Cartesian Coherent Differential Categories

Thomas Ehrhard Aymeric Walch

IRIF

June 15, 2023

Plan

1) Introduction to differential λ -calculus

- 2 Differential categories and issues
- 3 Cartesian Coherent Differential Categories
- 4 Compatibility with the Cartesian product
- 5) What is coming next

The category **Vect** is not a CCC

Category Vect

Objects: \mathbb{R} vector spaces Morphisms: $Vect(E, F) := \{ linear maps E \to F \}$

Category Vect

Objects: \mathbb{R} vector spaces Morphisms: $Vect(E, F) := \{ linear maps E \to F \}$

- Vect is Cartesian : $E \& F := E \times F$
- Vect $(E, F) = E \multimap F$ is a \mathbb{R} vector space

Category Vect

Objects: \mathbb{R} vector spaces Morphisms: $Vect(E, F) := \{ linear maps E \to F \}$

- Vect is Cartesian : $E \& F := E \times F$
- Vect $(E, F) = E \multimap F$ is a \mathbb{R} vector space

 $\mathbf{Vect}(E \times F, G)$ $\mathbf{Vect}(E, F \multimap G))$

Category Vect

Objects: \mathbb{R} vector spaces Morphisms: $Vect(E, F) := \{ linear maps E \to F \}$

- Vect is Cartesian : $E \& F := E \times F$
- Vect $(E, F) = E \multimap F$ is a \mathbb{R} vector space

 $\mathbf{Vect}(E \times F, G) \simeq \{ \text{linear maps } E \times F \to G \}$ $\mathbf{Vect}(E, F \multimap G)) \simeq \{ \text{bilinear maps } E \times F \to G \}$

Category Vect

Objects: \mathbb{R} vector spaces Morphisms: $Vect(E, F) := \{ linear maps E \to F \}$

- Vect is Cartesian : $E \& F := E \times F$
- Vect $(E, F) = E \multimap F$ is a \mathbb{R} vector space

$$Vect(E \times F, G) \simeq \{ \text{linear maps } E \times F \to G \}$$
$$Vect(E, F \multimap G)) \simeq \{ \text{bilinear maps } E \times F \to G \}$$
$$\simeq Vect(E \otimes F, G)$$

Closure with regard to a tensor product \otimes

Refresher: linear logic

Logic of resources [Girard_1987]

- ► A → B : Consume exactly one resource A to produce one B (Linearity)
- $A \otimes B$: A and B at the same time (Bilinearity)
- ► A & B : Can choose between A or B (but not both) (Projections)
- ▶ !A: resource A duplicable and erasable.

Recovers the usual logic $A \Rightarrow B := !A \multimap B$.

Refresher: linear logic

Logic of resources [Girard_1987]

- ► A → B : Consume exactly one resource A to produce one B (Linearity)
- $A \otimes B$: A and B at the same time (Bilinearity)
- ► A & B : Can choose between A or B (but not both) (Projections)
- ▶ !A: resource A duplicable and erasable.

Recovers the usual logic $A \Rightarrow B := !A \multimap B$.

Models of linear logic

- \blacktriangleright Symmetric monoidal category ($\mathcal{L},\otimes)$ closed with regard to \otimes
- Cartesian product &.
- Comonad ! such that $!(A \& B) \simeq !A \otimes !B$
- ▶ Kleisli category: $\mathcal{L}_!$: $\mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ is a CCC

Finiteness spaces

Model of linear logic Fin [Ehrhard and Regnier 2003]:

- Objects: topological vector spaces
- Morphisms: continuous linear maps
- Fin₁(X, Y) := Fin(!X, Y): CCC of analytic functions

Finiteness spaces

Model of linear logic Fin [Ehrhard and Regnier 2003]:

- Objects: topological vector spaces
- Morphisms: continuous linear maps
- Fin₁(X, Y) := Fin(!X, Y): CCC of analytic functions

Analytic function

For example, if $f : \mathbb{R} \to \mathbb{R}$,

$$f(x+h)=\sum_{n=0}^{\infty}a_n(x)h^n$$

If $f: E \to F$

$$f(x+h) = \sum_{n=0}^{\infty} f_n(x)(\underbrace{h,\ldots,h}_{n \text{ times}})$$

