Coherent Taylor expansion as a bimonad Thomas Ehrhard, Aymeric Walch

Making differentiation functorial

In cartesian differential categories, differentiation is axiomatized as an operator $\frac{f: X \to Y}{Df: X \times X \to Y} \qquad Df(x, u) = f'(x) \cdot u$

The chain rule of differentiation corresponds to an equation on D.

 $D(g \circ f) = Dg \circ \langle f \circ \mathsf{p}_1, Df \rangle$ $(g \circ f)'(x) \cdot u = g'(f(x)) \cdot f'(x) \cdot u$

One of the main idea those last years: making this a functoriality equation. Let

 $f: X \to Y$ $Tf = \langle f \circ p_1, Df \rangle$ $\overline{\mathsf{T}f: X \times X \to Y \times Y} \qquad \overline{\mathsf{T}f(x, u)} = (f(x), f'(x) \cdot u)$

Differentiation in \mathcal{L}_{1}

. Define ι_0 , θ , c and I natural transformations in \mathcal{L} .

$$\begin{split} \iota_{0} \in \mathcal{L}(X, \mathsf{S}X) & \iota_{0} \circ x = \langle\!\langle x, 0 \rangle\!\rangle \\ \theta \in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}X) & \theta \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x, u + v \rangle\!\rangle \\ \mathsf{c} \in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}^{2}X) & \mathsf{c} \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle \\ \mathsf{l} \in \mathcal{L}(\mathsf{S}X, \mathsf{S}^{2}X) & \mathsf{l} \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle \end{split}$$

Then (S, ι_0, θ) is a monad, (S, σ, I) is a comonad, and $(S, \iota_0, \theta, \sigma, I, c)$ is a bimonad. Differentiation: functor $T : \mathcal{L}_{!} \to \mathcal{L}_{!}$ that **extends** S to $\mathcal{L}_{!}$ (chain rule).

> $Tf: !SX \rightarrow SY$ $\langle\!\langle x, u \rangle\!\rangle \mapsto \langle\!\langle f(x), f'(x). u \rangle\!\rangle$

Chain rule becomes equivalent to the equation $T(g \circ f) = Tg \circ Tf$.

Remarkable observation: other properties of differentiation become naturality equations. For example, let θ : $(X \times X) \times (X \times X) \rightarrow X \times X$

 $\theta(x, u, v, w) = (x, u + v)$ Then: $\theta \circ T^2 f = Tf \circ \theta \iff f'(x) \cdot (u + v) = f'(x) \cdot u + f'(x) \cdot v$

Coherent differentiation

Issue with addition

In (cartesian) differential categories: unrestricted sum operation $\sigma : X \times X \to X$.

- ► Math pov: objects are vector spaces/modules
- Computer science pov: morphisms are non deterministic computation

Main idea: take $TX \neq X \times X$ and restrain sum.

- ▶ If $TX = X \times X$: cartesian differential categories
- \blacktriangleright If TX is the tangent bundle of X : tangent categories
- \blacktriangleright If TX is a **left summability structure** : coherent differentiation

Coherent differentiation extends differentiation to deterministic models of LL: coherence spaces, probabilistic coherence spaces, etc.

Other properties of differentiation: naturality of the families above in $\mathcal{L}_{!}$. Example: Der $(\theta) \in \mathcal{L}_{!}(\mathsf{T}^{2}X, \mathsf{T}X)$ natural $\Leftrightarrow f'(x) \cdot (u+v) = f'(x) \cdot u + f'(x) \cdot v$

Differentiation as Distributive law

Everything boils down to a **distributive law**: a natural transformation ∂ : !S \Rightarrow S! with compatibility condition with regard to der, dig, ι_0 , θ , l, c, m².

Important observation

(T, Der (ι_0), Der (I)) is a monad, but (T, Der (σ), Der (I)) is **not** a comonad because Der (σ) is not natural.

Coherent Taylor expansion

The functor T performs a first order Taylor expansion. What if it could perform the whole Taylor expansion? Remarkably, this can be done with a very similar theory.

ω -summability structures

We introduce an infinitary counterpart of summability structures.

$$SX = \{\langle\!\langle x_i \rangle\!\rangle_{i=0}^{\infty} \mid \sum_{i=0}^{\infty} x_i \text{ is defined}\}$$

+some axioms on S; the hom-sets are **partially additive monoids**

A partial notion of summation

Let \mathcal{L} be a model of linear logic with 0-morphisms.

Summability structure in models of LL

Let S : $\mathcal{L} \to \mathcal{L}$ be a functor. Intuitively, SX = { $\langle \langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \rangle$ Assume that there exists the following natural transformations:

 $\blacktriangleright \pi_0, \pi_1 \in \mathcal{L}(\mathsf{S}X, X) \text{ jointly monic } \pi_i : \langle \langle x_0, x_1 \rangle \rangle \mapsto x_i$ ► Sum $\sigma \in \mathcal{L}(SX, X)$ $\sigma : \langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto x_0 + x_1$

 $f_0, f_1 \in \mathcal{L}(X, Y)$ are **summable** if :

It has a similar bimonad structure as before, and Taylor expansion is again a functor $T : \mathcal{L}_1 \to \mathcal{L}_1$ that extends S. Intuitively: if $f : \mathbb{R} \to \mathbb{R}$ is analytic we can write

$$f(\sum_{n=0}^{\infty} x_n \epsilon^n) = \sum_{n=0}^{\infty} f_n(x_0, \dots, x_n) \epsilon^n$$

where f_n can be computed by the Faà Di Bruno formula. Then Tf can be seen as

 $\mathsf{T} f \langle\!\langle x_i \rangle\!\rangle_{i=0}^{\infty} = \langle\!\langle f_n(x_0, \dots, x_n) \rangle\!\rangle_{n=0}^{\infty}$

The bimonad structure of T

We ask the same axioms as coherent differentiation, with an additional one that enforces the analyticity of maps: Der (σ) is natural in $\mathcal{L}_{!}$. T is now a **bimonad**!

Only **one** axiom is not about the bimonad T: the compatibility between ∂ and m².

The elementary theory

In models we know: $S = \mathbb{D} \multimap$ _____

- ▶ Coherent differentiation: $\mathbb{D} = (1 \times 1)$
- ► Coherent Taylor expansion: $\mathbb{D} = 1^{\mathbb{N}}$

This is similar to the notion of representability of the tangent functor found in tangent categories.

Theory of mates

 $\exists \langle \langle f_0, f_1 \rangle \rangle \in \mathcal{L}(X, SY) \text{ s.t. } \pi_i \circ \langle \langle f_0, f_1 \rangle \rangle = f_i$ $\langle\!\langle f_0, f_1 \rangle\!\rangle : x \mapsto \langle\!\langle f_0(x), f_1(x) \rangle\!\rangle$

+ some axioms on S: the hom-sets are finite **partially additive monoids**

Additivity and left additivity

► Left additivity: $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ Additivity: $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$

This summability structure on \mathcal{L} induces a **left summability structure** on $\mathcal{L}_{!}$ (similar, but there is no additivity).

This object has a bimonoid structure that relates to the bimonad structure of S. Furthermore, ∂ boils down to a !-colagebra structure on \mathbb{D} .

A syntax for coherent Taylor expansion

- ► Using coherent differentiation, Ehrhard introduced a deterministic PCF with both fixpoints and differentiation, and a straightforward probabilistic extension.
- ► This axiomatization of Taylor expansion suggests that this calculus can feature Taylor expansion.
- This calculus should be related to the computation of higher order derivatives in automated differentiation.