
Optimal Hierarchical Decompositions
for Congestion Minimization in Networks

Harald Räcke∗
Department of Computer Science

University of Warwick
H.Raecke@warwick.ac.uk

ABSTRACT
Hierarchical graph decompositions play an important role
in the design of approximation and online algorithms for
graph problems. This is mainly due to the fact that the
results concerning the approximation of metric spaces by tree
metrics (e.g. [10, 11, 14, 16]) depend on hierarchical graph
decompositions. In this line of work a probability distribution
over tree graphs is constructed from a given input graph,
in such a way that the tree distances closely resemble the
distances in the original graph. This allows it, to solve many
problems with a distance-based cost function on trees, and
then transfer the tree solution to general undirected graphs
with only a logarithmic loss in the performance guarantee.
The results about oblivious routing [30, 22] in general

undirected graphs are based on hierarchical decompositions
of a different type in the sense that they are aiming to
approximate the bottlenecks in the network (instead of the
point-to-point distances). We call such decompositions cut-
based decompositions. It has been shown that they also
can be used to design approximation and online algorithms
for a wide variety of different problems, but at the current
state of the art the performance guarantee goes down by an
O(log2 n log logn)-factor when making the transition from
tree networks to general graphs.
In this paper we show how to construct cut-based decompo-

sitions that only result in a logarithmic loss in performance,
which is asymptotically optimal. Remarkably, one major
ingredient of our proof is a distance-based decomposition
scheme due to Fakcharoenphol, Rao and Talwar [16]. This
shows an interesting relationship between these seemingly
different decomposition techniques.
The main applications of the new decomposition are an

optimal O(logn)-competitive algorithm for oblivious routing
in general undirected graphs, and an O(logn)-approximation
for Minimum Bisection, which improves the O(log1.5 n) ap-
proximation by Feige and Krauthgamer [17].
∗The author acknowledges the support of DIMAP (the Cen-
tre for Discrete Mathematics and its Applications)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Routing and
layout

General Terms
Theory, Algorithms

Keywords
Oblivious Routing, Approximating Metrics by Tree Metrics,
Hierarchical Decompositions

1. INTRODUCTION
A hierarchical decomposition of a graph is a recursive parti-
tioning of the node set into smaller and smaller pieces until
at the lowest level of the hierarchy individual pieces only
contain single vertices. Such a decomposition is naturally
associated with a tree network (the decomposition tree) that
reflects this partitioning process and in which the leaf nodes
correspond to nodes of the original graph.
In recent years, these types of decompositions have be-

come a major tool for the development of approximation
and online algorithms for graph problems, as they allow to
approximate arbitrary undirected graphs by tree networks.
The most prominent examples for this are the hierarchical
decompositions that lie at the heart of the results concern-
ing the probabilistic approximation of metric spaces by tree
metrics.
In this line of work [10, 11, 14, 16] which was initiated

by Bartal [10] the node set of a graph equipped with the
shortest path metric is given, and it is shown how to compute
a probabilistic distribution over hierarchical decompositions
such that the leaf-to-leaf distances in the corresponding
decomposition trees closely resemble the distances in the
original graph. More formally, the distance between two
leaf nodes in a decomposition tree is always larger than the
distance between the corresponding vertices in the graph;
and, conversely, the distance between two graph nodes is
only a factor 1/f smaller (for some f ≥ 1) than the expected
distance between the corresponding leaf nodes when choosing
a decomposition tree at random.
This result is very powerful as it allows for many problems

to first solve the tree instance of the problem and then to
transfer this solution to the original graph while paying only
a factor f in the performance guarantee. This paradigm has
been successfully used for problems like e.g. Group Steiner

255

Tree, Metric Labeling, Buy-at-Bulk Network Design, and
Vehicle Routing. The original result by Bartal [10] provided
a factor f = O(log2 n) which was subsequently improved by
him in [11] to f = O(logn log logn), and finally, Fakcharoen-
phol, Rao and Talwar showed a factor of f = O(logn) which
is asymptotically tight.
Naturally, these techniques only work if the cost-function

that has to be optimized is distance-related or, more precisely,
is linear in the set of point-to-point distances. We will
refer to these types of decompositions as distance-based
decompositions in the following.
Räcke [30] introduced a decomposition that aims at con-

structing a tree that does not approximate point-to-point
distances in the input graph (like the Bartal-technique de-
scribed above), but instead approximates the cut structure
of the graph in the following sense: Given a concurrent
multicommodity flow problem (CMCF-problem1) in G, the
optimum solution of the corresponding flow problem in a
decomposition tree has a lower congestion; and, conversely,
given a CMCF-problem in a decomposition tree the corre-
sponding problem in G can be solved with a congestion that
is only a factor f larger.2 Following the same paradigm as
above, i.e., solving problems on trees and then transferring
the solution to general networks gives algorithms for e.g.
Oblivious Routing [30], Simultaneous Source Location [2],
Online Multicut [1] and k-multicut [21]. The original factor
for this decomposition technique was f = O(log3 n), which
was later improved by Harrelson, Hildrum and Rao [22] to
f = O(log2 n log logn).
In this paper we show how to improve the guarantee for

the latter type of hierarchical decompositions, which we call
cut-based decompositions, from a factor O(log2 n log logn)
to O(logn). Then we show, among other applications, that
this gives an oblivious routing algorithm with competitive
ratio O(logn), and an approximation algorithm for Minimum
Bisection with approximation guarantee O(logn). One main
difference to the previous work by Harrelson et al. [22] is
that instead of one decomposition tree, we compute a convex
combination of decomposition trees, as it is the case for the
distance-based decomposition schemes (FRT, Bartal). In
fact, the FRT-decomposition is a major ingredient used in
our proof, which shows that both types of decompositions,
distance-based decompositions and cut-based decompositions,
are closely related.

