
Coherent differentiation in models of
Linear Logic

Aymeric Walch, aymeric.walch@ens-lyon.fr
ENS de Lyon

M2IF

June, 2022

Under the supervision of Thomas Ehrhard

aymeric.walch@ens-lyon.fr

Proof theory is a field whose objects of study are the proof themselves. A fundamental concept of proof
theory is the Curry Howard isomorphism that relates programs with proof in three levels. The types of a
programming language relates to formulas. A program of type A → B relates to a proof of the formula
A ⇒ B. Finally, program execution (namely the β-reduction) relates to a notion of computation on proof
called the cut elimination. This observation introduced a deeply influential idea: proof theory is not only
about the provability of formulas, but also about the computational content of their proofs. Two proofs of
the same formula can relate deeply between each other, or conversely have nothing to do in common.
The issue is that computation is usually very hard to describe and study, as many operational properties

can interact between each other in a very subtle way. Thus designing a proof system (or a calculus)
usually comes with a lot of requirements, such as proving subject reduction (computation conserves typing),
normalization (computation terminates), confluence (different computational strategy converges to the same
result), etc. Denotational semantic is a field that arose in order to simplify those issues. The goal of this
field is to to describe what a program computes while being agnostic on how it computes, by giving some
objectM called a model and an interpretation J.K : {proofs/programs} →M invariant under computation.
People then noticed that those models should actually have the structure of categories, hence turning the
field of denotational semantic into the field of categorical semantic. This field found quite a lot of success, for
the reason mentioned above but also in more concrete setting: categorical semantic gives a way to describe
the “meaning” of a program, something that is quite crucial when one wants to prove that the program
behaves correctly.
Categorical semantic has another crucial application. Sometimes, some properties that are not captured

by the syntax might be shared between many different models. It might suggest some new syntactical
ideas that should be introduced to account for those. This is what happened when Girard [7] discovered
linear logic, a refinement of intuitionistic and classical logic in which proofs and morphisms are interpreted
through the lenses of linear algebra. This is also what happened when my supervisor Thomas Ehrhard [6]
built upon the ideas of linear logic and discovered that many models had a notion of “linear approximation”
akin to differentiation, hence leading to the development of differential linear logic. This is finally what
might be happening again with the very recent introduction of coherent differentiation also by Ehrhard [4].
He noticed that many models of linear logic were not models of differential linear logic, yet still admitted a
notion of differentiation, suggesting that differential linear logic could be improved.
The goal of this internship was to work in the development of this exciting new concept. Concretely, the

internship was split in three part of one month and a half each. The first part consisted in a (somewhat
long) appropriation of the basics of categorical semantic, of models of linear logic, of differential logic and
of coherent differentiation. The second part consisted in showing that coherent differentiation is indeed
a generalization of differential categories, a result that was somewhat expected but required some work.
Finally, the third part is too conceptual to explain for now and is hinted in Section 6.
I feel that categorical semantic is a field that is particularly inaccessible and hard to vulgarize. The issue

is not that this field is more complex or subtle than any other field. Rather, different notions tends to stack
up really quickly. Besides, this field is ultimately based on category theory, a theory that is well known
to be quite abstract and quite dividing between its adepts and its detractors. For this reason, there is
little hope to explain my work in the scope of a report that is supposed to assume that the reader has no
particular background in the field. So this report will mostly consists in an introduction. An introduction
to the field of categorical semantic in Section 1. An introduction to how categorical semantic lead to the
discovery of linear logic in Section 2. An introduction to how categorical semantic lead to the discovery of
differential linear logic in Section 3. And finally, an introduction to coherent differentiation in Section 4. If
I do my work correctly, then the reader should be able to understand what I worked on and for what reason
I worked on those objects. Then I wrap up the report with Section 5 that gives a taste of the methodology
I developed to show that coherent differentiation is a generalization of differentiation and with Section 6 as
an appetizer on what I discovered in the last part of the internship.

1 A (brief) introduction to categorical semantic
This introduction to categorical semantic is loosely inspired by this very enlightening paper from Melies
[12].

1

1.1 A small and non exhaustive reminder on proof systems
I will assume that the reader is somewhat familiar with the notion of proof system, and stick to a minimal
amount of material.

Definition 1. Formulas are inductively defined as the smallest set containing a set of propositional variables
V and which is closed under some set of connectives. For the sake of conciseness, there are only two
connectives in this report: the conjunction (∧) and implication (⇒).

F,G := v ∈ V | F ∧G | F ⇒ G | >

A context is a list of formulas Γ = A1, . . . , An. A sequent Γ ` B consists in a context Γ together with a
formula B. It should be interpreted as the formula A1 ∧A2 ∧ . . . ∧An . . .⇒ B.

Definition 2. A proof system consists in a set of inference rules in the stylized form

Γ1 ` B1 . . . Γn ` Bn
Γ ` B

and, for the case n=0
Γ ` B

The Γi ` Bi are called the premises of the rule, and Γ ` B is called the conclusion. An axiom is a rule with
no premises.

Definition 3. A proof of a sequent Γ ` B consists in a labeled tree such that the label of the root is Γ ` B
and such that the label of each node is the conclusion of a rule whose premises are the labels of its children.
The labels of the leafs should be the conclusion of an axiom.

Usually, any sensible proof system contains two kinds of rules. First are structural rules, that allows to
manipulate sequents. For example, the rules below are structural rules.

A ` A
(ax)

Γ ` B
Γ, A ` B

(weak)
Γ, A,A ` B

Γ, A ` B
(contr)

Γ1, A1, A2,Γ2 ` B
Γ1, A2, A1,Γ2 ` B

(ex)

The rule ax is the mandatory axiom rule. The weakening rules weak discard hypothesis. The contraction
rules contr duplicate hypothesis. Finally, the exchange rule ex swap the position of formulas. The usage
of this last rule is usually kept implicit.
Second, there are connectors rules that manipulate the different connectors. In this report, I stick to rules

where the connector is only in the conclusion. The connector rules are classified depending on the position
of the connector with respect to the ` symbol: right or left.

Left rules Right rules

∧: Γ, A1 ` B
Γ, A1 ∧A2 ` B

Γ, A2 ` B
Γ, A1 ∧A2 ` B

Γ ` B1 Γ ` B2

Γ ` B1 ∧B2
(∧-rules)

> No rule
Γ ` >

(>-rules)

⇒:
Γ1 ` A B,Γ2 ` C
A⇒ B,Γ1,Γ2 ` C

Γ, A ` B
Γ ` A⇒ B

(⇒-rules)

Left rules give a way to use an hypothesis that contains a connector. Right rules give a way to build a
conclusion that contains a connector. There is one last structural rule that is crucial for any proof system.

Definition 4. The cut rule is the following structural rule:
Γ1 ` B B,Γ2 ` C

Γ1,Γ2 ` C
Definition 5. This proof system is a fragment of a bigger proof system called LJ (intuitionistic logic). So
I will call this system LJ for the rest of the report.

Remark 1. The reader already versed into proof theory and/or linear logic might have noticed that this
system has a mix of additive and multiplicative rules. They have been chosen this way to make the flow of
the presentation as minimal and natural as possible.

2

The cut rule is the cornerstone of any proof systems as it allows to introduce any arbitrary “lemma” B.
It can also be seen as a kind of composition of a proof of A ⇒ B with a proof of B ⇒ C. Intuitively, this
rule is not necessary: it is always possible to get rid of lemmas by “unfolding their proof on the fly”. The
formal pendant of this idea is called the cut elimination.

Theorem 1 (Cut elimination). The cut rule is admissible in LJ. In other word: for any proof using the
cut rule, there exists a proof of the same sequent that does not use the cut rule. Besides, the proof of this
theorem gives an explicit procedure called the cut elimination procedure that takes as input any proof using
the cut rule and outputs a proof of the same sequent without the cut rule.

This cut elimination procedure is of tremendous importance as it introduces a notion of computation
in proof: computing a proof consists in applying the cut elimination procedure, and the result of this
computation will be a cut-free proof (a proof with no cut rule). In fact, cut elimination is the proof theoric
equivalent of the normalization in the lambda calculus throught the Curry Howard isomorphism. Besides,
the the cut free proofs are the proof theoric equivalent of the β-normal terms.

1.2 Why categories are natural viewpoints on semantic
The cut elimination procedure is all about how proofs compute. Denotational semantic is instead more
interested in what proofs compute. The goal of denotational semantic is to associate to any proof π some
interpretation JπK that is agnostic to the computational content of π.

Definition 6. The interpretation of a proof should be invariant under cut elimination: if a proof π′ is
obtained from π by cut elimination, then JπK = Jπ′K. Besides, the interpretation should be modular : If π is
a proof of shape

π1

Γ1 ` B1 . . .

πn

Γn ` Bn
Γ ` B

Then JπK should be uniquely determined by the interpretations Jπ1K , . . . , JπnK (so even if the proofs πi
change, if their interpretation stays the same, the interpretation of π remains the same).

From those reasonable assumptions, we can infer quite a lot about the structure in which the interpreta-
tions JπK must live. Take those two proof tree.

(π): A ` A (π′):
π1

A ` B
π2

B ` C
A ` C

The proof π suggest that for all formula A there exists an entity idA := JπK. The proof π′ and the constraint
of modularity suggests that there exists an operation ◦ on the entities (tied to some compatibility conditions)
defined as Jπ2K ◦ Jπ1K := Jπ′K. Besides, the structure of the cut elimination procedure together with the
invariance condition implies some algebraic properties on idA and ◦ that are the ones of a category (the
full detailed process can be found in Mellies’s paper [12]). So the semantic of a proof system has to be a
category. Denotational semantic can thus be renamed as categorical semantic.

