but exponentially less powerful than general non-commutative circuits. This
model and some extensions are the strongest model of non-commutative computa-
tion for which we have superpolynomial lower bounds.

Here, we again extend Nisan’s result but in a different direction, namely for
unambiguous circuits. Perhaps the most striking aspect of Nisan’s paper, more than
its elegance, is that it gives an exact expression for the complexity of any polynomial.
More precisely, the minimal size of a branching program computing a polynomial f
is expressed via the ranks of a family of matrices defined by f, for all branching
programs in a certain “canonical” form. We prove a generalization of his theorem,
characterizing the minimal size of a “canonical” unambiguous circuit computing
any polynomial f, also in terms of ranks of matrices. This exact characterization also
yields exponential lower bounds, making unambiguous circuits another “strongest”
model of non-commutative computation for which we have superpolynomial lower
bounds (it is incomparable with the models of [LMS15]).

For a homogeneous polynomial P of degree d and each integer i ≤ d, Nisan
defined the partial derivative matrix M(i)(P), which is a nd−i × ni matrix whose rows
are indexed by monomials of degree (d− i) and columns by monomials of degree i.
The entry (m1,m2) of the matrix is defined to be the coefficient of the monomial
m1m2 in P. Intuitively speaking, the rank of the matrix M(i)(P) is a measure of how
“correlated” the prefix of length i of a monomial appearing in P is to the rest of the
monomial. Small ABPs have “information bottlenecks” at each degree i, and hence
the amount of correlation in the computed polynomial must be low. In our case the
correlation will be between the prefix of degree p and the suffix of degree (d− p− i)
on the one hand, and the middle part of degree i on the other hand. In that case
we say the “type” of the gate is (i, p) (see Figure 2.5).

We can then define, for a homogeneous polynomial P of degree d and a particu-
lar type (i, p), the analogue of Nisan’s partial derivative matrix: M(i,p)(P) is a matrix
of size nd−i × ni, rows are indexed by all pairs of monomials

(m1,m3) ∈ {x1, . . . , xn}p × {x1, . . . , xn}d−p−i,

columns are indexed by monomials m2 ∈ {x1, . . . , xn}i, andM(i,p)(P)(m1,m3),m2 is the
coefficient of the monomial m1m2m3 in P.
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deg. i

+
α

×

×

+

+

β1

+

βk

deg. p
+

+

Figure 2.5: A shape and a gate α of type (i, p).

Our result expresses the minimal number of addition gates in an unambiguous
circuit for a polynomial P as a function of the ranks of the matrices M(i,p)(P).

Theorem 11. Let P be a homogeneous polynomial of degree d and T a shape with d leaves.
Then the minimal number of addition gates needed to compute P by a (canonical) unambiguous
circuit with shape T is exactly equal to∑

(i,p)∈S

rank
(
M(i,p)(P)

)
,

where S is the set of all existing types of +-gates in the shape T .

As an application, we obtain the following exponential lower bound for the
computation of the permanent and the determinant.

Theorem 12. Computing the permanent or the determinant on n× n variables with an unam-
biguous circuit requires at least

( n
n/3
)
gates.

PIT

Finally we consider the PIT for our model of non-commutative unambiguous cir-
cuits. Note that, as in the commutative setting, there is a polynomial-time random-
ized algorithm for the non-commutative PIT [BW05] (for polynomial-degree circuits
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only). But here derandomisation has some significant success. A first efficient white-
box2 deterministic algorithm for non-commutative ABPs was given by Raz & Sh-
pilka [RS05]. Here we use ideas from a simpler construction given by Arvind et
al. [AJS09; AMS10] to get a polynomial-time deterministic PIT algorithm for un-
ambiguous circuits over R or C. This seems to be the strongest non-commutative
model so far for which PIT has been derandomised.

The idea of the algorithm over R is simple and uses the Hadamard product.

Definition 21. Given two polynomials P =
∑

m amm and Q =
∑

m bmm (where m denotes
a monomial), the Hadamard product of P and Q is

P� Q =
∑
m

ambmm.

We first give a construction to perform the Hadamard product of two unam-
biguous circuits with the same shape. In other words, we prove that the class of
unambiguous circuits of a given shape is stable under Hadamard product. As in the case
of ABPs, it will provide a deterministic polynomial-time algorithm for PIT over un-
ambiguous circuits.

