Cartesian Coherent Differential Categories Thomas Ehrhard, Aymeric Walch

Differential λ -calculus

Models of LL suggest the existence of a derivation operation on terms

Derivation If $\Gamma, x : A \vdash P : B$ and $\Gamma \vdash Q : A$ $\Gamma, x : A \vdash \frac{\partial P}{\partial x} \cdot Q : B$ substitutes in *P* one call of *x* by a call of *Q*. Taylor expansion

$$\mathcal{T}(P[Q/x]) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot (\underbrace{Q, \dots, Q}_{n \text{ times}}) \right) [0/x]$$

Structure associated to S

Linear case

Additive morphisms are a subcategory \mathcal{C}^{add} of \mathcal{C} . The map S on objects extends to an endofunctor on \mathcal{C}^{add} making $\pi_0, \pi_1, \sigma : S \Rightarrow Id$ natural.

 $\mathsf{S}f: \langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto \langle\!\langle f(x_0), f(x_1) \rangle\!\rangle$

Define ι_0 , θ , c and I natural transformations in \mathcal{C}^{add} .

 $\iota_0 \in \mathcal{C}^{\mathsf{add}}(X,\mathsf{S}X)$ $\iota_0 \circ \mathbf{x} = \langle\!\langle \mathbf{x}, \mathbf{0} \rangle\!\rangle$ $\theta \in \mathcal{C}^{\mathsf{add}}(\mathsf{S}^2X,\mathsf{S}X) \quad \theta \circ \langle\!\langle \langle\!\langle x,u \rangle\!\rangle, \langle\!\langle v,w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x,u+v \rangle\!\rangle$ $c \in C^{add}(S^2X, S^2X)$ $c \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle$ $\mathsf{I} \in \mathcal{C}^{\mathsf{add}}(\mathsf{S}X,\mathsf{S}^2X) \qquad \qquad \mathsf{I} \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle$

Term of rank n: part of computation that uses Q exactly n times.

Non-deterministic

 $\Gamma \vdash P : A \quad \Gamma \vdash Q : A$ $\Gamma \vdash P + Q : A$

This sum arises in the definition of $\frac{\partial P}{\partial x} \cdot Q$ (Leibniz rule)

Differentiation in categorical semantics

- ► In Linear Logic: differential categories
- ► In cartesian (closed) categories: cartesian differential categories

All models are (left) additive: hom-sets are commutative monoids and

- ► Left additivity: $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$
- Additivity (only in LL): $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$

We need an unrestricted sum. Operationally, this sum is non-determinism.

Coherent differentiation

Coherent differentiation extends differentiation to deterministic models of LL: coherence spaces, probabilistic coherence spaces, etc.

Then (S, ι_0, θ) is a monad, (S, σ, I) is a comonad, and $(S, \iota_0, \theta, \sigma, I, c)$ is a c-bimonad. Notice: S is **not** a functor on C

Differentiation as a functor T

Differentiation: functor T on C such that TX = SX.

 $Tf: SX \rightarrow SY$ $\langle\!\langle x, u \rangle\!\rangle \mapsto \langle\!\langle f(x), f'(x).u \rangle\!\rangle$

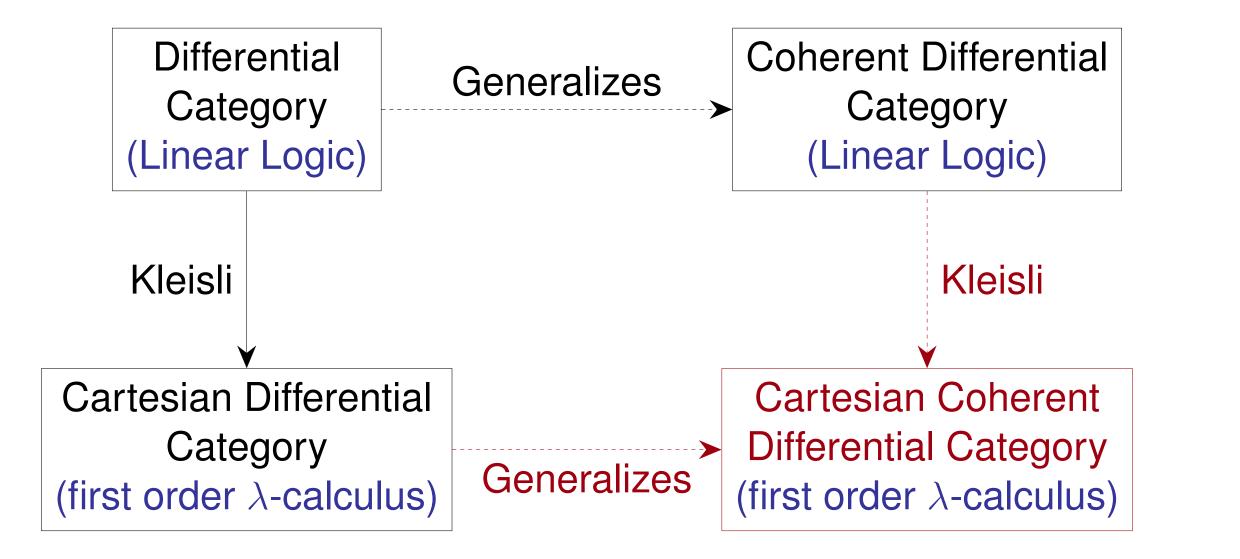
Axioms of differentiation: functoriality of T and naturality in C.

- ► Chain rule: T is a functor
- ► Leibniz: ι_0 : Id \Rightarrow T and θ : T² \Rightarrow T are natural in C
- Linearity of derivative: $I : T \Rightarrow T^2$ is natural in C
- ► Schwarz: $c : T^2 \Rightarrow T^2$ is natural in C.