If $f : \mathbb{R} \to \mathbb{R}$ is analytic then $f' : \mathbb{R} \to \mathbb{R}$ is analytic, so $f^{(n)} : \mathbb{R} \to \mathbb{R}$ is analytic and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \cdot h^n$$

If $f : \mathbb{R} \to \mathbb{R}$ is analytic then $f' : \mathbb{R} \to \mathbb{R}$ is analytic, so $f^{(n)} : \mathbb{R} \to \mathbb{R}$ is analytic and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \cdot h^n$$

If $f: E \to F$ is analytic then the derivative is analytic

$$f': E \rightarrow (E \multimap F)$$

 $f(x+h) \simeq f(x) + f'(x) \cdot h + o(h)$

If $f : \mathbb{R} \to \mathbb{R}$ is analytic then $f' : \mathbb{R} \to \mathbb{R}$ is analytic, so $f^{(n)} : \mathbb{R} \to \mathbb{R}$ is analytic and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \cdot h^n$$

If $f: E \to F$ is analytic then the derivative is analytic

$$f': E \to (E \multimap F)$$

$$f(x+h) \simeq f(x) + f'(x) \cdot h + o(h)$$
So $f^{(n)}: E \to (\underbrace{E \multimap \cdots \multimap E}_{n \text{ times}} \multimap F)$ is analytic and
$$f(x+h) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) \cdot (\underbrace{h, \dots, h}_{n \text{ times}})$$

If $f : \mathbb{R} \to \mathbb{R}$ is analytic then $f' : \mathbb{R} \to \mathbb{R}$ is analytic, so $f^{(n)} : \mathbb{R} \to \mathbb{R}$ is analytic and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \cdot h^n$$

If $f \in Fin(!E, F)$ then $f' \in Fin(!E, E \multimap F)$ $f(x+h) \simeq f(x) + f'(x) \cdot h + o(h)$ So $f^{(n)} \in Fin(!E, \underbrace{E \multimap \cdots \multimap E}_{n \text{ times}} \multimap F)$ and

$$f(x+h) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) \cdot (\underbrace{h, \dots, h}_{n \text{ times}})$$

Syntax side

Derivative of a A-term

$$\frac{\partial M}{\partial x} \cdot N$$

Substitute exactly one occurrence of x by N in M.

Taylor Development

$$(\lambda x.M)N \to \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$$

Resource calculus: performs Taylor expansion in everything at the same time.

Plan

2 Differential categories and issues

Cartesian Coherent Differential Categories

4 Compatibility with the Cartesian product

5) What is coming next

Differential Category [Blute, Cockett, and Seely 2006]

Differential : in a model \mathcal{L} of LL For $f \in \mathcal{L}(!X, Y)$

$$f' \in \mathcal{L}(!X \otimes X, Y) \simeq \mathcal{L}(!X, X \multimap Y)$$

+ axioms of differential calculus Example : $(f \otimes g)' = f' \otimes g + f \otimes g'$

Differential Category [Blute, Cockett, and Seely 2006]

Differential : in a model \mathcal{L} of LL For $f \in \mathcal{L}(!X, Y)$

$$f' \in \mathcal{L}(!X \otimes X, Y) \simeq \mathcal{L}(!X, X \multimap Y)$$

+ axioms of differential calculus Example : $(f \otimes g)' = f' \otimes g + f \otimes g'$

$\ensuremath{\mathcal{L}}$ must be additive

L(X, Y) is a commutative monoïd
0 ∘ g = 0 and (f₁ + f₂) ∘ g = f₁ ∘ g + f₂ ∘ g (left additive)
h ∘ 0 = 0 and h ∘ (f₁ + f₂) = h ∘ f₁ + h ∘ f₂ (additive)

Cartesian Differential Categories

Recall:
$$\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$$
 is a CCC

¹Blute, Cockett, and Seely 2006. ²Blute, Cockett, and Seely 2009.