1.1 Related Work
A main motivation for finding good cut-based decomposi-
tions for general graphs is the problem of obliviously routing
traffic in a network while minimizing the congestion, i.e., the
maximum load of a network link. The problem is to set up
a unit flow for each source-target pair (s, t) ∈ V × V that
determines how demand between s and t is routed in the
network. This unit flow is pre-specified without knowing
the actual demands. When a demand vector ~d is given that
1A CMCF-problem in a graph G = (V,E) is defined by a
demand vector ~d, where for a node pair (s, t) ∈ V × V , dst
denotes the demand that has to be shipped between s and
t. The goal is to route all demand in the network G via a
multicommodity flow while minimizing the congestion, which
is the maximum over all edges of the flow along the edge
divided by the bandwidth of the edge.
2Additionally, it is shown how to easily transfer a solution
from the decomposition tree to the graph G.

specifies for each pair of nodes the amount of traffic to be
sent, the demand-vector is routed by simply scaling the unit
flow between a pair (s, t) by the corresponding demand dst
between the two nodes. This basically means that traffic is
routed along pre-computed path and that no path-selection
is done dynamically. This can be implemented very effi-
ciently even in a distributed environment, and is the main
motivation for considering such routing schemes.
The congestion Cobl(G, ~d) that is obtained by the oblivious

routing, is then compared to the optimal possible congestion
Copt(G, ~d) that can be obtained for demand vector ~d in G.
The competitive ratio of the oblivious routing scheme is
defined as max~d{Cobl(G,~d)/Copt(G,~d)}.
Räcke [30] gave the first oblivious routing scheme with

a polylogarithmic competitive ratio (O(log3 n)) in general
networks using a hierarchical decomposition technique. How-
ever, the result was non-constructive in the sense that only
an exponential time algorithm was given to construct the
hierarchy. This problem was addressed by Azar et al. [9]
(see also [3]) who gave a polynomial time algorithm to con-
struct an optimal oblivious routing scheme for a given graph
without using a hierarchical decomposition. Polynomial time
algorithms for constructing the hierarchical decomposition
were independently given by Bienkowski et al. [13] and Har-
relson et al. [22]. Whereas the first result shows a slightly
weaker competitive ratio for the constructed hierarchy than
the result in [30], the result by Harrelson et al. even im-
proved the competitive ratio to O(log2 n log logn), which is
currently the best known bound. In this paper we improve
the bound to O(logn) which is asymptotically optimal due
to a lower bound of O(logn) on the grid ([27, 12]).
The other main motivation for our result is the Minimum

Bisection problem that asks to partition the vertex set of
a given graph into equal sized parts such that the num-
ber of edges between both parts is minimized. Feige and
Krauthgamer [17] gave the first polylogarithmic approxi-
mation algorithm3 for this problem with an approximation
guarantee of O(log2 n), which later improved to O(log1.5 n)
because of the improved sparsest cut algorithm of Arora et
al. [5]. Our results imply an approximation guarantee of
O(logn) for this problem.

1.2 Notations and Definitions
We model the network as a complete weighted undirected
graph G with node set V . We use n to denote the cardinality
of V , i.e., |V | = n. Network links are represented via a weight
function c : V × V → R+

0 that for a pair of nodes describes
the link-capacity between these nodes. If c(u, v) = 0 for two
nodes u and v, then there is no link between these nodes in
the physical network. Note that the graph G is undirected
which means that we assume c(u, v) = c(v, u) for any two
nodes u, v ∈ V .

Decomposition Trees.
A decomposition tree for the graph G is a rooted tree T =
(Vt, Et) whose leaf nodes correspond to nodes in G, i.e., there
is a one-to-one relation between nodes in G and leaf nodes in
T . Whenever we use the concept of a decomposition tree for

3Interestingly, their algorithm is also based on a hierarchical
decomposition of the graph but it does not seem to fit into
a general framework which would make it applicable to a
wider variety of problems.

256

a graph G we implicitely assume that we are also given an
embedding of T into G. This means there is a node mapping
function mV : Vt → V that maps tree nodes to nodes in
the graph, and because of the property of a decomposition
tree this mapping function induces a bĳection between leaf
nodes of T and nodes in G. We are also given a function
mE : Et → E∗ that maps an edge et = (ut, vt) of T to a
path Puv between the corresponding end-points u = mV (ut)
and v = mV (vt) in G. For a decomposition tree T we
also introduce functions m′V : V → Vt and m′E : E → E∗t
responsible for mapping from G to T . The function m′V
outputs for a node v ∈ V the leaf node in T corresponding
to v, and the function m′E gives for an edge e = (u, v) ∈ E
the (unique) shortest path in T between m′V (u) and m′V (v).