Theorem 13 (Hadamard product of two unambiguous circuits). Let C andD be two
unambiguous circuits (in canonical form), of the same shape, and of size s and s′, that compute
two polynomials P and Q. Then P�Q is computed by an unambiguous circuit of size at most ss′;
moreover, this circuit can be constructed in polynomial time.

Corollary 2. There is a deterministic polynomial-time algorithm for PIT for polynomials
computed by non-commutative unambiguous circuits over R.

Proof. Given P(x1, . . . , xn) computed by an unambiguous circuit, construct the cir-
cuit which computes (P�P)(x1, . . . , xn) and evaluate it on (1, 1, . . . , 1). The output
is the sum of the squares of the coefficients of P, therefore it is equal to 0 if and only
if P is equal to the zero polynomial.

2.1.5 PIT on Roots of Unity

Our last highlight is taken from [Bal+21] and is a variant of the usual PIT. Arith-
metic circuits overC can take arbitrary constants as inputs, but of course, so as to be
able to encode the problem in binary, for PIT we only consider constant-free arith-
metic circuits. There is at least one case of interest where we could add complex
constants, though: when these constants are roots of unity ζn = e

2iπ
n since such a

2A PIT algorithm is white-box if it can use the structure of the computation model; it is black-box if
it only requires an evaluation oracle.
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value can simply be encoded as n in binary. Indeed, identity testing in number fields
is a fundamental problem in algorithmic algebra that has been studied in relation
to solving systems of polynomial equations [Ge93; Koi96] and polynomial identity
testing [CK00].

Among number fields, cyclotomic fields, i.e., those generated by roots of unity,
play a central role. Our aim is to design an efficient algorithm for the following
problem Cyclotomic Identity Testing (CIT):

• input: an algebraic circuit C computing a (univariate) polynomial g(x), to-
gether with an integer n given in binary;

• question: determine whether g(ζn) = 0, where ζn = e2πi/n (a complex primitive
n-th root of unity).

Observe that CIT is at least as hard as PIT obviously.
Plaisted [Pla84] gave a randomised polynomial-time algorithm for the prob-

lem where the polynomial f is given in sparse representation, and subsequently,
two different deterministic polynomial-time algorithms were given by Cheng et
al. [CTV10; Che07]. The conclusion of [CTV10] raises the question of the com-
plexity of CIT. The authors note that this problem lies in the counting hierarchy
based on results of [All+09]. Our result substantially improves on [CTV10].

Theorem 14. CIT is in BPP assuming GRH, and in coNP unconditionally.

The algorithm works by computing in Fp where Fp has a primitive n-th root of unity,
namely

ωn ∈ Fp such that (ωn)
n = 1 but (ωn)

i 6= 1 for all 0 < i < n.

A number α is a cyclotomic integer if it is in Z[ζn]. For s ∈ N, we will say that the
cyclotomic integer α = g(ζn) has a description of size s if it is computed by a circuit C
where s is the sum of the size of C and the bit-length of n.

The ring of cyclotomic integers is equipped with a norm N(α) ∈ Z having the
following properties.

Proposition 10. Let α be a cyclotomic integer with a description of size s. Then

|N(α)| ≤ 22
2s
.

Proposition 11. Let p ∈ Z be a prime such that Fp contains a primitive n-th root of unity ωn.
Given g(x) ∈ Z[x], denoting by ḡ ∈ Fp[x] the reduction of g modulo p, we have:

1. if g(ζn) = 0 then ḡ(ωn) = 0, and
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2. if ḡ(ωn) = 0 then p | N(g(ζn)).

Proposition 11 suggests a natural test for CIT: evaluate the circuit in a finite
field Fp that contains a primitive n-th root of unity. Since the multiplicative group
F∗
p is cyclic, it is clear that F∗

p contains a primitive n-th root of unity just in case

n | (p− 1), i.e., p ≡ 1 mod n.

Using good bounds on the density of primes in arithmetic progressions under GRH
(see, e.g. [DM13, Chapter 20, page 125]), we can obtain the following result.