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories

Cartesian Differential Categories

Recall:
$$\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$$
 is a CCC

- Adding compatibility with closure: models of resource calculus Bucciarelli, Ehrhard, and Manzonetto 2010
- Adding axioms for Taylor property (in a qualitative setting) Manzonetto 2012

Example: relation model

²Blute, Cockett, and Seely 2009.

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories

¹Blute, Cockett, and Seely 2006.

Additive is too much

```
Non-deterministic: true, false \in \mathcal{L}(1, 1 \oplus 1).
What is true + false ?
```

Additive is too much

```
Non-deterministic: true, false \in \mathcal{L}(1, 1 \oplus 1).
What is true + false ?
```

In syntax, sum is not that wild

If $(\lambda x.M)N$ is well typed and reduces to a variable: only one member of $\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$ is non zero.

Additive is too much

```
Non-deterministic: true, false \in \mathcal{L}(1, 1 \oplus 1).
What is true + false ?
```

In syntax, sum is not that wild

If $(\lambda x.M)N$ is well typed and reduces to a variable: only one member of $\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$ is non zero.

In models

Interesting models ${\cal L}$ of LL in which ${\cal L}_!$ is a category with analytic morphisms, with restricted addition

- Coherence spaces, non-uniform coherence spaces
- Probabilistic coherence spaces

In probabilistic coherence spaces

Probabilistic coherent spaces Pcoh: not additive

- Object N of natural numbers
- $\mu, \nu \in \mathsf{Pcoh}(1, N)$ are sub-probability distributions on \mathbb{N}
- ▶ $\mu + \nu$: measure on \mathbb{N} of mass ≤ 2
- $\mu + \nu \in \mathbf{Pcoh}(1, N)$ if their total mass is ≤ 1

In probabilistic coherence spaces

Probabilistic coherent spaces Pcoh: not additive

- Object N of natural numbers
- $\mu, \nu \in \mathsf{Pcoh}(1, N)$ are sub-probability distributions on \mathbb{N}
- ▶ $\mu + \nu$: measure on \mathbb{N} of mass ≤ 2

▶ $\mu + \nu \in \mathbf{Pcoh}(1, N)$ if their total mass is ≤ 1

Yet: ! in **Pcoh** is deeply analytic. Example: generating function. A (sub)probability distribution \mathbb{P} on \mathbb{N} is characterized by

$$t\in[0,1]\mapsto\sum_{n=0}^{\infty}\mathbb{P}\{n\}t^n$$

Coherent differentiation

Coherent differentiation (models)

Introduced in Ehrhard 2023, in models of LL. Differentiation is a distributive law between ! and a functor S that encodes summability.

Coherent differentiation

Coherent differentiation (models)

Introduced in Ehrhard 2023, in models of LL. Differentiation is a distributive law between ! and a functor S that encodes summability.

Coherent differentiation (syntax)

Coherent differential PCF Ehrhard 2022

- PCF with differential operator
- ► Coherent differentiation induces a model + subject reduction
- ► The relational model is adequate
- Reduction is deterministic (proof using adequacy and Pcoh)

Plan

3 Cartesian Coherent Differential Categories

5) What is coming next

Diagram of generality

³Blute, Cockett, and Seely 2006.
⁴Ehrhard 2023.
⁵Blute, Cockett, and Seely 2009.

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories

Diagram of generality

³Blute, Cockett, and Seely 2006.
 ⁴Ehrhard 2023.
 ⁵Blute, Cockett, and Seely 2009.

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories

Left summability structure (candidate)

Action on objects $\widetilde{D}X$: "object of summable elements"

- ▶ $\pi_0, \pi_1 \in C(\widetilde{\mathsf{D}}X, X)$ jointly monic
- $\sigma \in \mathcal{C}(\widetilde{\mathsf{D}}X, X)$ sum
- A morphism $0 \in \mathcal{C}(X, Y)$

Left summability structure (candidate)

Action on objects DX: "object of summable elements"

- ▶ $\pi_0, \pi_1 \in C(\widetilde{\mathsf{D}}X, X)$ jointly monic
- ▶ $\sigma \in C(\widetilde{\mathsf{D}}X, X)$ sum
- ▶ A morphism $0 \in C(X, Y)$

 $f_0, f_1 \in \mathcal{C}(X, Y)$ are summable if there is $\langle\!\langle f_0, f_1 \rangle\!\rangle \in \mathcal{C}(X, \widetilde{\mathsf{D}}Y)$ such that $\pi_i \circ \langle\!\langle f_0, f_1 \rangle\!\rangle = f_i$. Define

$$X \xrightarrow[f_0+f_1]{\langle f_0,f_1 \rangle} \widetilde{\mathsf{D}} X$$

Note: π_0, π_1, σ are not natural

Additivity

Compatibility with composition

If g_0 and g_1 are summable.