Multicommodity Flows.
A multicommodity flow in a graph with n nodes is given
by
(
n
2

)
flows — one flow for each unordered pair {u, v} of

nodes in G (a commodity), where for each node-pair {u, v}
we arbitrarily choose one of the nodes as the source and the
other as the target. When we consider a multicommodity
flow on a decomposition tree we assume that the commodities
are only formed by pairs of leaf nodes. For a multicommodity
flow fT on a decomposition tree we use m(fT) to denote
the multicommodity flow that is obtained by mapping fT
to G via the edge-mapping function mE . Formally, if an
edge carries flow f iT (et) for commodity i on a tree edge et,
then the graph edge e carries flow

∑
et∈Et:e∈mE(et)

f iT (et)
for commodity i. Similarly, we define for a flow f in G, m′(f)
as the flow in T obtained by mapping f to T .
Note that we can add multicommodity flows and scale

them, and that in particular we have m(α · fT + α′ · f ′T) =
α ·m(fT) + α′ ·m(f ′T).

The Minimum Communication Cost Tree Problem.
In the Minimum Communication Cost Tree Problem we
are given an undirected graph G = (V,E). Every edge
e ∈ E has an associated length `(e), and we use duv to
denote the resulting shortest path distance between two
nodes u, v ∈ V . Furthermore, we are given a requirement
function r : V × V → R+

0 that specifies an amount of traffic
that has to be sent between u and v. The goal is to route
the requirements in a tree-like fashion while minimizing the
total cost. Formally, the task is to construct a decomposition
tree T = (Vt, Et), that minimizes

cost(T) =
∑
(u,v)

dT (u, v) · r(u, v) ,

where dT (u, v) denotes the distance when connecting u and v
via the tree. This is defined as follows. We define the length
of a tree edge et = (ut, vt) as the length of the corresponding
path mE(et) in G. Then, the tree-distance dT (u, v) between
graph nodes u and v is given by the shortest path distance
between the corresponding leaf-nodes in T .
We can also write the above cost in a different way. A

tree edge et = (ut, vt) partitions the leaf nodes of the tree
and, hence, the nodes of the graph, into two disjoint sets Vut
and Vvt . Let r(et) :=

∑
u∈Vut ,v∈Vvt

r(u, v) denote the total
requirement that has to cross the corresponding cut. All this
traffic has to be forwarded via the path mE(et).
We define the load loadT (e) that is induced on an edge

e ∈ E by tree T (and its embedding) as

loadT (e) :=
∑

et∈Et:e∈mE(et)

r(et) ,

which is the total traffic that goes over e if the requirement
is routed via T along the chosen path system. With these
definitions we can write the cost of a decomposition tree for
a Minimum Communication Cost Tree instance as

cost(T) =
∑
e∈E

loadT (e) · `(e) .

We will use the following result about the Minimum Commu-
nication Cost Tree Problem which is due to Fakcharoenphol,
Rao and Talwar [16].

Theorem 1. Given an instance for the Minimum Com-
munication Cost Tree Problem, a solution with cost O(logn) ·∑

e
r(e) · `(e) can be computed in polynomial time.

1.3 Overview of Techniques
The proof technique used in this paper is very similar to
the technique used by Charikar et al. [14] for finding a
probabilistic embedding of a metric into a small number of
dominating tree metrics. In the following we give a rough
overview of both proofs.
Informally, the approach by Charikar et al. can be stated as

follows. You are given a graph with edge-lengths, and the goal
is to find an embedding into a probability distribution over
dominating trees such that for each pair of nodes the expected
stretch is small. They set up an instance of the MCCT-
problem where the length of the edges are the same as the
edge-lengths in the graph, and initially all requirements are
one. For this instance solve the MCCT-problem and compute
a tree T1 for which the average stretch is low. Inevitably,
some node-pairs will be stretched a lot by this tree. For the
next iteration you re-weight the requirements by increasing
it for pairs that experienced a large stretch in the first round,
and decreasing it for others. Repeating this process it can
be shown that you end up with a probability distribution of
trees such that for every node-pair the expected stretch is
small.

Our goal is to re-route the edges in the graph (map them
to paths that connect the corresponding end-points) so that
the collection of paths (one path for every edge) forms a
tree, and the load induced by this re-routing onto a graph
edge is not too large. For this we set up an MCCT-problem
where the requirement r(u, v) = c(u, v), and initially all edge-
lengths are one. We can use Theorem 1 to find a tree T1
(plus embedding) such that the average load of a graph edge
is small. Inevitably, some graph edges will experience a large
load. For the next iteration we re-weight the edge-lengths for
graph edges that experienced a large load in the first round,
and decrease it for others. Repeating this process it can be
shown that you end up with a probability distribution of
trees such that for every graph edge G the expected load is
small.
Glossing over a lot of details this means that the differ-

ence between the result by Charikar et al. [14] and ours is
mainly that we re-weight the edge-lengths instead of the
requirements. This gives cut-based decompositions instead
of the distance-based decompositions by Charikar et al. In
the following sections we make these ideas precise.

257

2. APPROXIMATING THE BOTTLENECKS
OF A GRAPH BY A TREE

In this problem we are given a graph G = (V,E) together
with a bandwidth function c : V × V → R+ that describes
the bandwidth of the edges in E with the convention that
c(u, v) = 0 iff (u, v) /∈ E. Given a decomposition tree T for
G we define the capacity c(ut, vt) of a tree edge et = (ut, vt)
as

c(ut, vt) :=
∑

u∈Vut ,v∈Vvt

c(u, v) ,

where Vut and Vvt denote the two partitions of V induced by
the cut corresponding to edge et. Given a multicommodity
flow in G we want to compare its congestion in G, to its
congestion in T .

Theorem 2. Suppose you are given a multicommodity
flow f in G with congestion CG. Then the flow m′(f) ob-
tained by mapping f to some decomposition tree T results in
a flow in T that has congestion CT ≤ CG.