Definition 7 (Models). A model of a proof theory consists of a category L together with
• An interpretation of formulas: there exists a function J.K : {formulas} → Obj(L). This interpretation

extends to contexts, by defining JA1, . . . , AnK := JA1 ∧ . . . ∧AnK.
• An interpretation of proof: for any sequent Γ ` B, there exists a function J.KΓ,B : {proofs of Γ ` B} →
L(JΓK , JBK). Usually, Γ and B are kept implicit and I will write JπK for JπKΓ,B . This interpretation
should be invariant and modular in the sense of Definition 6.

3

1.3 Exhibiting the structure that L must have
Assume that L is a model of LJ. Let us infer the structure that L must have. First, the interpretation of
the proof A ` > gives a morphism tJAK : JAK→ J>K. Besides, a syntactical property of the cut elimination
procedure called η-expansion together with invariance and modularity imply that any proof of A ` > must
have for interpretation tJAK (I will not go into further details). So L must have what is called a final object.

Definition 8. A final object in L is an object >L such that for any object A of L, there exists a unique
morphism tA : A→ >L.

Furthermore, take the three proofs below.

π :

π1

A ` B1

π2

A ` B2

A ` B1 ∧B2

π′ : B1 ` B1

B1 ∧B2 ` B1

π′′ : B2 ` B2

B1 ∧B2 ` B1

By modularity, the interpretation of π is completely characterized by Jπ1K and Jπ2K. So we can define an
operator 〈., .〉 called the pairing as 〈Jπ1K , Jπ2K〉 := JπK : JAK→ JB1 ∧B2K. Besides, the interpretations of the
proofs π′ and π′′ provide two morphisms p1 := Jπ′K : JB1 ∧B2K→ JB1K and p2 := Jπ′′K : JB1 ∧B2K→ JB2K.
Again, invariance implies that pi ◦ 〈Jπ1K , Jπ2K〉 = JπiK and p2 ◦ 〈Jπ1K , Jπ2K〉 = Jπ2K and the η-expansion
implies that such pairing should be unique. As a result, a model of LJ must be what is called a Cartesian
category.

Definition 9. A category L is said to be Cartesian if it has a final object, and if for any pairs of objects
Y1 and Y2, there exists an object Y1 × Y2 and two morphisms p1 : Y1 × Y2 → Y1 and p2 : Y1 × Y2 → Y2

such that for any object X and morphisms f1 : X → Y1, f2 : X → Y2, there exists a unique morphism
〈f1, f2〉 : X → Y1 × Y2 such that the following diagram commutes.

X

Y1 B2

Y1 × Y2

f1 f2

〈f1,f2〉

p1 p2

The strength of categorical semantic is that it interprets complex syntactical interactions by this kind
of simple property that consists in the existence of an object and of a unique morphism following some
commutations. Those properties are called Universal Mapping Property (UMP). Any UMP generates a
functor, such as the one below in the case of the Cartesian product.

Definition 10. This property induces a bifunctor (see the annex for the terminology) _×_ : L× L → L
that maps two objects (X1, X2) to X1 × X2 and two morphism f1 : X1 → Y1 and f2 : X2 → Y2 to a
morphism f1 × f2 := 〈f1 ◦ p1, f2 ◦ p2〉 : X1 × X2 → Y1 × Y2 that consists in “applying f1 to the first
coordinate and applying f2 to the second”.

Remark 2. This functor admits a natural isomorphism α×X,Y,Z := 〈p1 ◦ p1, 〈p2 ◦ p1,p2〉〉 : (X × Y)× Z →
X× (Y ×Z). It allows us to write X1× . . .×Xn and f1× . . .×fn “up to any arbitrary choice of parenthesis”
by keeping implicit the use of α×. L is said to admit all finite products.

The arrow has a similar interpretation. Because of length consideration, I will not do the whole process
again, but directly introduce the universal mapping property required.

Definition 11. Given a bifunctor _ × _, a category L is said to be closed (with regard to ×) if for all
pairs of object X and Y , there exists an object X ⇒L Y and a morphism ev : (X ⇒L Y) ×X → Y such
that for any object Z and morphism f : X × Y → Z, there exists a unique morphism cur(f) : (X ⇒L Z)
such that the diagram below commutes.

4

sec:annex

X × Y Z

(Y ⇒L Z)× Y

f

cur(f) × idY ev

For the reader not used to category theory, this definition might cause some issues. But any computer
scientist used to functional programming an curryfication is in fact already used to this idea. Recall that
curryfication means that any function with two arguments f : A × B → C can be uniquely mapped to a
function cur(f) : A → (B → C) defined as a 7→ (b 7→ f(a, b)). Closedness is similar and means that L
contains an object B ⇒L C that describes the “set of morphism from B to C” and that any morphism
f : A × B → C can be uniquely seen as a morphism cur(f) : A → (B ⇒L C). In fact, Curryfication is a
particular case of closeness where the morphism ev is the function that takes as input a function h : A→ B
and x ∈ A and returns h(x).

Definition 12. A Cartesian closed category (CCC) is a category with a Cartesian product that is closed
with regard to this product.

We saw that the models of LJ have to be Cartesian closed categories. Conversely, any Cartesian closed
category L together with a function J.K : X → Obj(L) defines a model. Indeed, the interpretation of formulas
can be defined inductively as JxK := JxK, JA ∧BK := JAK × JBK, J>K := >L and JA⇒ BK := JAK ⇒L JBK.
This interpretation extends to context by defining JA1, . . . , AnK = JA1 ∧ . . . ∧AnK = JA1K × . . . × JAnK
(using Remark 2 that ensures parenthesis irrelevance).
The interpretation of a proof is then defined inductively.. I will not give the full details, just that each of

the rule is interpreted by its semantic equivalent: the rule (ax) is interpreted by an identity, the rule (cut)
by a composition, the rules (∧-left) by the projections, the rule (∧-right) by a pairing, the rule (⇒-left) by
ev and the (⇒-right) rule by a cur. It only leaves the rules (contr), (weak) and (ex). The rule (weak)
can directly be interpreted by the first projection p1. The rule (contr) is tied to the existence of a natural
transformation ∆×X : X → X ×X that can be defined as ∆× := 〈id, id〉. . Finally, the exchange rule is tied
to the existence of a natural transformation γ×X,Y : X×Y → Y ×X than we can be defined as γ := 〈p2,p1〉.

2 An introduction to linear logic
Linear logic is a proof theory discovered by Girard [7] while he was studying a model Coh (the category
of coherent spaces) that he discovered [8]1. Girard noticed that the object of the closure A ⇒ B could
be decomposed in two successive constructions !A (B where ! : Obj(Coh) → Obj(Coh) and _ (_ :
Obj(Coh)2 → Obj(Coh). Therefore, Girard introduced a category Lin whose objects are the objects
of Coh and whose morphisms are defined as Lin(A,B) := A (B. This category admits a functor
! : Lin→ Lin and by design, for any objects A,B, Coh(A,B) = Lin(!A,B). Besides, Lin has some though
inducing properties:

• The object A × B still gives a Cartesian product in Lin and > is still a final object. So Lin is
Cartesian.

• However, Lin is not closed with regard to this product.

• In fact, Lin is closed with regard to some bifunctor ⊗. Besides, there exists an object 1 such that
(Lin, 1,⊗) is what is called a “symetric monoidal category”, see Definition 13 below.

It turns out that there is a strong analogy between these objects and linear algebra. Let Vect be the
category whose objects are the R-vector spaces and whose morphisms are the (continuous) linear maps.
Vect is a Cartesian category: the final object > is the trivial vector space {0} and the Cartesian product is
nothing more than the usual product of two vector spaces E×F . Besides, this category seems to be closed:
Vect(E,F) is a vector space itself. However it is not closed with regard to the cartesian product: giving a
function f ∈ Vect(E,Vect(F,G)) is the same as giving a bilinear application f : E × F → G, not a linear
map.

1There is a bit of storytelling here. The real story turns out to be even more interesting !

5

However it is possible to define a vector space E ⊗ F called the “tensor product of E and F”. I will only
give its definition in finite dimension, as it is more intuitive. If E is a vector space of dimension n and basis
(ei) and if F is a vector space of dimension m and basis (fj), then E ⊗ F is a vector space of dimension
n.m with basis denoted as (ei⊗ fj). The idea of this space is to factorize bilinear applications: any bilinear
application φ : E × F → G can be characterized as a (unique) linear application φ : E ⊗ F → G defined on
the basis as φ(ei ⊗ fj) := φ(ei, fj). So Vect(E,Vect(F,G)) coincides with the set of bilinear applications
E × F → G that coincides with Vect(E ⊗ F,G). This is exactly a closure with regard to ⊗.

2.1 Symetric monoidal categories
In the two examples above, the functor ⊗ gives to the category the structure of a symetric monoidal category.
This notion existed prior to linear logic, see [11]. The definition below is a refinement due to Kelly [9].

Definition 13. A monoidal category (L,⊗, 1) consists in a category L, a bifunctor ⊗ on L and an object 1
of L called the unit such that there exists three natural isomorphism αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C),
λA : 1⊗A→ A, ρA : A⊗ 1→ A that folows the commutations below..

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

α

λ⊗idB
idA⊗ρ

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D αA⊗B,C,D

αA,B,C⊗idDidA⊗αB,C,D

αA,B⊗C,D

A symetric monoidal category L is a monoidal category that is also equiped with a natural transformation
γA,B : A ⊗ B → B ⊗ A. γ is required to be an involution: γB,A ◦ γA,B = idA⊗B . Finally, it should follw
those commutations below.

1⊗A A⊗ 1

A

γ1,A

λ
ρ

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗A)

αA,B,C

γA,B⊗idC

γA,B⊗C

αB,C,A

αB,A,C idB⊗γA,C

The axioms of monoidal categories are the minimal axioms required to ensure that we can rewrite paren-
thesis, collapse the unit, and swap formulas in any arbitrary order and still end up with the same mor-
phism (it is a generalization of the regular notion of monoid). Associativity in particular allows to define
A1 ⊗ . . . ⊗ An and f1 ⊗ . . . ⊗ fn “up to parenthesis rewriting”, in a similar way as Remark 2. In fact, a
Cartesian category is a particular kind of symetric monoidal category.