 (T, ι_0, I) is a monad, but (T, σ, I) is not a comonad because σ is not natural.

Interaction with cartesian product

 $T(X \& Y) \simeq TX \& TY$ Strength associated to this structure ~> partial derivatives. if $f \in \mathcal{C}(X_1 \& X_2, Y)$, then $T_1 f \in \mathcal{C}(TX_1 \& X_2, TY)$



A partial notion of summation

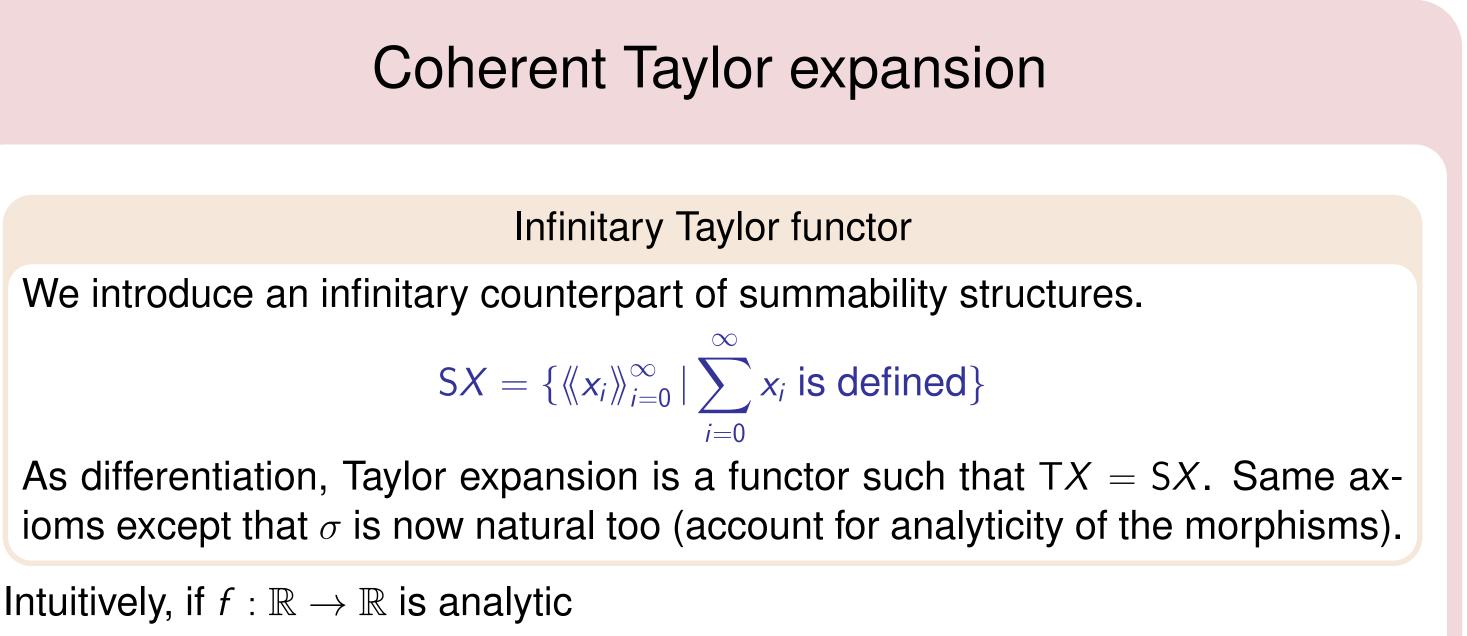
Let C be a category with 0-morphisms.

A structure for partial sum

S : **Obj** \rightarrow **Obj**. Intuitively, SX = { $\langle \langle x_0, x_1 \rangle \rangle | x_0 + x_1 \text{ is defined}$ } $\blacktriangleright \pi_0, \pi_1 \in \mathcal{C}(\mathsf{S}X, X) \text{ jointly monic } \pi_i : \langle \langle x_0, x_1 \rangle \rangle \mapsto x_i$

► Sum $\sigma \in C(SX, X)$ $\sigma : \langle \langle x_0, x_1 \rangle \mapsto x_0 + x_1$

The functor T performs a first order Taylor expansion. It should be possible to do something similar for all orders.



$$f(\sum_{n=0}^{\infty} x_n \epsilon^n) = \sum_{n=0}^{\infty} f_n(x_0, \dots, x_n) \epsilon^n$$

Where f_n can be computed by the Faà Di Bruno formula. Then Tf can be seen as

 $\mathsf{T} f \langle\!\langle x_i \rangle\!\rangle_{i=0}^{\infty} = \langle\!\langle f_n(x_0, \dots, x_n) \rangle\!\rangle_{i=0}^{\infty}$

 $f_0, f_1 \in \mathcal{C}(X, Y)$ are **summable** if :

 $\exists \langle \langle f_0, f_1 \rangle \rangle \in \mathcal{C}(X, SY) \text{ s.t. } \pi_i \circ \langle \langle f_0, f_1 \rangle \rangle = f_i$

 $\langle\!\langle f_0, f_1 \rangle\!\rangle : x \mapsto \langle\!\langle f_0(x), f_1(x) \rangle\!\rangle$

The additivity of π_0, π_1, σ and some axioms on S give to hom-sets the structure of a finite **partially additive monoid** and morphisms are all left additive.

When the sum is total

 $SX = X \& X \iff$ Cartesian Left Additive Category

A syntax for coherent Taylor expansion

- ► Using coherent differentiation, Ehrhard introduced a deterministic PCF with both fixpoints and differentiation, with a straightforward probabilistic extension.
- ► The recent discovery of a coherent Taylor expansion suggests that this calculus can feature the full Taylor expansion.