Proof. Suppose an edge et = (ut, vt) in the tree has
congestion CT . All traffic that traverses this edge in T has
to traverse the cut in G between Vut and Vvt . The total
capacity of all edges over this cut is exactly equal to c(et).
Hence, one of these edges must have relative load at least
CT . This gives CT ≤ CG.

Given a decomposition tree together with an embedding of
this tree into the network G we can ask for the load that is
induced on a graph edge e by this embedding. We define the
load loadT (e) of an edge e as

loadT (e) :=
∑

et∈Et:e∈mE(et)

c(et) .

Note that this is the same as the load induced on an edge e
in the solution of the MCCT-problem when the requirements
are r(u, v) = c(u, v).
Let for an edge e, rloadT (e) := loadT (e)/c(e) denote the

relative load of e induced by decomposition tree T . We are
looking for a convex combination of decomposition trees such
that for every edge the expected relative load is small, i.e.,

minimize β := max
e∈E

{∑
i
λi rloadTi(e)

}
.

Claim 3. Suppose we are given a convex combination of
decomposition trees with maximum expected relative load
β, and suppose that we are given for each tree Ti a multi-
commodity flow fi that has congestion 1 in Ti. Then, the
multicommodity flow

∑
i
λimTi(fi) has congestion at most

β when mapped to G.
Proof. Fix a tree Ti. Routing the flow fi in the tree

generates congestion at most 1, which means that the amount
of traffic that is send along a tree edge et = (ut, vt) is at most
c(et). Hence, the total traffic that is induced on a graph-edge
e when mapping λifi to G is at most λi loadTi(e). Therefore,
the relative load induced on e when mapping all flows λifi
is at most

∑
i

loadTi (e)/c(e) =
∑

i
λi rloadTi(e) ≤ β.

The above two claims give, e.g., a routing algorithm that
solves a multicommodity flow problem with congestion at
most β times the optimum. Given a multicommodity flow
problem that can be routed with congestion Copt(G) in G,

simply compute the optimum solution for the correspond-
ing flow problem in each tree Ti (this is straightforward as
routing paths are unique in the tree). Then map the so-
lution from each tree Ti to the graph G and scale it by a
factor λi. This gives a solution in G with congestion at most
β ·maxi{Copt(Ti)} ≤ β · Copt(G).
In the following section we show how to obtain a convex

combination of decomposition trees for which β = O(logn).
This gives the following main theorem.

Theorem 4. For a graph G there exists a convex com-
bination of decomposition trees Ti defined by multipliers λi
with

∑
i
λi = 1 such that the following holds. Suppose we

are given for each tree Ti a multi-commodity flow fi that
has congestion at most C. Then mapping the flows fi to
G while scaling flow fi by λi results in a multicommodity
flow f :=

∑
i
λimTi(fi) in G that has congestion at most

O(logn).

2.1 Finding a Convex Combination of Trees
We can write the problem of deciding whether for a given
value β there exists a convex combination of decomposition
trees such that every edge has expected relative load at
most β as the problem of finding a point in the following
Polyhedron P (β) :

∀e ∈ E
∑

i
λi rloadTi(e) ≤ β∑

i
λi ≥ 1

∀i λi ≥ 0

(P (β))

The above is a mixed packing and covering problem (all en-
tries are positive). There exists methods ([31], [26], [29], [18],
[23]) for efficiently computing approximate solutions to such
problems. The general idea behind most of these methods
is to iteratively compute a maximum violated constraint in
the dual and to increase the primal variable corresponding
to this constraint. In the following we adapt the algorithm
by Young [31] to our problem.
First, we write the edge-constraints in matrix form. Let T

denote the set of all decomposition trees, and let M denote
an |E| × |T | matrix with MeT = rloadT (e). Then we can
write the edge-constraints from above asM ·~λ ≤ β ·~1. Define
for an |E|-dimensional vector ~x

lmax(~x) := ln
(∑

e
exe
)
≥ maxe{xe} .

We can view lmax(·) as a “smooth” function that approx-
imates the maximum function. Instead of showing the ex-
istence of a point in P (β) for some β = O(logn), we show
something stronger, namely we show that there are values
λi that fulfill

lmax(M~λ) ≤ β∑
i
λi ≥ 1

∀i λi ≥ 0

The key to this analysis is to understand by how much
lmax(Mλ) changes when we increase the multiplier λi for a
tree Ti. We follow the analysis of Young [31]. We first define

258

find_convex_combination()
for all i: λi := 0
while

∑
i
λi < 1 do

find a tree Ti with partiali(~λ) ≤ O(logn)
`i := maxe{rloadTi(e)}
δi := min{`i, 1−

∑
i
λi}

λi := λi + δi
return ~λ

Figure 1: The algorithm for finding a good convex combination of decomposition trees.

a function partial′e(~x) that gives the sensitivity of lmax when
changing the load on an edge e:

partial′e(~x) := ∂ lmax(~x)
∂xe

= exe∑
e
exe

.

Now, we define functions partiali(~λ) that measure the change
in lmax(M~λ) when changing multiplier λi:

partiali(~λ) := ∂ lmax(M~λ)
∂λi

=
∑
e

rloadTi(e) · partial′e(M~λ) .

When changing a vector ~x by adding a vector ~ε we can
estimate the change lmax(~x+ ~ε) − lmax(~x) via the partial
derivatives, i.e., we would expect that lmax(~x+~ε)−lmax(~x) ≈∑

e
εe · partial′e(~x) for small enough ~ε. The following lemma

by [31] makes this precise.