Remark 3. If L is Cartesian, the functor _×_ associated to a Cartesian product gives to L the structure
of a symetric monoidal category (×,>, α×, λ×, ρ×), where α× and γ× are defined in Section 1.3, λ×A = p1 :
A×> → A, ρ×A = p2 : >×A→ A. Note that λ× and ρ× are isomorphisms because > is a final object (their
inverses are respectively 〈idA, tA〉 and 〈tA, id1〉). So the notion of symetric monoidal category was already
the notion we implicitely used when we said that “parenthesis for × are irrelevant and we can interpret the
exchange rule”.

2.2 Deducing the syntax from the semantic
These models suggested the existence of a logic where two notions of conjunction might coexist. So Girard
introduced a logical system in which formulas had three binary connectives: one implication ((called the
linear arrow), and two conjunction ⊗ (called the tensor) and & (called the with). The semantic of ⊗ should
be ⊗, the semantic of (should be (, and the semantic of & should be ×. There are also two constant
symbols 1 (associated to ⊗) and > (associated to &) whose semantic should be respectively the objects 1
and >. Girard introduced the following syntax.

6

Left rules Right rules

&:
Γ, A1 ` B

Γ, A1 &A2 ` B
Γ, A2 ` B

Γ, A1 &A2 ` B
Γ ` B1 Γ ` B2

Γ ` B1 &B2
(&-rules)

> No rule
Γ ` >

(>-rules)

(:
Γ1 ` A Γ2, B ` C
Γ1,Γ2, A(B ` C

Γ, A ` B
Γ ` A(B

((-rules)

⊗ Γ, A1, A2 ` B
Γ, A1 ⊗A2 ` B

Γ1 ` B1 Γ2 ` B2

Γ1,Γ2 ` B1 ⊗B2
(⊗-rules)

1
Γ ` B

Γ, 1 ` B ` 1
(1-rules)

Together with the structural rules.

A ` A
(ax)

Γ1, A1, A2,Γ2 ` B
Γ1, A2, A1,Γ2 ` B

(ex)
Γ1 ` B Γ2, B ` C

Γ1,Γ2 ` C
(cut)

Let us motivate those rules with semantic in mind. The rules associated to &, > and (are the same as
the rule that were associated to ∧, > and ⇒, because as we saw the semantic counterpart of those rules is
the structure of a Cartesian product, of a final object, and of a closure. Besides, a sequent A1, . . . , An ` B
should be interpreted as the formula A1⊗ . . .⊗An (B (and not A1 & . . .&An (B) as the linear arrow is
closed with regard to ⊗ (and not ×). In particular, the (⊗-left) rule is nothing more than some parenthesis
rewriting. On the other hand, the (⊗-right) rule betrays the fact that ⊗ is a bifunctor: given two morphisms
f1 : JΓ1K → JB1K and f2 : JΓ2K → JB2K, there exists a morphism f1 ⊗ f2 : JΓ1K ⊗ JΓ2K → JB1K ⊗ JB2K.
Similarly, the right (1-rule) does not say anything semantically (the empty context is interpreted as the
formula 1), while the left (1-rule) is the syntactic equivalent of the morphism ρJΓK : JΓK⊗ 1→ JΓK. Finally,
the exchange rule carries to linear logic thanks to the symmetry γJAK,JBK : JAK⊗ JBK→ JBK⊗ JAK.

Definition 14. The proof system introduced in this section is called iMALL (Intuitionistic Multiplicative
Additive Linear Logic). A model of iMALL is a symetric monoidal category (L,⊗, 1, α, λ, ρ, γ) closed with
regard to ⊗ that also contains a Cartesian product ×. From this point onward, I will write the product &
instead of × in order to match with the logical connector.

Linear logic should be seen as a logic about resources management. A formula A(B states that “using
the resource A once and only once produces the outcome B”. The formula A⊗ B is interpreted as “having
both a resource A and a resource B at the same time”. So A,A ` A ⊗ A is provable, but not A ` A ⊗ A.
The formula A&B is interpreted as “choosing at will between a resource A and a resource B, but not being
able to chose both” ”. So A ` A&A is provable, but not A,A ` A&A.

2.3 About the weakening and contraction rules
The most notable thing about this new system is the absence of weakening and contraction rules. There is
an obvious syntactical reason. The presence of those two rules would imply the provability of the sequents
A ⊗ B ` A & B, A & B ` A ⊗ B, 1 ` > and > ` 1. It would lead to a collapse between the connector ⊗
with the connector &. This is exactly what happens in the system LJ that I introduced in Section 1.1.
There is a similar observation in the world of semantic. Assume that the weakening and contraction rules

hold for a given formula A. Take the proofs bellow.

` 1

A ` 1

A ` A A ` A
A,A ` A⊗A
A ` A⊗A

7

The interpretation of the left proof should be a morphism εJAK : JAK → 1. The interpretation of the right
proof should be a morphism ∆JAK : JAK → JAK ⊗ JAK. So if the rules hold for every formula, the tensor ⊗
would turn into a Cartesian product accordingly to the fact below.

Fact 1. A symetric monoidal category is Cartesian if and only if there exists two natural transformations
∆X : X → X ⊗X and εX : X → 1 that follow some commutations that I will not detail here (see prop.16
in section 6.3 of [12] for the complete statement)

Sketch of the proof. For the direct implication, take εA := tA (recall that > is a final object) and ∆A :=
〈idA, idA〉 (note that I introduced this morphism in 1.3 for interpreting the contraction rule). For the reverse
implication, the pairing and the projections are defined as follow.

〈f1, f2〉 : X X ⊗X Y1 ⊗ Y2
∆X f1⊗f2

p1 : X1 ⊗X2 X1 ⊗ 1 X1

idX1
⊗tX2 λ and p2 : X1 ⊗X2 1⊗X2 X2

tX1
⊗idX2 ρ

However, linear logic is still supposed to be a refinement of classical logic (recall that Lin(!A,B) =
Coh(A,B)). So Girard introduced a new unary connector ! called the exponential (that would be the
syntactical equivalent of the functor ! in Lin) and constrained the weakening and contraction to formulas
of shape !A. So there are four new rules, a right rule for ! (called promotion), a left rule for ! (called
dereliction), a weakening and a contraction.

Γ, A ` B
Γ, !A ` B

(der)
!A1, . . . , !An ` B
!A1, . . . , !An `!B

(prom)
Γ ` B

Γ, !A ` B(weak)
Γ, !A, !A ` B

Γ, !A ` B
(contr)

One should see a formula !A as a resource that can be “duplicated’ and discarded”. The rule (weak) states
that a ressourcce !A can be discarded. The rule (contr) states that a ressource !A can be duplicated. The
rule (der) just “forget” that A was used once and only once. Finally, the rule (prom) states that if all of the
resources used to produce B are discardable and duplicable, then B can be produced an arbitrary number
of time (including zero) by discarding and duplicating the proof.
Besides, a reasoning similar to the one at the begining of this section shows that the contraction and

weakening rules implies the existence of two natural transformations wkX :!X → 1 and ctrX : !X →!X⊗!X.
Conversely, those two morphisms give an interpretation for the proofs that end with a weakening or a
contraction rule.

2.4 The Seely isomorphisms
There are still many concurrent notions of models of linear logic, and chosing one is usually a matter of
personnal taste. I chose the notion of Seely categories introduced in [15]. This is not the most general
one, but it is quite powerfull and it arises in most of the concrete models. The starting point of this
axiomatization is the observation made by Girard and deepened by Seely that in syntax as well as in many
models, the connective ! “transports” the connectives & to the connectors ⊗.

Definition 15. A Seely category is a model in which the functor ! is a strong symetric monoidal functor
from (L,&,>) to (L,⊗, 1). It means that there exists an isomorphism m0 : 1 '!> and a natural isomorphism
m2

A,B : !A⊗!B '!(A&B)2 called the Seely isomorphisms that follow the commutations below.
2Recall that & is the new name for ×, as stated in Definition 14

8

(!A⊗!B)⊗!C !(A&B)⊗!C !((A&B) & C)

!A⊗ (!B⊗!C) !A⊗!(B & C) !(A& (B & C))

m2⊗id

α

m2

!α&

id⊗m2 m2

!A⊗!B !(A&B)

!B⊗!A !(B &A)

γ

m2

m2

!γ&

!A⊗ 1 !A

!A⊗!> !(A&>)

ρ

id⊗m0

m2

!ρ&

1⊗!A !A

!>⊗!A !(>&A)

λ

m0⊗id

m2

!λ&

Basically, those diagrams states that doing symetric monoidal reasoning on !(_ & _) using the symetric
monoidal structure of & below ! is the same as doing symetric monoidal reasoning on !_⊗!_ using the
symetric monoidal structure of ⊗.

Remark 4. Here, ! is a strong monoidal functor from (L,⊗, 1) to (L,&,>) but this notion obviously extend
to any functor F that goes from a symetric monoidal category (L,⊗, 1) to another symmetric monoidal
category (L′,⊗′, 1′). Besides, when the two natural transformations are not isomorphisms, F is called a lax
symetric monoidal functor. We will come accross this notion latter.