Proposition 12. Let α be a non-zero cyclotomic integer whose description has size at most s.
Suppose that p is chosen uniformly at random from

{q ∈ N : q ≤ 25s and q ≡ 1 mod n}.

Assuming GRH,

1. p is prime with probability at least 1
6s , and

2. given that p is prime, the probability that it divides N(α) is at most 2−s.

Altogether these considerations enable to show that the algorithm of Figure 2.6
places CIT in BPP. Without GRH, known bounds on the density of primes in
arithmetic progressions are not quite as good (see [IK04, Corollary 18.8]), and in
Proposition 12 we would only obtain the existence of a suitable prime. Then by guess-
ing instead of randomising, our problem can be placed in coNP instead of BPP.

2.2 Perspective: Could PIT be EXP-Complete?

If, in this chapter, we have seen variants and restrictions of PIT, that is because
designing an efficient deterministic algorithm for the original PIT remains elusive.
The situation is actually so dramatic that we cannot rule out, for the moment, that
PIT might be surprisingly powerful:

Open question 3. Could PIT be EXP-complete?

It could even be NEXP-complete for polynomial-time Turing reductions, that
is,

PPIT = NEXP?

Of course this possibility seems incredible sincemost believe that the usual algorithm
for PIT will be derandomised some day and that actually PIT ∈ P…
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Cyclotomic Identity Testing

Input: an algebraic circuit C and an integer n, written in binary, of com-
bined size s.

Output: whether g(ζn) = 0 for the polynomial g(x) computed by C.

1: Pick p uniformly at random from

{q ∈ N : q ≤ 25s, q prime, and q ≡ 1 mod n}.

2: Pick h uniformly at random from

{a : a ∈ F∗
p ,

∧
2≤q<10 log(p−1)

q|p−1

a
p−1
q 6= 1}.

3: Set ωn := h
p−1
n ∈ F∗

p .

4: Output ‘Zero’ if ḡ(ωn) = 0 where ḡ is the reduction of g modulo p;
otherwise output ‘Non-Zero’.

Figure 2.6: Algorithm for the CIT problem

Local Reductions

However, Question 3 seems out of reach for the moment. What we shall propose
here is a weaker version together with some ideas to settle it. We must first explain
what local reductions are [PY86].

Definition 22. A local reduction is a reduction that is computable in polylogarithmic time.
More precisely, a problem A locally reduces to a problem B, written A ≤log B, if there exists

a function f computable in polynomial time which, on input i (written in binary, and thus of
logarithmic size compared to x) and with oracle access to x, outputs the i-th bit yi of y such that

x ∈ A ⇐⇒ y ∈ B.

Of course, local reductions are less powerful than usual polynomial-time (many-
one) reductions, thus it is harder to be complete under ≤log and giving a negative
answer to the following question must be easier (or rather less hard, let’s say) than
to Question 3.

Open question 4. Could PIT be EXP-complete for local reductions?
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Note that most NP-complete problems remain complete under local reductions
(see [PY86]), showing that local reductions are actually not so weak. This explains
why Question 4 remains relevant. Still, that PIT is so powerful seems completely
impossible, and yet this question remains open. Before sketching some ideas, we
present an alternative framework which might be easier to grasp.

Succinct Problems

We say that a Boolean circuit C of size s represents a word x of size n (where s << n ≤
2s) if for all i ≤ n given in binary, C(i) = xi (that is, C(i) computes the i-th bit of x).
Note that C can be exponentially smaller than x. For a problem A, its succinct version
succA is the following problem:

• input: a Boolean circuit C representing a word x;

• question: does x belong to A?

We can think of C as a “compressed” representation of x. Since the input can be
exponentially smaller, succAmight be exponentially more difficult. However, only a
negligible fraction of the initial inputs x can be encoded that way of course, therefore
succA will be difficult only if some hard instances are indeed compressible. It is
thus rather surprising that most NP-complete problems see their succinct version
become NEXP-complete…

Maybe the link with local reductions is clear now: succinct problems work on
inputs that are exponentially “compressed”, and local reductions work in polylog-
arithmic time. Thus, on the “uncompressed” input, the local reduction will work
in polynomial time. This observation is summarised by the following proposition
(see [PY86]).