Lemma 5. For all ~x,~ε ≥ 0 with 0 ≤ εe ≤ 1,

lmax(~x+ ~ε) ≤ lmax(~x) + 2
∑
e

εe partial′e(~x) .

Lemma 6. For some decomposition tree Ti we use `i :=
maxe{rloadTi(e)} to denote the maximum load induced on a
link in G. Let ~δ = δi~ei with δi ≤ 1

`i
. Then,

lmax(M(~λ+ ~δ))

≤ lmax(M~λ) + 2
∑
e

(M~δ)e partial′e(M~λ)

= lmax(M~λ) + 2δi partiali(~λ) ,

since (M~δ)e = δi rloadTi(e) ≤ 1.

This means that if we have a tree Ti that has partiali(~λ) ≤ β,
then increasing the variable λi by δi ≤ 1/`i, causes

∑
i
λi

to increase by δi, while lmax(M~λ) only increases by 2δiβ.
Repeating this until

∑
i
λi is larger than 1, gives a set of

variables λi that fulfill the constraints in Polyhedron P (β).
The following lemma shows that we can always find a tree
with partiali(~λ) ≤ β for β = O(logn).

Lemma 7. For a vector ~λ of multipliers with a polynomial
number of non-zero entries we can efficiently compute a tree
Ti such that partiali(~λ) = O(logn).

Proof. For a tree Ti we have

partiali(~λ) =
∑
e

rloadTi(e)
e(M~λ)e∑
e
e(M~λ)e

=
∑
e

loadTi(e)
e(M~λ)e

c(e)
∑

e
e(M~λ)e

If we define `(e) := e(M~λ)e/c(e)
∑

e
e(M~λ)e to be the length

of an edge, then finding the tree Ti such that the above is
minimized is the Minimum Communication Cost Tree Prob-
lem where the requirements are r(u, v) = c(u, v). Applying
Theorem 1 gives a solution with total cost at most

O(logn)·
∑
e

r(e) · `(e)

≤ O(logn) ·
∑
e

c(e) · e(M~λ)e

c(e)
∑

e
e(M~λ)e

= O(logn) ,

as desired.

Hence, the algorithm given in Figure 1 finds a convex com-
bination of decomposition trees for which the maximum
average load of an edge is at most O(logn). It remains to
bound the number of iterations of this algorithm.

Lemma 8. The number of iterations is O(|E| logn).

Proof. Define a potential function
∑

e

∑
i
λi rloadTi(e)

that describes the total relative load that has been placed
on the edges so far. The potential function is bounded by
O(logn) · |E| as the relative load induced on an edge does
not exceed O(logn) in the end.
For an iteration of the algorithm let e′ denote the edge

that has the largest relative load for the chosen tree Ti. We
increase λi by 1/`i (except maybe for the last iteration).
Hence,

∑
i
λi rloadTi(e′) increases by 1, which in turn means

that the potential function increases by 1. This gives a bound
of O(|E| logn) on the number of iterations.

3. APPLICATIONS
In this section we apply our main theorem (Theorem 4) to
various network problems. All these problems either aim
at minimizing the congestion for a communication problem
or aim at finding a small cut in the graph. On the one
hand we improve the guarantees for various problems for
which the decomposition technique of Harrelson et al. [22]

259

currently provides the best bounds. This leads usually to an
improvement by a logn log logn factor. Let us note however
that simply replacing the decomposition of [22] with our
new decomposition is not possible for all problems. The
Simultaneous Source Location problem [2] e.g. has a bicriteria
solution that depends on the decomposition of Harrelson et
al., and the results in this paper don’t seem to give improved
bounds.
We also give improved guarantees for Minimum Bisection

and Online Multicast Routing which are problems where the
currently best known algorithms ([17] and [8]) do not depend
on the hierarchical decomposition of Harrelson et al.

Min Bisection.
The Minimum Bisection problem gets an input graph G with
an even number of vertices and asks for a partitioning of the
vertex set into two equal size sets B and W such that the
capacity of edges between these two sets is minimized. In
the following we call vertices in B black vertices and vertices
in W white vertices. Further, we use costG(B,W) to denote
the cost of the bisection (B,W).
In order to apply Theorem 4 we need to extend the defi-

nition of a bisection to decomposition trees. For a decom-
position tree Ti we define a leaf bisection to be a partition
of the leaf nodes of Ti into equal size sets Wi and Bi. We
define the cost costTi(Bi,Wi) of a leaf bisection of Ti as the
minimum capacity of edges that have to be removed in order
to disconnect Wi from Bi. The following lemma follows from
a straightforward dynamic programming algorithm.

Lemma 9. On a tree, a leaf bisection with minimum cost
can be computed in polynomial time.