Remark 5. Any Seely category contains the two natural trasnformation wkA :!A→ 1 and ctrA :!A→!A⊗!A.
They are obtained by “lifting” the two morphisms ∆&

A := 〈idA, idA〉 : A → A & A and ε&A := tA : A → >
that characterize & as a Cartesian product (recall Fact 1) throught the functor ! and carry them to ⊗ with
the Seely isomorphisms.

ctrA: !A !(A&A) !A⊗!A!∆& (m2)−1

wkA: !A !> 1!ε& (m0)−1

So Seely categories does not introduce those two morphisms directly as axioms, but derives them from other
objects. This is an usual dynamic of the interraction between syntax and semantic: the axiomatization of
the semantic is usually obtained by a direct correspondance with the syntactical rules, but sometimes it is
better to divert from it a bit.

2.5 The structure of !
Fortunately, the structure that ! should have is more consensual. It should be a comonad, commonly called
the exponential comonad.

Definition 16. A comonad on L consists in (!, der, dig) where !_ : L → L is a functor together with two
natural transformations derA :!A→ A and digA :!A→!!A such that the following diagrams commute.

!A !!A

!!A !!!A

digA

digA

dig!A

!digA

!A

!A !!A !A

id!A digA
id!A

der!A

!derA

The left diagram is called the Monadic square and the right diagram is called the monadic triangle.

Definition 17 (Dereliction). For any morphism f : A→ B, the morphism K!(f) : !A A B
derA f

is called the dereliction of f . It gives an interpretation for the dereliction rule.

Definition 18 (Promotion). For any morphism f : !A → B the morphism f ! : !A !!A !B
digA !f

is called the promotion of f . It gives an interpretation for the promotion rule when n = 1. There is a
generalization of this construction for any n that can be derived from the Seely isomorphisms but I will not
give the details here.

Putting everything together ends up with the following notion.

9

Definition 19 (Models of LL). The models of linear logic are symetric monoidal categories (L,⊗, A), closed
with regard to ⊗, that contains a Cartesian product (&,>), that contains a comonad (!, der, dig) and two
natural isomorphisms m0 : 1 '!> and m2

A,B : !A⊗!B '!(A & B) such that (!,m0,m2) is a srong symetric
monoidal functor.

Besides, a property similar to Lin(!A,B) = Coh(A,B) holds in any model of linear logic. Indeed, the
category Coh is a particular instance of the generic notion of Kleisli category.

Definition 20. If (!, der, dig) is a comonad on L, the Kleisli category of ! is a category L! with objects
Obj(L!) = Obj(L) and morphisms L!(A,B) = L(!A,B). The identity is defined from the dereliction as
the morphism derA ∈ L(!A,A) = L!(A,A). The composition is defined from the promotion: for any
f ∈ L!(A,B) = L(!A,B) and g ∈ L!(B,C) = L(!B,C), g ◦! f := g ◦ f !.

Proof. The proof that it is a category is left for the reader. The neutrality of the identity is a consequence of
the triangle equality of the comonad. The associativity is a consequence of the square of the coMonad.

If the category L can be seen as the category of the “linear world”, the category L! on the other hand can
be seen as an extension of L that introduces a way to produce “non linearity” (by allowing to duplicate the
resources). The dereliction introduced in Definition 18 allows to “forget” that a given morphism is linear.

Proposition 1. The category L! extends L in the sense that the dereliction K!(f) induces a functor K! :
L → L! by defining K!(A) := A. Besides, this functor is faithful, meaning that if K!(f) = K!(g), then f = g.

Theorem 2. The Kleisli category L! is cartesian closed, and thus is a model of LJ.

Proof. I will not detail the proof here, but I will give the important ideas. The final object is still > and the
Cartesian product of A with B is still the object A&B. The projections are defined as K!(p1) :!(A&B)→ A
and K!(p2) :!(A & B) → B. The closure then comes from the fact that we can transport the closure in L
with regard to ⊗ to a closure in LM with regard to & thanks to the Seely isomorphism m2

X,Y :!X⊗!Y →
!(X & Y).

Remark 6. Actually, models of linear logic require one more compatibility condition between m2 and dig
that is necessary in the proof of the closure, but I will not talk about it here.

3 Differentiation in some models of linear logic
As hinted before with Vect, the ideas of linear logic have deep ties with linear algebra. However there is no
satisfactory way of defining (!, der, dig) on Vect, so interpreting the exponential through the lenses of linear
algebra seems at first to be a lost cause. Fortunately, Ehrhard discovered a model of LL called Fin (finiteness
spaces) [5] in which the objects are (topological) vector spaces and the arrows are the (continuous) linear
maps. In this model, the exponential can be seen as a power series construction: Fin(!X,Y) is the set of
analytic functions from X to Y. For example, a function f : R→ R is analytic if f(x) = Σ∞n=0anx

n.
Analytic functions are a particular case of smooth functions. Recall the fundamental idea of differential

calculus: for any x ∈ X, the variation a smooth function f : X → Y around x can be approximated as a
linear variation f(x+ u) ≈ f(x) + f ′(x).u, where f ′(x) is a (continous) linear map called the differential of
f in x. So there exists a function f ′ : X → Fin(X,Y). Besides, one can show that when f is analytic f ′
is also analytic, meaning that f ′ ∈ Fin(!X,Fin(X,Y)). Because of the closure with regard to ⊗, it means
that the differential of f can be seen as a morphism f ′ ∈ Fin(!X ⊗ X,Y). So the fundamental idea of
differential calculus seems to corresponds to some categorical properties on Fin. Here are those properties,
defined in a generic way.

Definition 21. A model of LL L is said to be additive if for all objects X,Y , L(X,Y) is a monoid. In other
word, if there exists a morphism 0 ∈ L(X,Y) and an associative operator + such that for all f ∈ L(X,Y),
0+f = f+0 = f . Besides, the addition should be compatible with the composition and the tensor, meaning:

• g ◦ (f1 + f2) ◦ h = g ◦ f1 ◦ h+ g ◦ f2 ◦ h. In other words, the morphisms are “linear” in the sum

10

• (f1 + f2)⊗ (g1 ⊗ g2) = f1 ⊗ g1 + f2 ⊗ g1 + f1 ⊗ g2 + f2 ⊗ g2. In other word, the tensor is “bilinear” in
the sum.

Definition 22. A differential category is an additive category L such that there exists a natural trans-
formation d :!X ⊗ X →!X. This natural transformation allows to define for any f :!X → Y a morphism
f ′ := f ◦d : !X⊗X → Y . Besides, d is required to follow some commutations that consist in separate inter-
actions between d and wk/ctr/der/dig/d. I will not give the diagrams, but explain to what they correspond
in finiteness spaces

• Interaction with der: The derivation of a linear function is the linear function itself

• Interaction with dig: The chain rule holds, that is (f ◦ g)′(x) = f ′(g(x)) ◦ g′(x)

• Interaction with wk: The derivative of a constant function is 0

• Interaction with ctr: The Leibniz rule holds, that is if φ is a bilinear application, φ(f, g)′(x).u =
φ(f ′(x).u, g(x)) + φ(f(x), g′(x).u).

• Interaction with d: The Schwarz rule, that is f ′′(x).(u, v) = f ′′(x).(v, u)

Thus the history of linear logic repeated itself. Ehrhard and Regnier [6] designed a logic called differential
linear logic whose models should be differential categories. We saw in Section 2.4 that the presentation of the
semantic might sometimes deviate a bit from the syntax. Something quite similar happens here. Similarly
to how the product is lifted through ! in Remark 5, the sum (that induces a structure called a coproduct)
can be lifted through ! to produce two natural transformation wkX : 1→!X and ctrX :!X⊗!X →!X.

ctrA: !A⊗!A !(A&A) !Am2 !(p1+p2)
wkA: 1 !> !Xm0 !0

Besides, in most differential categories the natural transformation d can be derived from a natural transfor-
mation der : X →!X as follows.

dX : !X ⊗X !X⊗!X !X
id!X⊗der ctr

The transformation der can be seen as an operator that computes the derivative in 0, f ◦ der = f ′(0).
The construction above thus corresponds to the idea that the derivative of f in x can be computed as the
derivative in zero of the function y 7→ f(x+ y). Again, there are many flavors of differential categories, see
[3] for a survey.
Differential logic is a syntactical extension of linear logic that introduces three new rules that account for

those morphisms: a co-weakening (that makes an empty proof), a co-contraction (that sums two proofs)
and a co-dereliction (that “derives” a proof in 0).

(co-weak) `!A (co-contr)
Γ1 `!A Γ2 `!A

Γ1,Γ2 `!A
(co-der) Γ ` A

Γ `!A

This syntactical notion of derivation has one primary use called the Taylor expansion. Similarly to how
an analytic function (hence a morphism in Fin(!A,B)) can be described by its successive derivatives in 0,
the operational behaviour of a proof using the promotion rule can be syntactically described by taking its
succesive co-derelictions. It allows to talk about the ressource sensitivity of a proof, that is, how a proof
can be “syntactically approximated” by a proof that uses the formulas less than a given amount of time.
This notion nicely relates to Böhm trees, a notion in denotational semantic that aims at describing the limit
behaviour of a non terminating program. See [1] for an enlightening discussion on this topic.
The issue of differential logic though is that the notion of sum is closely tied to non determinism. At first

glance, the cut elimination equivalent of the Leibniz rule and the constant rule requires to introduce two
new rules.

(0) Γ ` B (sum) Γ ` B Γ ` B
Γ ` B

The first rule introduces a zero proof, the second rule allows to sum two proofs. The first rules makes the
logic highly inconsistent as every sequent becomes provable, but it is in fact not that much of an issue
because differential logic is more interested in computational properties rather than provability. The second

11

rule however has a lot of repercussions, as it implies that the proof system allows for a non deterministic
branching on two possible paths. For example, assume that some formula A models the boolean, in the
sense that the sequent ` A only admits two proofs in linear logic, a proof true and a proof false3. In
differential logic, this sequent admits another proof.

true

` A
false

` A
` A

whose semantic would be JtrueK + JfalseK, a value that should be neither JtrueK neither JfalseK but rather
a superposition of those two states.