▶
$$0 \circ f = 0$$
 and $(g_0 + g_1) \circ f = g_0 \circ f + g_1 \circ f$ (left additive)

• $g \circ 0 = 0$ and $g \circ (f_0 + f_1) = g \circ f_0 + g \circ f_1$

Additivity

Compatibility with composition

If g_0 and g_1 are summable.

▶
$$0 \circ f = 0$$
 and $(g_0 + g_1) \circ f = g_0 \circ f + g_1 \circ f$ (left additive)

• $g \circ 0 = 0$ and $g \circ (f_0 + f_1) = g \circ f_0 + g \circ f_1$

Additivity

h additive:
$$h \circ 0 = 0$$
 and $h \circ (f_0 + f_1) = h \circ f_0 + h \circ f_1$

Left summability structure:

- π_0, π_1, σ are additive
- ► Axioms that endows C(X, Y) with the structure of a partially additive monoid, see Arbib and Manes 1980

Differentiation

An operator for differentiation Given $f \in C(X, Y)$, there is

$$\widetilde{\mathsf{D}}f: \quad \widetilde{\mathsf{D}}X \to \quad \widetilde{\mathsf{D}}Y \\ \langle \langle x, u \rangle \rangle \quad \mapsto \quad \langle \langle f(x), f'(x). u \rangle \rangle$$

Aka: $\pi_0 \circ \widetilde{\mathsf{D}} f = f \circ \pi_0$.

Differentiation

An operator for differentiation Given $f \in C(X, Y)$, there is

$$\widetilde{\mathsf{D}}f: \quad \widetilde{\mathsf{D}}X \to \quad \widetilde{\mathsf{D}}Y \\ \langle \langle x, u \rangle \rangle \quad \mapsto \quad \langle \langle f(x), f'(x). u \rangle \rangle$$

Aka: $\pi_0 \circ \widetilde{\mathsf{D}} f = f \circ \pi_0$.

Axioms of differentiation: very structural properties

- ▶ π_0, π_1 are linear (*h* linear if *h* additive and $\pi_1 \circ \widetilde{D}h = h \circ \pi_1$)
- σ , 0 are linear (0' = 0 and (f + g)' = f' + g')
- ► D is a functor (Chain rule)

Differentiation

An operator for differentiation Given $f \in C(X, Y)$, there is

$$\widetilde{\mathsf{D}}f: \quad \widetilde{\mathsf{D}}X \to \quad \widetilde{\mathsf{D}}Y \\ \langle \langle x, u \rangle \rangle \quad \mapsto \quad \langle \langle f(x), f'(x). u \rangle \rangle$$

Aka: $\pi_0 \circ \widetilde{\mathsf{D}} f = f \circ \pi_0$.

Axioms of differentiation: very structural properties

- ▶ π_0, π_1 are linear (*h* linear if *h* additive and $\pi_1 \circ Dh = h \circ \pi_1$)
- σ , 0 are linear (0' = 0 and (f + g)' = f' + g')
- D is a functor (Chain rule)
- ▶ D is a monad with unit ι_0 and sum θ (The differential is additive = Leibniz)
- ▶ c and I are natural (Schwarz + the differential is linear)

What are ι_0 , θ , c and I ?

$$\iota_{0} \circ x = \langle \langle x, 0 \rangle \rangle$$

$$\theta \circ \langle \langle \langle \langle x, u \rangle \rangle, \langle \langle v, w \rangle \rangle \rangle = \langle \langle x, u + v \rangle \rangle$$

$$c \circ \langle \langle \langle \langle x, u \rangle \rangle, \langle \langle v, w \rangle \rangle \rangle = \langle \langle \langle x, v \rangle \rangle, \langle \langle u, w \rangle \rangle \rangle$$

$$I \circ \langle \langle x, u \rangle = \langle \langle \langle x, 0 \rangle \rangle, \langle \langle 0, u \rangle \rangle \rangle$$