Our algorithm for Minimum Bisection is as follows. First,
compute the convex combination of decomposition trees de-
fined in Theorem 4. Then compute a minimum leaf bisection
for each decomposition tree in the support. Each of these
leaf bisections also defines a bisection in G. Output the best
of these bisections.
In the following we argue that this algorithm gives an

O(logn)-approximation. Let (B,W) denote a bisection in
the graph G. Since each decomposition tree is a better
communication network (due to Theorem 2) it follows that
costTi(B,W) ≥ costG(B,W). To see this consider attaching
a super-source s to all nodes in B and a super-sink t to nodes
in W via infinite-capacity edges. In G we can then route a
single-commodity flow of value costG(B,W) between s and t
with congestion 1. This gives rise to a multi-commodity flow
where all commodities with non-zero flow have one end-point
in B and the other in W . Transferring this multicommodity
flow to Ti gives gives congestion at most 1 in Ti according
to Theorem 2. This however would not be possible if the
sets B and W could be separated by removing a set of
edges of total capacity strictly less than costG(B,W). Hence,
costTi(B,W) ≥ costG(B,W).
Let (B∗,W ∗) denote the optimum bisection in graph G

and let (B∗i ,W ∗i) denote the optimum bisection in tree Ti.
Assume for contradiction that none of the tree bisections
(B∗i ,W ∗i) is a β-approximation, where β = O(logn) is the
factor in Theorem 4. This means that ∀i : costTi(B∗,W ∗) ≥
costTi(B∗i ,W ∗i) ≥ costG(B∗i ,W ∗i) > β · costG(B∗,W ∗).
Hence, we can set up a demand-vector ~di for every tree

that routes demand between nodes in B∗ and W ∗ such that
the total routed demand is larger than β · costG(B∗,W ∗).

We can route the convex combination of these demands in
G with congestion at most β. However, this means that the
capacity of edges between B∗ and W ∗ must be larger than
costG(B∗,W ∗). This is a contradiction.

Oblivious Routing.
An oblivious routing algorithm sets up a unit flow for each
source-target pair (s, t) ∈ V ×V that determines how demand
between s and t is routed in the network. This unit flow is
pre-specified without knowing the actual demands. When a
demand vector ~d is given that specifies for each pair of nodes
the amount of traffic to be sent, the demand-vector is routed
by simply scaling the unit flow between a pair (s, t) by the
corresponding demand dst between the two nodes.
The convex combination of decomposition trees given in

Theorem 4 defines a unit flow for every source target pair,
by combining for a pair (u, v) the paths between u and v in
trees Ti where the path from Ti is weighted with λi. Given
a demand-vector that can be routed with congestion C in G,
routing it in a decomposition tree creates congestion less than
C in the tree. Mapping the flows from all decomposition trees
back, gives a flow in G that routes the demand-vector and
has congestion at most O(logn) due to Theorem 4. Hence,
the oblivious routing scheme has competitive ratio O(logn).
This improves on the result of Harrelson, Hildrum and

Rao [22] and gives a tight bound for oblivious routing in
general undirected graphs (see [27, 12] for the lower bound) .
It also matches the bound given by Aspnes et al. [6] for

adaptive routing algorithms. As the lower bound of Ω(logn)
in [27, 12] holds for adaptive algorithms this shows that on
worst-case networks adaptive algorithms cannot asymptoti-
cally outperform oblivious routing algorithms. It would be
interesting to analyze whether there exist networks where
adaptive algorithms are in fact asymptotically better than
oblivious routing schemes.

Sparsest Cut.
Given a cut C ⊂ V in the graph G and a demand vector ~d
the sparsity φ(C, ~d) of C is defined by

φ(C, ~d) := cap(C)∑
(x,y):{x,y}∩C=1 dxy

.

The sparsest cut problem is the problem of finding a cut with
minimum sparsity. Let e denote an edge of a decomposition
tree Ti. Then the load on e when routing d in Ti is 1/φ(Ce, ~d),
where Ce denotes the cut in G that corresponds to edge e. Let
emax denote the edge with highest load in all decomposition
trees with non-zero support (λi > 0), and let its load be Lmax.
Then Theorem 4 says that we can route d with congestion
O(logn)Lmax in G. This implies that the sparsest cut in G
has a sparsity larger than 1/(O(logn)Lmax), as the inverse
of the sparsity is a lower bound on the congestion that can
be obtained for a flow problem. However, Cemax is a cut
of sparsity 1/Lmax, which means that we have an O(logn)-
approximation to the sparsest cut problem. Of course, this
does not improve the approximation guarantee of sparsest
cut as there are better algorithms based on semidefinite
programming [5, 4, 15].

260

Max concurrent flow-sparsest cut ratio.
The above discussion also establishes a ratio of at most
O(logn) between the throughput that can be obtained for
a maximum concurrent flow problem, and the sparsest cut.
Again this is not new (see [24, 7, 25]) but it seems interesting
that this ratio can be obtained while only looking at a re-
stricted number of cuts. Only looking at the sparsest among
all edges/cuts of decomposition trees that are in the support
gives an upper bound on the throughput of the flow problem
that is within O(logn) of what can be achieved.

Multicast Routing.
In the multicast-routing problem a routing request consists
of a set of terminals instead of only two terminals as in
standard routing. The above discussion about oblivious
routing, sparsest cut, and maxflow mincut ratio also transfers
to this setting. We obtain an O(logn) competitive routing
algorithm for the online multicast routing problem. To the
best of our knowledge the currently best algorithm for this
problem is due to Awerbuch and Azar [8], and obtains a
competitive ratio of O(log2 n).
The existence of a maxflow mincut ratio of O(logn) for

this problem was shown in [28].