4 Coherent differentiation
In this paper [4], my supervisor Thomas Ehrhard introduced a new notion called coherent differentiation.
The cornerstone of coherent differentiation is to generalize differentiation to models that are not always
additive categories. The motivation behind this idea is twofold. Firstly, Ehrhard noticed that some models
such as probabilistic coherent spaces were not additive categories yet still admitted a notion of differenti-
ation. Secondly, restraining the sum under some compatibility conditions can hopefully make the system
deterministic again. For example, there is no morphism such as JtrueK + JfalseK in probabilistic coherent
spaces.

4.1 Pre-summability structure
In order to restrict the sum, Erhard introduced a notion called a pre-summability structure. Let L be a
model of linear logic such that for any objects X,Y , there exists a morphism 0X,Y ∈ L(X,Y). By abuse
of notation, I will usually keep X and Y implicit and write only 0. Besides, from now on I will start my
indices from 0 in order to be consistent with the notations of the article4.

Definition 23. A pre-summability structure on L is a tuple (S, π0, π1, σ) such that:
• S is an endofunctor S : L → L that verifies S(0X,Y) = 0SX,SY for all objects X,Y .

• π0, π1, σ : S⇒ Id are natural transformations

• π0, π1 are jointly monic: if f, g ∈ L(Y, SX),
{
π0 ◦ f = π1 ◦ g
π1 ◦ f = π1 ◦ g

⇒ f = g

The joint monicity of π0, π1 means that S is a kind of product: a function f ∈ L(Y, SX,) is completely
characterized by the two morphisms π0 ◦f and π1 ◦f . Note however that contrary to Cartesian product,the
pairing of two morphisms f0 and f1 has no reason to be always defined. When such a pairing exist, we say
that f0 and f1 are summable

Definition 24 (Sumability). (f0, f1) are summable if there exists a pairing h such that

{
π0 ◦ h = f0

π1 ◦ h = f1

.

As said before when such pairing exists, it is unique. It is written 〈f0, f1〉S and is called the witness of the
sum. The sum is then defined as f0 + f1 := σ〈f0, f1〉S .

Remark 7. Note that by definition of 〈f0, f1〉S , πi ◦〈f0, f1〉S = fi and 〈f0, f1〉S ◦g = 〈f0 ◦g, f1 ◦g〉S . Besides,
it is easy to check that π0, π1 are summable of witness id and sum σ.

The naturality of π0, π1 and σ express that the sum is compatible with the composition, in a somewhat
similar way to additive categories.

3In fact A = 1⊕ 1 where ⊕ is the disjunction associated to the conjunction &. Since I did not talk about disjunction so I
will not give further details

4Those notations were subject to debate. My supervisor admitted that he took a bad habit by starting indices by 0. On
the other hand, these indices make sense in summability structures because the left term is usually though as a “zero order
term” while the right term is though as a “one order term”, as we will see in Sections 4.3 and 4.4

12

• The naturality of π0 and π1 express that Sf : SX → SY consists in “applying f coordinate by
coordinate”: Sf ◦ 〈g0, g1〉S = 〈f ◦ g0, f ◦ g1〉S .

• A consequence of this and Remark 7 is that if f0, f1 are sumable, h ◦ f0 ◦ g, h ◦ f1 ◦ g are summable.
The witness for this sum is Sh ◦ 〈f0, f1〉S ◦ g.

• The naturality of σ then ensures that h ◦ f0 ◦ g + h ◦ f1 ◦ g = h ◦ (f0 + f1) ◦ g.

Result 1. Let us anticipate a bit over Section 5. This notion of summability generalizes the notion of sum
in additive categories. Indeed, let L be an additive category. Let S& : L → L be the functor defined as
S&X := X & X and S&f := f & f . This functor can be equiped with the pre-summability structure in
which the projections are the projections associated to the cartesian product πi := pi : S&X → X and the
sum is defined as σ := p0 + p1 : S2

&X → S&X. The projections are jointly monic by unicity of the pairing
in a Cartesian product. Finally, ∀i ∈ {0, 1},pi ◦ S&(0) = 0 = pi ◦ 0 so S(0) = 0 by joint monicity of the
projections.
The sum induced by this presummability structure coincides with the sum of the additive category.

Indeed, any pair of morphisms f0, f1 : X → Y are summable (in the sense of the pre-summability structure)
with witness 〈f0, f1〉 and sum σ ◦ 〈f0, f1〉 := (p0 + p1) ◦ 〈f0, f1〉 = p0 ◦ 〈f0, f1〉+ p1 ◦ 〈f0, f1〉 = f0 + f1.

4.2 Summability structure
The (partial) sum is still quite far from behaving like a sum though, some more axioms are required. The
right axiomatic seems to be the notion of partial commutative monoid.

Definition 25. The sum is called a partial commutative monoid if it follows those properties
• Commutativity: For any morphisms f, g such that (f, g) are summable, (g, f) are summable and
g + f = f + g

• Neutrality of 0: For any morphism, (0, f) and (f, 0) are summable and f + 0 = 0 + f = f

• Associativity: For any morphisms f, g, h, if f, g and (f + g), h are summable, then g, h are summable,
f, (g + h) are summable, and f + (g + h) = (f + g) + h

A presummability structure whose notion of sum is a partial commutative monoid is called a summability
structure.

Result 2. The presummability structure S& defined in Result 1 is clearly a summability structure since
partial commutative monoids are without a doubt a generalization of commutative monoids.

Interestingly, commutativity implies the existence of a natural transformation γ = 〈π1, π0〉S : SX → SX
and the neutrality of 0 implies the existence of two natural transformations ι0 = 〈id, 0〉S : X → SX and
ι1 : 〈0, id〉S : X → SX. In fact, Ehrhard shows that those two implications are actually equivalence, but I
will not give the proof here. Associativity on the other hand can be reframed as the two following properties.

Definition 26. We call (S-witness) the following property: for any X,Y and f, g : X → SY , if σ ◦ f and
σ ◦ g are summable, then f, g are summable.

Definition 27. We call (S-assoc) the following property: assume that (〈f0, f1〉S , 〈g0, g1〉S) are well defined
and summable. Then ∀i ∈ {0, 1}, (fi, gi) are summable, (f0 + g0, f1 + g1) are summable, and 〈f0, f1〉S +
〈g0, g1〉S = 〈f0 + g0, f1 + g1〉S . In other words: “summing two (summable) pairs consists in summing
coordinates by coordinates”.

Proposition 2. If 0 is a neutral element, (S-witness) holds and (S-assoc) holds, the sum is associative.

I spent some amount of time during my internship to try to re frame associativity in a more structural
way, in the vein of neutrality of 0 and commutativity. Doing so might gives some insights on the syntactical
equivalent of summability structures. However the property (S-witness) is much subtler than it seems and
I start to think that it is by nature quite “un-structural”. In fact, I think that partial commutative monoids
might be a notion that is a bit too restrictive. Indeed, any major notion of coherent differentiation can be
defined in a weaker setting, where (S-witness) is replaced by the existence of three operators. I will not give
more details as this observation is still an early development and has no strong semantical nor syntactical
backing yet. One result that I noticed in this process though is that (S-assoc) always hold.

13

Result 3. Any pre-summability structure fulfills (S-assoc).

Proof. By compatibility of addition with regard to composition, (〈f0, f1〉S , 〈g0, g1〉S) summable implies that
(πi◦〈f0, f1〉S , πi◦〈g0, g1〉S) are summable (in other word, (fi, gi) are summable). Compatibility also ensures
that πi ◦ (〈f0, f1〉S + 〈g0, g1〉S) = (πi ◦ 〈f0, f1〉S) + ((πi ◦ 〈f0, f1〉S)) = fi + gi. By definition of summability,
it implies that (f0 + g0, f1 + g1) are summable of witness 〈f0, f1〉S + 〈g0, g1〉S . It concludes the proof.

4.3 The differentiation operator
Erhard introduced coherent differentiation as a natural transformation ∂X :!SX → S!X. It allows to define

for any f :!X → Y (e.g a smooth function) a morphism. Df : !SX S!X SY
∂X Sf . Intuitively, Df

is interpreted as the function that takes as input two summable elements (x, u) and return the first order
development of f on x for the variation u: Df(x, u) = (f(x), f ′(x).u). More formally, Erhard asks ∂ to
follow the rule below

(∂-local)
!SX S!X

!X

∂X

!π0

π0

This rule basically states that ∂X = 〈!π0,d
Coh
X 〉S for some natural transformation dCoh

X : !SX →!X.So it
provides two informations:

• There is a derivation dCoh
X : !SX →!X. Intuitively, f ◦ dCoh : !SX → Y takes as input a summable

pair (x, u) and returns f ′(x).u.

• Df = Sf ◦ ∂X = 〈f◦!π0, f ◦ dCoh
X 〉S , which rewrites intuitively as Df(x, u) = (f(x), f ′(x).u). So the

existence of ∂ not only ensures that the derivative f ′(x).u is defined as soon as (x, u) is summable,
but it also ensures that (f(x), f ′(x).u) is summable, implying that f(x) + f ′(x).u is defined.

Result 4. Recall that differential categories are additive categories, and thus admit a summability structure
that coincides with the sum, defined in Results 1 and 2. Then the operator d :!X ⊗ X → X induces a
derivation for this summability structure.

dCoh
X : !S&X !X⊗!X !X ⊗X !X

(m2)−1
id⊗derX dX

It means that a coherent differentiation can be defined as the pairing ∂X = 〈!p0,d
Coh〉. In particular,

(∂-local) holds by definition.