What are ι_0 , θ , c and I ?

$$\iota_{0} \circ x = \langle\!\langle x, 0 \rangle\!\rangle$$
$$\theta \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x, u + v \rangle\!\rangle$$
$$c \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle$$
$$I \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle$$

One can see $\widetilde{\mathsf{D}}^2 f \in \mathcal{C}(\widetilde{\mathsf{D}}^2 X, \widetilde{\mathsf{D}}^2 Y)$ as

$$\begin{split} \widetilde{\mathsf{D}}^2 f \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle \\ = \\ \langle\!\langle \langle\!\langle f(x) , f'(x) . u \rangle\!\rangle, \langle\!\langle f'(x) \cdot v , f^{(2)}(x) \cdot (u, v) + f'(x) \cdot w \rangle\!\rangle \rangle\!\rangle \end{split}$$

What are ι_0 , θ , c and I ?

$$\iota_{0} \circ x = \langle\!\langle x, 0 \rangle\!\rangle$$
$$\theta \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x, u + v \rangle\!\rangle$$
$$c \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle$$
$$I \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle$$

One can see $\widetilde{\mathsf{D}}^2 f \in \mathcal{C}(\widetilde{\mathsf{D}}^2 X, \widetilde{\mathsf{D}}^2 Y)$ as

$$\begin{split} \widetilde{\mathsf{D}}^2 f \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle \\ = \\ \langle\!\langle \langle\!\langle f(x) , f'(x) . u \rangle\!\rangle, \langle\!\langle f'(x) \cdot v , f^{(2)}(x) \cdot (u, v) + f'(x) \cdot w \rangle\!\rangle \rangle\!\rangle \end{split}$$

Formal version of the reasoning

The axioms rewrite as equational properties on the differential. Those equations on $\widetilde{D}X = X \& X$ give Cartesian Differential Categories.

Plan

- 2 Differential categories and issues
- Cartesian Coherent Differential Categories
- 4 Compatibility with the Cartesian product

5) What is coming next

Compatibility with Cartesian Product

Compatibility with the product

- Compatibility with sum: "the sum on pairs is the coordinate wise sum"
- Compatibility with differential: "the projections are linear"

 $\mathsf{c}_{\&}:\widetilde{\mathsf{D}}(X\&Y)\simeq\widetilde{\mathsf{D}}X\&\widetilde{\mathsf{D}}Y$

Compatibility with Cartesian Product

Compatibility with the product

- Compatibility with sum: "the sum on pairs is the coordinate wise sum"
- ► Compatibility with differential: "the projections are linear" $c_{\&}: \widetilde{D}(X \And Y) \simeq \widetilde{D}X \And \widetilde{D}Y$

Induce a strength

$$\Phi^{0} = \widetilde{\mathsf{D}} X_{0} \& X_{1} \xrightarrow{\mathsf{id} \& \iota_{0}} \widetilde{\mathsf{D}} X_{0} \& \widetilde{\mathsf{D}} X_{1} \xrightarrow{\mathsf{c}_{\&}^{-1}} \widetilde{\mathsf{D}} (X_{0} \& X_{1})$$

Partial derivative of $f \in C(X_0 \& X_1, Y)$:

$$\widetilde{\mathsf{D}}_0 f = \widetilde{\mathsf{D}} f \circ \Phi^0 \in \mathcal{C}(\widetilde{\mathsf{D}} X_0 \And X_1, \widetilde{\mathsf{D}} Y)$$

$$\langle \langle \langle x, u \rangle \rangle, y \rangle \mapsto (f \langle x, y \rangle, f' \langle x, y \rangle \cdot \langle \langle u, 0 \rangle \rangle)$$