Multicut.
In [1] the authors show how to apply [22] to multicut prob-
lems. In the minimum multicut problem we are given a set
of source target pairs and the task is to remove an edge-
set with minimum capacity such that all source-target pairs
are separated. Let Copt(G) and Copt(Ti) denote the cost of
an optimum multicut in G and Ti, respectively. On trees
there is a maxflow-mincut relation for the multicut prob-
lem. Let for a multicut instance MCF(G) and MCF(Ti) the
maximum total flow that can be send between source tar-
get pairs in G and Ti, respectively. Garg et al. [20] have
shown that Copt(Ti) ≤ 2MCF(Ti) holds for tree networks
(MCF(G) ≤ Copt(G) holds for any network). Further, they
show how to obtain a 2-approximation for the problem on
trees. We can approximate the Minimum Multicut problem
by the following randomized algorithm:
• select a random tree Ti with Pr[Ti is chosen] = λi.

• compute an approximation to the minimum multicut
in Ti.

Let Cappr(Ti) denote the cost of the approximate solution in
tree Ti. The expected cost of the above algorithm is∑

i
λi costappr(Ti) ≤ 2

∑
i
λi costopt(Ti)

≤ 4
∑

i
λi MCF(Ti) .

Let ~di denote a demand vector for Ti that can be routed
with congestion one and ships MCF(Ti) of flow between
sources and targets. According to Theorem 4 the demand
vector 1

δ

∑
i
λi ~di can be routed in G with congestion one,

where δ = O(logn) denotes the factor in Theorem 4. This
means that δMCF(G) ≥

∑
i
λi MCF(Ti). Plugging this into

the above equation gives that the expected cost is bounded
by O(logn) · costopt(G). This means we get an O(logn)-
approximation to minimum multicut. This matches the best
approximation guarantees for minimum multicut ([19]). The
advantage of the tree technique is that it also works for the
following extensions of the multicut problem.

Minimum k-multicut.
In the k-multicut problem we are given a set of source target
pairs, and the task is to remove an edge-set of minimum
capacity that separates at least k of these pairs. Golovin et
al. [21] give an 8

3 + ε approximation on trees and use [22]
to obtain an O(log2 n log logn)-approximation for general
networks. Using the above randomized approach gives a
randomized algorithm that has expected cost only O(logn)
times the optimum.

Online Multicut.
Alon et al. [1] introduce an online version of the multicut
problem. In this version the source-target pairs arrive one by
one, and an online-algorithm has to remove edges separating
the pairs without knowing future pairs that will appear.
They demonstrate an O(h)-competitive algorithm for this
problem for trees of height h. Since, all decomposition trees
in the original decomposition [30] are of height O(logn) they
can use this to to obtain a randomized algorithm for the
Online Multicut Problem in general undirected graphs with
competitive ratio O(log3 n log logn).
If we want to improve on this result using the new decom-

position technique we need to show an upper bound on the
height of the decomposition tree. However, this is not true
in general as sometimes the solution to the MCCT problem
requires trees of large height. Albeit, it can be shown that if
the total capacity of edges is polynomially bounded (where
we scale the capacities such that the lowest capacity is one),
then the MCCT-problems we generate allow a tree-solution
with logarithmic height. This holds because of the following:
Consider an MCCT-instance where the total requirement is
bounded by a polynomial p(n) and the lowest requirement
is 1. Without loss of generality we can re-scale the distances
such that

∑
e
r(e)d(e) = 1. Then we know that edges of

length larger than 1 can be removed as they will not be
used. We can contract edges of length smaller than 1/(n2p(n)),
since adding them afterwards only increases the cost of a
given solution by 1/n (which in relative terms makes for a
very small factor). This is a problem instance for which
all distances are within a polynomial factor of each other.
Applying FRT to such an instance gives a decomposition
tree with logarithmic height.
This gives the following lemma.

Claim 10. There is an algorithm for the Online Multicut
Problem with competitive ratio O(log2 n) if edge-capacities
are polynomially bounded.

For the case that edge-capacities are not polynomially
bounded one can use the following standard technique. First,
partition all edges into classes such that the k-th class con-
tains Ek = {e ∈ E | nk ≤ c(e) ≤ nk+1}, k = 0, 1, 2 Then
we generate for each Ek a graph Gk, as follows. We take
the original graph G = (V,E); delete all edges for which
c(e) ≤ nk−2 and contract all edges for which c(e) ≥ nk+1.
For a demand pair (u, v) we define its threshold-capacity as
the maximum value c such that any cut between u and v
contains an edge of at least c. We then assign (u, v) to the
graph Gk such that c ∈ [nk, nk+1]. The following holds

• Every graph Gk has a polynomial ratio between mini-
mum and maximum capacity.

• If a pair assigned to graph Gk is separated in Gk, then
it is separated in the original graph if we additionally

261

remove all edges e with c(e) ≤ nk−2 from the graph.
Note that this only increases the cost for a cut by a
factor of 2.

This gives rise to the following algorithm for the Online
Multicut Problem. Given an input-pair, first determine the
graph Gk it is assigned to. Delete all edges with c(e) ≤ nk−2

and use the algorithm from Claim 10 to separate the pair in
the graph Gk. The algorithm is O(logn)-competitive since at
any point there are only a constant number of graphs Gk that
contain undeleted edges and have a node-pair assigned to
them. Furthermore, by Claim 10 we are O(logn)-competitive
in each Gk. Altogether we get the following lemma

Lemma 11. There is an algorithm for the Online Multicut
Problem with competitive ratio O(log2 n).

Dynamic Data Management.
In [27] Maggs et al. introduce a dynamic data management
problem where the goal is to minimize the congestion in the
network. They develop tree algorithms for this problem and
show how to use decomposition trees to obtain algorithm for
the mesh. Using the new decomposition technique provided
by Theorem 4 gives O(logn)-competitive algorithms for this
problem in general undirected graphs.