4.4 The monad structure on S

Let us start with a practical reasoning that is fundamental in differential calculus. Take two functions f
and g with first order development. Those development can be multiplied.

f(x+ u).g(y + v) = (f(x) + f ′(x).u+ o(u)).(g(y) + g′(y).v + o(v)) (1)
= f(x)g(y) + f(x)g′(y).v + g(y)f ′(x).u+ (f ′(x).u)(g′(y).v) + o(u) + o(v) (2)
≈ f(x)g(y) + v.f(x)g′(y) + u.f ′(x)g(y) (3)

The term (f ′(x).u)(g′(y).v) is of second order so it can be neglected. This computation thus shows that
the first order variation of f.g around x is f(x)g′(y).v + g(y)f ′(x).u: this is the so called Leibniz rule.
Interestingly, the proof above only uses a kind of algebraic reasoning, not how the derivative itself is
defined. It means that this reasoning can carry to the more abstract framework of summability structure:
the development of f ⊗ g : !(X1 & X2) ' !X1⊗!X2 → Y1 ⊗ Y2 can be inferred from the development of f
and the development of g, using three categorical constructions:

14

• A natural transformations Φ0
X,Y := 〈id ⊗ π0, id ⊗ π1〉S : X ⊗ SY → S(X ⊗ Y) that “distributes on

the right pair” and a natural transformation Φ1
X,Y := 〈π0 ⊗ id, π1 ⊗ id〉S : SX ⊗ Y → S(X ⊗ Y)

that “distributes on the left pair”. Those two operations are well defined assuming an axiom called
(S⊗-dist) that states the compatibility of the sum with regard to the tensor, in a similar way as in
additive categories.

• A natural transformation τX := 〈π0 ◦π0, π0 ◦π1 +π1 ◦π0〉S : S2X → SX that keeps the constant factor
on the left and sum the two order 1 factors on the right. I will not give the details but we can show
that it is well defined using associativity and compatibility of addition with regard to composition.

Those constructions allow to define L : SX ⊗ SY S(X ⊗ SY) S2(X ⊗ Y) S(X ⊗ Y)Φ1 SΦ0 τ

that “double distributes the two pairs and stash the order two term” (note that Φ0 could have been applied
before Φ1 for the same outcome). Then the reasoning described above is framed abstractly by the following
categorical diagram.

!SX0⊗!SX1 !(SX0 & SX1) !S(X0 &X1)

SY0 ⊗ SY1 S(Y0 ⊗ Y1)

Df⊗Dg

(m2)−1 !〈Sp0,Sp1〉S

D(f⊗g)

L

We can show that ι0 : X → SX and τX : S2X → SX gives to S the structure of a Monad. Monads are
the dual notion of comonads and are defined as below.

Definition 28. A monad (M, η, µ) on L is a functor M : L → L together with two natural transformations
ηA : A→ MA and µA : M2A→ MA such that the following diagrams commute.

M3A M2A

M2A !A

µMA

MµA

µA

µA

MA M2A MA

MA

ηMA

µA

MηA

Theorem 3. (S, ι0, τ) is a monad.

Definition 29. Similarly to comonads, any monad M on L induces a category LM called the Kleisli category
of the monad where LM(X,Y) = L(X,MY) (same as for comonads but M is on the right). There is also
a faithfull functor KM : L → LM. I will not give the exact constructions as they are quite similar to the
constructions of the comonads.

Those categories are extensively studied in semantic. The reason is that they model effects. For example,
the Option type in programming language (an element of Option X is either Some(x) where x ∈ X or None)
is a monad. The Kleisli category of this monad models computations that can either terminate correctly (by
outputting Some(result)) or raise an exception (by outputting None). There are also monads that models
memory, non determinism, randomness, etc... It suggests that differentiation might be an effect too. As a
result, most of the last part of the internship was centered around the study of LS, see Section 6.

4.5 The axioms of coherent differentiation
Those diagrams turned out to corresponds to the elementary properties that derivation should follows, and
their interpretation coincides with the interpretion of the diagram required in DiLL. I will not give the
diagram themselves, rather their interpretation.

(∂-lin) Two axioms that give the interactions between ∂ and ι0/τ . They state that the derivative of a function
is linear. The first one (∂-lin-1) ensures that f ′(x).0 = 0 and the second one (∂-lin-2) ensures that
f ′(x).(u1 + u2) = f ′(x).u1 + f ′(x).u2.

(∂-chain) Two axioms that give the interactions between ∂ and der/dig The axiom (∂-chain-1) states that the
derivative of a linear function is the function itself. The axiom (∂-chain-2) states the chain rule.

15

(∂-Leibniz) Two axioms that give the interaction between ∂ and wk/ctr. The axiom (∂-Leibniz-1) states that the
derivative of a constant function is null. The axiom (∂-Leibniz-2) is the Leibniz rule, and is equivalent
to diagram motivated in Section 4.4.

(∂-Schwarz) One axiom that gives the interaction of ∂ with itself. This axiom states the Schwarz rule.
Just as an example, here is the axiom (∂-lin).

(∂-lin)
!SX S!X

SX

∂X

derSX

SderX

!SX S!X

SX SY

∂X

derSX
SderX

S(f◦der)

Sf

How does this rule says anything about the derivative of a linear function ? Let us plug a morphism of the
shape Sf at the end of the diagram. Then by functoriality of S, Sf ◦ Sder = S(f ◦ der).
Recall that if f : X → Y , then f ◦ der :!X → Y can be interpreted as the linear function that maps

an element x ∈ X to f(x) ∈ Y . Thus, thanks to our interpretation of ∂, the the top path of the diagram
S(f ◦der) ◦∂X consists in a morphism that maps a pair (x, u) to the first order development (f(x), f ′(x).u).
On the other hand, the bottom path Sf ◦ derSX consists in the linear function that maps a pair (x, u) to
the pair (f(x), f(u)). So the diagram above interprets as: “if f is a linear function, for any x, u ∈ X that
are summable, f ′(x).u = f.u”.

5 Differentiation in differential linear logic is a particular case of
coherent differentiation

The first objective of the internship was to show that the structure of a differential categories induces a
structure of coherent differentiation. The goal behind this was threefold. Firstly, it is a nice starting point
for an internship, as it allowed me to hone my understanding of both models of differential linear logic and
coherent differentiation. Secondly, it ensures that coherent differentiation is a generalization of differential
categories, not a divergent notion. Finally, it implies that understanding coherent differentiation might
bring some insights to differential categories too.
I already showed that the sum in additive categories induce a summability structure (see Results 1 and 2)

and that any differential operator d :!X ⊗ X → X induces a candidate for coherent differentiation (see
Result 4). What remains is to check the various axioms of coherent differentiation. Unsurprisingly, each
axiom on ∂ ends up being a consequence of its counterpart on d. For example, the axiom (∂-chain-1) that
states that “the derivative of a linear function is the function itself” is a consequence of the interaction
between d and der that states the same idea. The only exceptions are the two the axioms (∂-lin) that have
a more structural counterpart expressed in the fact that dCoh is defined from d with a dereliction (so, by
forgetting the linearity in the second coordinate).
The proof is conceptually not that hard, but many technicalities arose. Consequently, the full redacted

proof is 25 pages long. Obviously, I will not write everything down here. I will rather exhibit the proof
structure through the example of (∂-chain-1), as this rule is probably the easiest one that still contains some
structural arguments. The first crucial step was to show that this rule was equivalent to a rule about dCoh.

Result 5. For any summability structure and morphism ∂ that follows (∂-local), the diagram (∂-lin) is
equivalent to

!SX !X

!X X

dCoh
X

!π1 derX

derX

Proof. By joint monicity of π0, π1, the diagram (∂-lin) holds if and only if the diagram below on the left
holds for any i ∈ {0, 1}. This diagram admits the diagram chase on the right.

16

!SX S!X

SX X SX

derSX

∂X

SderX

πi πi

!SX S!X

!X !X

SX X X SX

derSX

∂X

!πi

(a) SderX

πi

(b)

derX derX

πi πi

The commutation (a) is the naturality of der and the commutation (b) is the naturality of πi. This reduced
diagram trivially holds for i = 0 using that π0 ◦ ∂ =!π0. The induced diagram for i = 1 on the other hand
is exactly the diagram of the result, using that π1 ◦ ∂ = dCoh.

This first step is crucial, because this diagram is already much closer to its counterpart on d. Here is a
side by side comparison.

!X &X !X

!X X

dCoh
X

!p1 derX

derX

!X ⊗X !X

1⊗X X

dX

wkX⊗idX derX

λ

The biggest difference is that the “structural work” is done on & on the left and on ⊗ on the right.
Fortunately, recall that the Seely isomorphisms relate those two structures.

Result 6 (Rewriting the projections). The following diagrams commute

!(X & Y) !X

!X&!Y !X ⊗ 1

(m2)−1

!p0

id!X⊗wkY

ρ

!(X Y) !Y

!X⊗!Y 1⊗!Y

(m2)−1

!p1

wkX⊗id!Y

λ

Proof. I do the proof for the second diagram. Unfolding the definition of the weakening (recall Remark 5)
leads up to the following diagram chase.

!(X & Y) !Y

!(>& Y)

!X⊗!Y !>⊗!Y 1⊗!Y

p1

(m2)−1

!(εX&id!Y)

(a) (b)

(m2)−1

!p1

!εX⊗id!Y m0−1

λ

The commutation (a) is the naturality of m2, the commutation (b) is one of the diagrams that ensures that
(!,m0,m2) is a symetric monoidal functor. The triangle at the top can be directly computed.

We now have all of the ingredients necessary to prove that (∂-chain-1) holds.

Result 7. The diagram of Result 5 commutes, so (∂-chain-1) holds.

Proof. We perform the following diagram chase.

!(X &X) !X⊗!X !X ⊗X !X

!X 1⊗!X 1⊗X X

(m2)−1

!p1 (a)

!X⊗derX

wkX⊗id!X (b)

dX

wkX⊗idX (c) derX

λ−1 id1⊗derX λ

The commutation (a) comes from Result 6, the commutation (b) is the functoriality of ⊗, and the commu-
tation (c) is the linear rule in models of differential linear logic.