Leibniz and Schwarz

Leibniz

In analysis :

$$f'(x,y)\cdot(u,v)=\partial_0f(x,y)\cdot u+\partial_1f(x,y)\cdot v$$

In Cartesian Coherent Differential Categories

$$\widetilde{\mathsf{D}}f\circ\mathsf{c}_{\&}^{-1}=\theta\circ\widetilde{\mathsf{D}}_{0}\widetilde{\mathsf{D}}_{1}f=\theta\circ\widetilde{\mathsf{D}}_{1}\widetilde{\mathsf{D}}_{0}f$$

Leibniz and Schwarz

Leibniz

In analysis :

$$f'(x,y)\cdot(u,v)=\partial_0f(x,y)\cdot u+\partial_1f(x,y)\cdot v$$

In Cartesian Coherent Differential Categories

$$\widetilde{\mathsf{D}} f \circ \mathsf{c}_{\&}^{-1} = \theta \circ \widetilde{\mathsf{D}}_{\mathsf{0}} \widetilde{\mathsf{D}}_{\mathsf{1}} f = \theta \circ \widetilde{\mathsf{D}}_{\mathsf{1}} \widetilde{\mathsf{D}}_{\mathsf{0}} f$$

Schwarz

In analysis

$$\partial_0 \partial_1 f = \partial_1 \partial_0 f$$

In Cartesian Coherent Differential Categories

$$\widetilde{\mathsf{D}}_0\widetilde{\mathsf{D}}_1f = \mathsf{c}\circ\widetilde{\mathsf{D}}_1\widetilde{\mathsf{D}}_0f$$

Multilinear map

n + 1-additive map $\varphi \in \mathcal{C}(X_0 \& \cdots \& X_n, Y) \text{ such that for any } i,$ $\varphi \circ (f_0 \& \cdots \& 0 \& \cdots \& f_n) = 0$ $\varphi \circ (f_0 \& \cdots \& h_0 + h_1 \& \cdots \& f_n) = \varphi \circ (f_0 \& \cdots \& h_0 \& \cdots \& f_n) +$ $\varphi \circ (f_0 \& \cdots \& h_1 \& \cdots \& f_n)$

Multilinear map

n + 1-additive map $\varphi \in \mathcal{C}(X_0 \& \cdots \& X_n, Y) \text{ such that for any } i,$ $\varphi \circ (f_0 \& \cdots \& 0 \& \cdots \& f_n) = 0$ $\varphi \circ (f_0 \& \cdots \& h_0 + h_1 \& \cdots \& f_n) = \varphi \circ (f_0 \& \cdots \& h_0 \& \cdots \& f_n) +$ $\varphi \circ (f_0 \& \cdots \& h_1 \& \cdots \& f_n)$

n + 1-linear map $\varphi \in \mathcal{C}(X_0 \& \cdots \& X_n, Y)$ that is n + 1-additive and such that $\pi_1 \circ \widetilde{\mathsf{D}}_i \varphi = \varphi \circ (\mathsf{id} \& \cdots \& \pi_1 \& \cdots \& \mathsf{id})$

Important notion for PCF semantics: succ, pred are linear, if, let are bilinear.

What we did so far

We introduced a first order coherent differential calculus, defined a semantic, and proved subject reduction.

⁶Blute, Cockett, and Seely 2006.
⁷Ehrhard 2023.
⁸Blute, Cockett, and Seely 2009.

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories

Plan

- 2 Differential categories and issues
- 3 Cartesian Coherent Differential Categories
- 4 Compatibility with the Cartesian product

5 What is coming next

Short term

Cartesian Closed Coherent Differential Categories

- Compatibility of differential with regard to closure
- Fixpoints

It should be a model of the coherent differential PCF.