Proposition 13. If A isNP-complete under local reductions, then succA isNEXP-complete
(under usual, polynomial-time many-one reductions).

Similarly, if A is EXP-complete for local reductions, then succA is EEXP-complete (for
usual, polynomial-time many-one reductions). Here, EEXP is double-exponential time, that is,

EEXP = DTIME(22
nO(1)

).

For the problem A we will consider PIT, or rather IIT which is equivalent as we
saw in Section 2.1.1. Thus succPIT is the following problem:

• input: a Boolean circuit C of size s representing an arithmetic circuit D of size
≤ 2s computing an integer N ∈ Z;

• question: N = 0?
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Since our goal is to give a negative answer to Question 4, thanks to Proposi-
tion 13 we can rephrase it in terms of the succinct version of PIT.

Goal: prove that succPIT is not EEXP-complete.

We shall see below the interest of working with succPIT instead of PIT.

Some Ideas

Here we only sketch informally ideas that might contribute to settle Question 4.
For a contradiction, suppose succPIT is EEXP-complete. Let t(n) = 22n

o(1)
be

a sufficiently large function (to be fixed later). By the time hierarchy theorem,
succPIT then cannot have an algorithm working in time t(n)O(1). In particular,
if a1, . . . , ak ∈ N, k ≤ t(n), are prime numbers computable in time t(n), then the
following algorithm for succPIT:

• compute a1, . . . , ak

• accept iff D ≡ 0 mod ai for all i

does not correctly decide succPIT since it works in time t(n)O(1). Hence there must
exist infinitely many inputs C (call n their size) representing arithmetic circuits D (of
size ≤ 2n) such that D 6= 0 but D ≡ 0 mod ai for all i. In other words,

D = λ
∏
i
ai. (⋆)

Let us ponder this situation: a product of t(n) = 22n
o(1)

“arbitrary” integers can be
computed by an arithmetic circuit of size≤ 2n having a description C of size n. This
means that quasi-exponential size products are easy to compute, even by circuits
having a logarithmic description. The problem is that we only compute a multiple
of
∏

ai and we do not control the factor λ in Equation (⋆).
Pretend for a moment that λ = 1 in Equation (⋆), that is, D computes

∏
ai

exactly. This is not a reasonable assumption but it enables us to show the machinery
we can develop.

Fix an encoding of Boolean formulas ϕ into prime integers pϕ, and consider the
encoding pi of the i-th formula ϕ of size log t(n) that is satisfiable. Then take ai = pi,
and the arithmetic circuit D =

∏
ai of size 2n having a description C of size n. The

following algorithm with advice C of size n, working in time 2O(n) on input ϕ of size
log t(n):

accept iff D ≡ 0 mod pϕ
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accepts exactly those formulas ϕ of size log t(n) that are satisfiable. In other words,

SAT ∈ DTIME(2O(t
(−1)(2n)))/t(−1)(2n).

Here is the place where we need that D has a logarithmic description, and hence
where it is useful to consider succPIT instead of PIT:

Lemma 6 (folklore). NP ⊂ DTIME(2f(n))/f(n) implies NP ⊆ DTIME(2f(n)).

Thanks to this lemma we get:

NP ⊆ DTIME(2O(t
(−1)(2n))).

In particular, since PIT ∈ coRP ⊆ coNP, we have

PIT ∈ DTIME(2O(t
(−1)(2n)))

and thus
succPIT ∈ DTIME(2O(t

(−1)(22
n
))).

For t sufficiently large, this is a contradiction with the assumption that succPIT is
EEXP-complete because

2O(t
(−1)(22

n
)) = 22

no(1)
.

Obviously, this attempts fails to work since the factor λ in Equation (⋆) has no
reason to be 1. Still, along the same lines we can show, for example, that SPSAT is
not EEXP-complete, where SPSAT is the following problem:

• input: a Boolean circuit C of size s representing an arithmetic circuit D of size
≤ 2s computing an integer N ∈ Z;

• question: is it true that∀ϕ ∈ SAT=log t(n),N ≡ 0 mod pϕ, and ∃ψ 6∈ SAT=log t(n)

such that |ψ| ≤ 2n and N ≡ 0 mod pψ?

Can we push further and generalise the ideas above to succPIT?
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