17

To sum up, I proved that the different axioms of coherent differentiation hold by using the following proof
method.

• I proved that all of the axioms of coherent differentiation are equivalent to axioms on the derivation
operator dCoh that is introduced by (∂-local), as in Result 5

• Those axioms are always similar to their counterpart in differential categories, except that the struc-
tural work is done on & rather than on ⊗. Fortunately I showed that the properties of the Seely
isomorphisms stated in Definition 15 close the bridge between those two worlds, as in Result 6.

• I wrapped everything up using basic properties such as naturality and functoriality, as in Result 7.
I cannot resist to give one last structural commutation as this one is particularly insightful on the fact

that the Seely isomorphisms lift the structure of the Cartesian product & under ! to give to the tensor ⊗ a
structure similar to a Cartesian product on the objects of shape !X, accordingly to Fact 1 and Remark 5.

!X !X⊗!X

!(Y0 & Y1) !Y1⊗!Y1

!〈f0,f1〉

ctrX

!f0⊗!f1

(m2)−1

6 Distributive laws, distributive laws everywhere
In his paper, Ehrhard noticed that all of the concrete instances of summability structure he found in the
various models consisted in a functor S = I (_ where I = 1 & 1. The monads of this shape are said to
be “right adjoints” to a comonad of shape S = _ ⊗ I, a relation written S a S that I will not detail here.
Ehrhard then showed that this relation relates coherent differentiation on S to what is called a coalgebra on
I, that is a morphism δ : I →!I with some properties. It is somewhat folklore in the field that under those
conditions, the Kleisli category of S are still models of linear logic, as it was already answered by Girard in
a particular example. The initial goal of this last part of the internship was to make a definitive proof of
this statement.
In parallel, Ehrhard noticed that the rules (∂-lin) and (∂-chain) made ∂ what is called a distributive law

from the monad S to the comonad !, a notion introduced a while ago by Beck [2] and quite studied in
some modern fields of semantic, see [14] for example. I then noticed that a similar notion of distributive
law existed, this time from a comonad to another comonad. This notion was surprisingly very close to the
commutations required on δ. This is when I noticed that Ehrhard implicitely showed in his paper that the
adjunction S a S carries distributive laws ∂ from the monad S to the comonad ! to distributive laws from the
comonad S to the comonad !, and that the existence of such distributive law is equivalent to the existence
of a coalgebra δ.
The fact that the kleisli category LS is a model of linear logic thus seemed to hint that LS should be a

model of a linear logic as well (and that a proof of the first statement should carry to the second through
an adjunction). So I decided to devise some generic conditions under which the Kleisli category of a monad
(or a comonad) is a model of linear logic to make everything clearer.
Recall that a model of linear logic L is characterized by nothing more than the existence of some functors

together with the existence of some natural transformations that follow some commutations: a functor ⊗
together with four natural transformations α, λ, ρ, γ, a functor ! together with two natural transformations
der, dig, and two natural transformations m0 : > →!1 and m2

X,Y :!X⊗!Y →!(X & Y). Finally, there are
two universal mapping properties (the Cartesian product & and the closure with regard to ⊗). I will not
talk about those here, but they can also be looked upon this point of view using the fact that giving an
universal mapping property is the same as giving two functors and two natural transformations (thanks to
the notion of adjunction).
Now let us assume that we can extend those functors to LS in the sense of Definition 30 below and that

we can extend those natural transformations in the sense of Definition 31.

Definition 30. Given a monad H on a category C and a monad K on a category D, a functor F̂ : CH → DK

lifts the functor F : C → D to the Kleisli categories if for any object X of C, F̂X = FX, and if for any
morphism f ∈ L(X,Y), F̂ (KH(f)) = KK(Ff). In other word, “F̂ coincides with F on C”.

18

Definition 31. Take two functors F,G : C → D with some extensions F̂ , Ĝ : CH → DK. Given a natural
transformation α : F ⇒ G, we can define a family of morphisms

KK(α) := (KK(αX))X ∈ DK(F̂X, ĜX)

We say that α extends to F̂ and Ĝ if KK(α) is a natural transformation F̂ ⇒ Ĝ.

Then all the commutations on the natural transformations KS(.) would be obtained for free using the
functoriality of KS. So LS would “inherits” from L the necessary structure to be a model of linear logic. The
litterature is already on point on the necessary and sufficient conditions that allows to extend a functor, see
[13] for example.

Definition 32. A distributive law from a functor F to two monads (H, ηH, µH) and (K, ηK, µK) is a natural
transformation λ : FH⇒ KF such that the two diagrams commute.

(Lift-Unit)
FX FHX

KFX
ηK

FηH

λ (Lift-Sum)
FH2X KFHX K2FX

FHX KFX

µH

λHX KλX

µK

λ

We write (F, λ) : (C,H)→ (D,K) if λ is a distributive law of F on H and K

This notion is also called distributive law, because a distributive law from a monad M to a comonad ! is
in fact a distributive law from the functor F =! to the monads H = K = M that fulfills some additional com-
mutations. This intersection of terminology was somewhat troublesome because it made my bibliographic
work much harder.

Theorem 4. There is a bijection between the set of functors F̂ : CH → DK that extends F and the set of
distributive laws λ : FH⇒ KF

However, I did not see anything in the litterature (at first) that characterizes when a natural transforma-
tion extends to the Kleisli category. Surprisingly, I discovered during my internship this very straightforward
characterization.

Definition 33. Take (F, λF), (G,λG) : (C,H) → (D,K) two distributive laws. A morphism of distributive
laws α : (F, λF)→ (G,λG) is a natural transformations α : F ⇒ G that verifies the following diagram

FH GH

KF KG

λF

αH

λG

Kα

Result 8. Take (F, λF), (G,λG) : (C,H) → (D,K) two distributive laws with associated extension F̂ , Ĝ.
Take α : F ⇒ G a natural transformation. The the following are equivalent:
(1) α : (F, λF)→ (G,λG) is a morphism of distributive laws

(2) α extends to the kleisli category, in other words KK(α) : F̂ ⇒ Ĝ is a natural transformation

The proof is quite simple (just unfold the definitions and use naturality), yet this result provides a powerful
toolbox to extend natural transformations. So it had to be an already existing notion. It turns out to be the
case: the notion of morphism of distributive law is introduced in a more abstract setting in [16]. Besides,
an article by Power and Watabane [14] brought this notion to the semantic community. A recent discussion
with Paul André Meliès suggested that this fact is somewhat folklore in some communities, but also that
this notion seems to be somewhat underutilized in concrete settings such as mine. So the conclusions I draw
below seem to be new and are quite enlightening.

• Applying the method to the ressource comonad gives back the notion of distributive law between a
monad and a comonad. For example, in the setting of coherent differentiation, (∂-lin) are the rules
required for ∂ to be a distributive law between the monad S and the functor !, and (∂-chain) are the
rules required to extend der and dig.

19

• The functor ⊗ extends to LM if and only if there exists a distributive law λ⊗X,Y : MX ⊗ MX →
M(X ⊗ Y). Interestingly, the commutations required to extend the natural transformations α, λ, ρ, γ
are exactly the commutations that states that (M, η, λ⊗) is a lax symetric monoidal functor from
(L,⊗, 1) to itself. Adding the commutations required for λ⊗ to be a distributive laws exactly gives
the conditions required to makes M what is called a symetric monoidal monad. This notion has
been developped independently precisely to show when the Kleisli category of a monad inherits the
structure of a symetric monoidal category, see [10]. Besides, S precisely fulfills those conditions for
λ⊗ = L (defined in Section 4.4). Thus LS inherits from L the structure of a symetric monoidal
category.

• Finally, it turns out that in the setting of coherent differentiation, the conditions to extend m0 and
m2 are exactly the two (∂-Leibniz) axioms.

To conclude, I built some generic tools that exhibit that the axioms of coherent differentiation (excluding
the Schwarz rule) turn out to be the necessary and sufficient conditions to ensures that LS inherits from L
the structure of a model of linear logic. So the abstract principles of first order differential calculus turns out
to be closely tied to the very generic notion of structure extension applied to the specific monad (S, ι0, τ).
There is dually a notion of distributive law from a functor to two comonads, as well as similar notion of

morphism between such distributive laws. Applying this notion to the comonad _⊗I should solve the initial
goal of showing that the Kleisli category of this comonad is a model of linear logic, but I was a bit short on
time so I could not write it down yet. Besides, I think that the adjunction S a S should canonically relate
distributive laws to monads and their morphisms with distributive laws to comonads and their morphisms.
Most of this work is already implicitely done in Ehrhard’s paper.

7 Conclusion
To sum up most of my internship, I showed in Section 5 that coherent differentiation is a generalization of
differential categories and that its axioms except (∂-lin) are in a one to one correspondence to the axioms on
differential categories. I built in Section 6 some generic tools that, when applied to coherent differentiation,
exhibit that those axioms (excluding the Schwarz rule) turn out to be the necessary and sufficient conditions
to ensures that LS inherits from L the structure of a model of linear logic.

Plan for future work Recall that all of the concrete instances of summability structure Ehrhard found
in the various models actually consists in the functor S = 1 & 1 (_. A natural question is whether or not
a summability structure is always of this shape. A step in the right direction would be to find instances of
Monads M that are not of shape 1 & 1 (_ such that M follows the properties discussed in Section 6, even
if they does not correspond to a notion of differentiation. But those considerations require to learn a bunch
of different models, this is why the question was not studied during the internship.
Finally, we expect that coherent differentiation might relate to the growing field of automated differen-

tiation, used in machine learning. The difference is that automated differentiation only differentiates with
regard to a type of real numbers, while coherent differentiation differentiates with regard to everything
(which is admittedly a weird thing). Further work has to be done in order to relate those two fields, as it
could provide an exciting application

References
[1] Davide Barbarossa and Giulio Manzonetto. “Taylor Subsumes Scott, Berry, Kahn and Plotkin”. In:

Proc. ACM Program. Lang. 4.POPL (Dec. 2019). doi: 10.1145/3371069. url: https://doi.org/
10.1145/3371069.