Compatibility with closure

Compatibility with the closure:

- Compatibility with sum: "the sum of two functions is the point wise sum"
- Compatibility with the differential: "the evaluation is linear in its fuctionnal coordinate"

$$\widetilde{\mathsf{D}}(X \Rightarrow Y) \simeq X \Rightarrow \widetilde{\mathsf{D}}Y$$

Compatibility with closure

Compatibility with the closure:

- Compatibility with sum: "the sum of two functions is the point wise sum"
- Compatibility with the differential: "the evaluation is linear in its fuctionnal coordinate"

$$\widetilde{\mathsf{D}}(X \Rightarrow Y) \simeq X \Rightarrow \widetilde{\mathsf{D}}Y$$

Internal derivative

$$\widetilde{\mathsf{D}}^{\mathsf{int}} \in \mathcal{C}(X \Rightarrow Y, \widetilde{\mathsf{D}}X \Rightarrow \widetilde{\mathsf{D}}Y)$$
$$X \Rightarrow Y \& \widetilde{\mathsf{D}}X \xrightarrow{\Phi^1} \widetilde{\mathsf{D}}(X \Rightarrow Y \& X) \xrightarrow{\widetilde{\mathsf{D}}\mathsf{ev}} \widetilde{\mathsf{D}}Y$$

Interpreting coherent differential PCF

Adding fixpoint:

- Define $f \leq g$ if there is h such that f + h = g
- This is an order (subtleties with antisymmetry). Assume that it is an ω-cpo
- This should give back the partially additive monoids of Arbib and Manes 1980
- Ask the differential to be continuous.

The differential commutes with the fixpoint.

Long term: model of resource calculus

$$(\lambda x.M)N \to \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$$

Long term: model of resource calculus

$$(\lambda x.M)N \to \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$$

$$\llbracket (\lambda x.M)N \rrbracket = \sum_{n=0}^{\infty} \llbracket \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x] \rrbracket$$

Long term: model of resource calculus

$$(\lambda x.M)N \to \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x]$$

$$\underbrace{\mathbb{I}(\lambda x.M)N\mathbb{I}}_{\{n\}} = \sum_{n=0}^{\infty} \left[\frac{1}{n!} \left(\frac{\partial^n M}{\partial x^n} \cdot (N, \dots, N) \right) [0/x] \right]$$

In coherence spaces:

- ▶ Terms of type nat are interpreted by singletons or empty sets.
- Two sets are summable if and only if one is empty
- ► So only one of the approximant has a non-empty semantic! Ongoing work: Taylor functor

- Ehrhard, Thomas and Laurent Regnier (2003). "The differential lambda-calculus". In: <u>Theoretical Computer Science</u> 309.1, pp. 1–41. ISSN: 0304-3975. DOI: https://doi.org/10.1016/S0304-3975(03)00392-X. URL: https://www.sciencedirect.com/science/article/pii/S030439750300392X.
- Blute, R., Robin Cockett, and R. Seely (Dec. 2006). "Differential categories". In: <u>Mathematical Structures in Computer Science</u> 16, pp. 1049–1083. DOI: 10.1017/S0960129506005676.
- (Jan. 2009). "Cartesian differential categories". In: Theory and Applications of Categories 22, pp. 622–672.
 - Bucciarelli, Antonio, Thomas Ehrhard, and Giulio Manzonetto (2010). "Categorical Models for Simply Typed Resource Calculi". In: <u>Electronic Notes in Theoretical Computer Science</u> 265. Proceedings of the 26th Conference on the Mathematical Foundations of Programming Semantics (MFPS 2010), pp. 213-230. ISSN: 1571-0661. DOI: https://doi.org/10.1016/j.entcs.2010.08.013. URL: https://www.sciencedirect.com/science/article/pii/S1571066110000927.
- Manzonetto, Giulio (2012). "What is a categorical model of the differential and the resource λ-calculi?" In: Mathematical Structures in Computer Science 22.3, pp. 451–520. DOI: 10.1017/S0960129511000594.

Ehrhard, Thomas (2023). "Coherent differentiation". In: <u>Mathematical Structures in Computer Science</u>, pp. 1–52. DOI: 10.1017/S0960129523000129.

- (2022). <u>A coherent differential PCF</u>. DOI: 10.48550/ARXIV.2205.04109. URL: https://arxiv.org/abs/2205.04109.
- Arbib, Michael A and Ernest G Manes (1980). "Partially additive categories and flow-diagram semantics". In: Journal of Algebra 62.1, pp. 203-227. ISSN: 0021-8693. DOI: https://doi.org/10.1016/0021-8693(80)90212-4. URL: https://www.sciencedirect.com/science/article/pii/0021869380902124.