Acknowledgement
The author would like to thank Anupam Gupta and Chandra
Chekuri for useful discussions and suggestions for improving
a preliminary version of this paper.

4. REFERENCES
[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and

J. S. Naor. A general approach to online network
optimization problems. In Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 577–586, 2004.

[2] K. Andreev, C. Garrod, B. M. Maggs, and
A. Meyerson. Simultaneous source location. In
Proceedings of the 7th International Workshop on
Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 13–26, 2004.

[3] D. Applegate and E. Cohen. Making intra-domain
routing robust to changing and uncertain traffic
demands: Understanding fundamental tradeoffs. In
Proceedings of the ACM Symposium on
Communications Architectures & Protocols
(SIGCOMM), pages 313–324, 2003.

[4] S. Arora, J. Lee, and A. Naor. Euclidean distortion and
the sparsest cut. In Proceedings of the 37th ACM
Symposium on Theory of Computing (STOC), pages
553–562, 2005.

[5] S. Arora, S. Rao, and U. Vazirani. Expander flows,
geometric embeddings, and graph partitionings. In
Proceedings of the 36th ACM Symposium on Theory of
Computing (STOC), pages 222–231, 2004.

[6] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and
O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling.
Journal of the ACM, 44(3):486–504, 1997. Also in Proc.
25th STOC, 1993, pp. 623–631.

[7] Y. Aumann and Y. Rabani. An O(log k) approximate
min-cut max-flow theorem and approximation
algorithm. SIAM Journal on Computing, 27(1):291–301,
1998.

[8] B. Awerbuch and Y. Azar. Competitive multicast
routing. Wireless Networks, 1(1):107–114, 1995.

[9] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke.
Optimal oblivious routing in polynomial time. In
Proceedings of the 35th ACM Symposium on Theory of
Computing (STOC), pages 383–388, 2003.

[10] Y. Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In Proceedings
of the 37th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 184–193, 1996.

[11] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 30th ACM Symposium on
Theory of Computing (STOC), pages 161–168, 1998.

[12] Y. Bartal and S. Leonardi. On-line routing in
all-optical networks. Theoretical Computer Science,
221(1-2):19–39, 1999. Also in Proc. 24th ICALP, 1997,
pp. 516–526.

[13] M. Bienkowski, M. Korzeniowski, and H. Räcke. A
practical algorithm for constructing oblivious routing
schemes. In Proceedings of the 15th ACM Symposium
on Parallelism in Algorithms and Architectures
(SPAA), pages 24–33, 2003.

[14] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. A.
Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proceedings of the 39th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 379–388, 1998.

[15] S. Chawla, A. Gupta, and H. Räcke. An improved
approximation to sparsest cut. In Proceedings of the
16th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 102–111, 2005.

[16] J. Fakcharoenphol, S. B. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. In Proceedings of the 35th ACM Symposium on
Theory of Computing (STOC), pages 448–455, 2003.

[17] U. Feige and R. Krauthgamer. A polylogarithmic
approximation of the minimum bisection. SIAM Review,
48(1):99–130, 2006. Also in Proc. 41st FOCS, 2000, pp.
105–115 and in SICOMP 31:(4):1090–1118, 2002.

[18] N. Garg and J. Könemann. Faster and simpler
algorithms for multicommodity flow and other
fractional packing problems. In Proceedings of the 39th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 300–309, 1998.

[19] N. Garg, V. V. Vazirani, and M. Yannakakis.
Approximate max-flow min-(multi)cut theorems and
their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

[20] N. Garg, V. V. Vazirani, and M. Yannakakis.
Primal-dual approximation algorithms for integral flow
and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[21] D. Golovin, V. Nagarajan, and M. Singh.
Approximating the k-multicut problem. In Proceedings
of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 621–630, 2006.

[22] C. Harrelson, K. Hildrum, and S. B. Rao. A
polynomial-time tree decomposition to minimize
congestion. In Proceedings of the 15th ACM Symposium

262

on Parallelism in Algorithms and Architectures
(SPAA), pages 34–43, 2003.

[23] R. Khandekar. Lagrangian Relaxation based Algorithms
for Convex Programming Problems. PhD thesis, Indian
Institute of Technology Dehli, 2004.

[24] F. T. Leighton and S. B. Rao. An approximate
max-flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation
algorithms. In Proceedings of the 29th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 422–431, 1988.

[25] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995. Also
in Proc. 35th FOCS, 1994, pp. 577–591.

[26] M. Luby and N. Nisan. A parallel approximation
algorithm for positive linear programming. In
Proceedings of the 25th ACM Symposium on Theory of
Computing (STOC), pages 448–457, 1993.

[27] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Exploiting locality for networks of
limited bandwidth. In Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 284–293, 1997.

[28] V. Nagarajan and R. Ravi. Approximation algorithms
for requirement cut on graphs. In Proceedings of the 8th
International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX),
pages 209–220, 2005.

[29] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast
approximation algorithms for fractional packing and
covering problems. In Proceedings of the 32nd IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 495–504, 1991.

[30] H. Räcke. Minimizing congestion in general networks.
In Proceedings of the 43rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages
43–52, 2002.

[31] N. E. Young. Sequential and parallel algorithms for
mixed packing and covering. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 538–546, 2001.

263

	Introduction
	Related Work
	Notations and Definitions
	Overview of Techniques

	Approximating the Bottlenecks of a Graph by a Tree
	Finding a Convex Combination of Trees

	Applications
	References