[2] Jon Beck. “Distributive laws”. In: Seminar on Triples and Categorical Homology Theory. Ed. by B.
Eckmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1969, pp. 119–140. isbn: 978-3-540-36091-9.

[3] R. F. Blute et al. Differential Categories Revisited. 2018. doi: 10.48550/ARXIV.1806.04804. url:
https://arxiv.org/abs/1806.04804.

20

https://doi.org/10.1145/3371069
https://doi.org/10.1145/3371069
https://doi.org/10.1145/3371069
https://doi.org/10.48550/ARXIV.1806.04804
https://arxiv.org/abs/1806.04804

[4] Thomas Ehrhard. Coherent differentiation. 2021. doi: 10.48550/ARXIV.2107.05261. url: https:
//arxiv.org/abs/2107.05261.

[5] Thomas Ehrhard. “Finiteness spaces”. In: Mathematical Structures in Computer Science 15.4 (July
2005). 32 pages, pp. 615–646. doi: 10.1017/S0960129504004645. url: https://hal.archives-
ouvertes.fr/hal-00150276.

[6] Thomas Ehrhard and Laurent Regnier. “The differential lambda-calculus”. In: Theoretical Computer
Science 309.1-3 (Dec. 2003). 41 pages, pp. 1–41. doi: 10.1016/S0304- 3975(03)00392- X. url:
https://hal.archives-ouvertes.fr/hal-00150572.

[7] Jean-Yves Girard. “Linear logic”. In: Theoretical Computer Science 50.1 (1987), pp. 1–101. issn:
0304-3975. doi: https : / / doi . org / 10 . 1016 / 0304 - 3975(87) 90045 - 4. url: https : / / www .
sciencedirect.com/science/article/pii/0304397587900454.

[8] Jean-Yves Girard. “The system F of variable types, fifteen years later”. In: Theoretical Computer
Science 45 (1986), pp. 159–192. issn: 0304-3975. doi: https://doi.org/10.1016/0304-3975(86)
90044-7. url: https://www.sciencedirect.com/science/article/pii/0304397586900447.

[9] G.M Kelly. “On MacLane’s conditions for coherence of natural associativities, commutativities, etc.”
In: Journal of Algebra 1.4 (1964), pp. 397–402. issn: 0021-8693. doi: https : / / doi . org / 10 .
1016/0021-8693(64)90018-3. url: https://www.sciencedirect.com/science/article/pii/
0021869364900183.

[10] Anders Kock. “Monads on symmetric monoidal closed categories”. In: Archiv der Mathematik 21
(1970), pp. 1–10.

[11] Saunders Mac Lane. “Natural associativity and commutativity”. In: Rice University Studies (1963).

[12] Paul-André Melliès. “CATEGORICAL SEMANTICS OF LINEAR LOGIC”. In: 2009.

[13] Philip S. Mulry. “Lifting theorems for Kleisli categories”. In: Mathematical Foundations of Program-
ming Semantics. Ed. by Stephen Brookes et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 304–319. isbn: 978-3-540-48419-6.

[14] John Power and Hiroshi Watanabe. “Combining a monad and a comonad”. In: Theoretical Computer
Science 280.1 (2002). Coalgebraic Methods in Computer Science, pp. 137–162. issn: 0304-3975. doi:
https://doi.org/10.1016/S0304-3975(01)00024-X. url: https://www.sciencedirect.com/
science/article/pii/S030439750100024X.

[15] R. A. G. Seely. “Linear Logic, ∗-Autonomous Categories and Cofree Coalgebras”. In: Categories in
Computer Science and Logic. Vol. 92. Contemporary Mathematics. Boulder, Colorado: American
Mathematical Society, 1989, pp. 371–382.

[16] Ross Street. “The formal theory of monads”. In: Journal of Pure and Applied Algebra 2.2 (1972),
pp. 149–168. issn: 0022-4049. doi: https://doi.org/10.1016/0022- 4049(72)90019- 9. url:
https://www.sciencedirect.com/science/article/pii/0022404972900199.

21

https://doi.org/10.48550/ARXIV.2107.05261
https://arxiv.org/abs/2107.05261
https://arxiv.org/abs/2107.05261
https://doi.org/10.1017/S0960129504004645
https://hal.archives-ouvertes.fr/hal-00150276
https://hal.archives-ouvertes.fr/hal-00150276
https://doi.org/10.1016/S0304-3975(03)00392-X
https://hal.archives-ouvertes.fr/hal-00150572
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://doi.org/https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/https://doi.org/10.1016/0304-3975(86)90044-7
https://www.sciencedirect.com/science/article/pii/0304397586900447
https://doi.org/https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/https://doi.org/10.1016/0021-8693(64)90018-3
https://www.sciencedirect.com/science/article/pii/0021869364900183
https://www.sciencedirect.com/science/article/pii/0021869364900183
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00024-X
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://doi.org/https://doi.org/10.1016/0022-4049(72)90019-9
https://www.sciencedirect.com/science/article/pii/0022404972900199

Appendix: basic category theory definition
I assumed in this report that the reader knows the very basic definitions of a category (the . This appendix
is here just in case to give a refresher on those notions.

Definition 34 (Category). A category L consists in
• In a set Obj(L) called the set of objects of L
• For any pair of objects A,B ∈ Obj(L), a set L(A,B) called the set of morphisms from A to B.

Such that :
• For any object A, there exists a morphism idLA ∈ L(A,A)

• For any morphisms f ∈ L(A,B) and g ∈ L(B,C), there exists a morphism g ◦L f ∈ L(A,C)

• For any f ∈ L(A,B), f ◦L idLA = idLB ◦L f = f

• For any f ∈ L(A,B), g ∈ L(B,C) and h ∈ L(C,D), h ◦L (g ◦L f) = (h ◦L g) ◦L f

Remark 8. I directly introduce Obj(L) and L(X,Y) as sets rather than classes because I do not want to
deal with foundational issues here (the set of all set is not defined, the category of all category is not defined,
etc).

Notations. When there is no doubt about the category L considered, I will write ◦ for ◦L and id for idL.
Besides, I will often write f : A→ B for f ∈ L(A,B) (taking inspiration from functional notations).

Definition 35 (Isomorphism). A morphism f : A → B is an isomorphism if there exists a morphism
g : B → A such that f ◦ g = idB and g ◦ f = idA.

Definition 36 (Functor). Given two categories C and D, a functor F : C → D consists in:
• A function FObj : Obj(C)→ Obj(D)

• For any objects A,B ∈ Obj(C), a function FA,B : C(A,B) → D(FObj(A), FObj(B)) such that
FA,A(idCA) = idDFObj(A) and FA,C(f ◦C g) = FA,B(f) ◦D FB,C(g).

We will often write F for both FObj and FA,B (depending on what it is applied, we can infer if we actually
use FObj or FA,B).

Definition 37 (Product category). Given two categories C and D, we can define a category C &D where:
• Obj(C &D) := {(A1, A2) | A1 ∈ Obj(C) and B1 ∈ Obj(D)}
• (C &D)((A1, A2), (B1, B2)) := {(f, g) | f ∈ C(A1, B1) and g ∈ D(A2, B2)}
• The identity is defined as id(A1,A2) := (idCA1

, idDA2
) and the composition is defined as (g1, g2)◦(f1, f2) :=

(g1 ◦C f1, g2 ◦D f2). We can check that this is indeed a category.

Definition 38 (Endofunctor, bifunctor). We call an endofunctor any functor of shape F : L → L. We call
a bifunctor any functor of shape F : C &D → L.

A very powerful and intuitive way of showing equalities between morphisms in categories is to use what
are called commutative diagrams. For example, the equality h = g ◦ h can be represented as the diagram.

X Y

Z

f

h
g

More formally, a diagram is an oriented graph where vertices are indexed by objects and every edges from
X to Y are indexed by a morphism of L(X,Y). A diagram states that for any objects X,Y and any path
from X to Y , the morphisms obtained by the successive compositions are equal.
Diagrams can be combined, doing what is called a diagram chase. The diagram below is an example of

a diagram chase.

22

X1 Y1 Z1

X2 Y2 Z2

f1

hX hY

g1

hZ

f2 g2

This chase states that g2 ◦ f2 ◦hX = hZ ◦ g1 ◦ f1 using the fact that f2 ◦hX = hY ◦ f1 and g2 ◦hY = h2 ◦ g1.

Definition 39 (Natural transformation). A natural transformation α between two functors F,G : C → D,
written α : F ⇒ G, is a family of morphisms (αX)X∈Obj(C) where αX ∈ D(FX,GX) such that for any
objects X,Y of C and f ∈ C(X,Y), the following diagram commutes.

FX FY

GX GY

F (f)

αX αY

G(f)

When the morphisms are all isomorphisms, α is called a natural isomorphism.

23

	A (brief) introduction to categorical semantic
	A small and non exhaustive reminder on proof systems
	Why categories are natural viewpoints on semantic
	Exhibiting the structure that must have

	An introduction to linear logic
	Symetric monoidal categories
	Deducing the syntax from the semantic
	About the weakening and contraction rules
	The Seely isomorphisms
	The structure of !

	Differentiation in some models of linear logic
	Coherent differentiation
	Pre-summability structure
	Summability structure
	The differentiation operator
	The monad structure on S
	The axioms of coherent differentiation

	Differentiation in differential linear logic is a particular case of coherent differentiation
	Distributive laws, distributive laws everywhere
	Conclusion

