Cartesian Coherent Differential Categories

Thomas Ehrhard Aymeric Walch

IRIF
June 29, 2023

Plan

(1) Differential λ-calculus and (Cartesian) Differential Categories
(2) Coherent differentiation
(3) Sum and differentiation in a partial setting

4 Compatibility with the Cartesian product
(5) Conclusion and perspectives

Differential λ-calculus

A function $f: E \rightarrow F$ is differentiable in x if

$$
f(x+u) \simeq f(x)+f^{\prime}(x) \cdot u
$$

With $f^{\prime}(x): E \rightarrow F$ a linear map.

Differential λ-calculus

A function $f: E \rightarrow F$ is differentiable in x if

$$
f(x+u) \simeq f(x)+f^{\prime}(x) \cdot u
$$

With $f^{\prime}(x): E \rightarrow F$ a linear map.
Differential in terms
If $\Gamma, x: A \vdash P: B$ and $\Gamma \vdash Q: A$

$$
\Gamma, x: A \vdash \frac{\partial P}{\partial x} \cdot Q: B
$$

substitute one occurrence of x by Q in P.

Differential λ-calculus

A function $f: E \rightarrow F$ is differentiable in x if

$$
f(x+u) \simeq f(x)+f^{\prime}(x) \cdot u
$$

With $f^{\prime}(x): E \rightarrow F$ a linear map.
Differential in terms
If $\Gamma, x: A \vdash P: B$ and $\Gamma \vdash Q: A$

$$
\left\ulcorner, x: A \vdash \frac{\partial P}{\partial x} \cdot Q: B\right.
$$

substitute one occurrence of x by Q in P.
Taylor Expansion

$$
(\lambda x . P) Q \mapsto \sum_{n=0}^{\infty} \frac{1}{n!}(\frac{\partial^{n} P}{\partial x^{n}} \cdot(\underbrace{Q, \ldots, Q}_{\mathrm{n} \text { times }}))[0 / x]
$$

Differential Categories and Cartesian Differential Categories

Differential
 Category ${ }^{1} \mathcal{L}$ (Linear Logic)

[^0]
Differential Categories and Cartesian Differential Categories

Recall: $\mathcal{L}_{!}(X, Y):=\mathcal{L}(!X, Y)$ is a CCC
\(\left.\begin{array}{|c|c|c|}\hline Differential

Category{ }^{1} \mathcal{L}

(Linear Logic)\end{array}\right) \quad\) Kleisli \longrightarrow| Cartesian Differential |
| :---: |
| Category ${ }^{2} \mathcal{C}$ |
| (first order λ-calculus) |

[^1]
Differential Categories and Cartesian Differential Categories

Recall: $\mathcal{L}_{!}(X, Y):=\mathcal{L}(!X, Y)$ is a CCC
\(\left.\begin{array}{|c|c|c|}\hline Differential

Category{ }^{1} \mathcal{L}

(Linear Logic)\end{array}\right) \quad\) Kleisli \longrightarrow| Cartesian Differential |
| :---: |
| Category ${ }^{2} \mathcal{C}$ |
| (first order λ-calculus) |

[^2]
Differential Categories and Cartesian Differential Categories

Recall: $\mathcal{L}_{!}(X, Y):=\mathcal{L}(!X, Y)$ is a CCC

> Cartesian Differential Category ${ }^{2} \mathcal{C}$ (first order λ-calculus)

[^3]
Differential Categories and Cartesian Differential Categories

Recall: $\mathcal{L}_{!}(X, Y):=\mathcal{L}(!X, Y)$ is a CCC

> | Cartesian Differential |
| :--- |
| Category ${ }^{2} \mathcal{C}$ |
| (first order λ-calculus) |

- Compatibility with the CCC struture: models of differential λ-calculus Bucciarelli, Ehrhard, and Manzonetto 2010
- Models for Taylor expansion (qualitative setting) Manzonetto 2012 Example: relation model

[^4]
(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$
A Differential Category \mathcal{L} must be additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}$ (additive)

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$
A Cartesian Differential Category \mathcal{C} must be left additive

- $\mathcal{C}(X, Y)$ is a commutative monoiid
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}$ (additive)

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$

A Differential Category \mathcal{L} must be additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}($ additive $)$
Non-deterministic: true, false $\in \mathcal{L}(1,1 \oplus 1)$. What is true + false ?

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$

A Differential Category \mathcal{L} must be additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}($ additive $)$
Non-deterministic: true, false $\in \mathcal{L}(1,1 \oplus 1)$. What is true + false ?

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$

A Differential Category \mathcal{L} must be additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}$ (additive)
Non-deterministic: true, false $\in \mathcal{L}(1,1 \oplus 1)$. What is true + false ?
- If $(\lambda x . P) Q$ is well typed and reduces to a variable: only one member of $\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\partial^{n} P}{\partial x^{n}} \cdot(Q, \ldots, Q)\right)[0 / x]$ is non zero.

(Left) additivity and non determinism

Leibniz: $f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v$

A Differential Category \mathcal{L} must be additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $\left(f_{1}+f_{2}\right) \circ g=f_{1} \circ g+f_{2} \circ g$ (left additive)
$-h \circ\left(f_{1}+f_{2}\right)=h \circ f_{1}+h \circ f_{2}$ (additive)
Non-deterministic: true, false $\in \mathcal{L}(1,1 \oplus 1)$. What is true + false ?
- If $(\lambda x . P) Q$ is well typed and reduces to a variable: only one member of $\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\partial^{n} P}{\partial x^{n}} \cdot(Q, \ldots, Q)\right)[0 / x]$ is non zero.
- Interesting models \mathcal{L} of LL in which $\mathcal{L}_{!}$is a category with differentiable morphisms, with a partial addition

Plan

(1) Differential λ-calculus and (Cartesian) Differential Categories

(2) Coherent differentiation

(3) Sum and differentiation in a partial setting

(4) Compatibility with the Cartesian product

Our work in this paper

[^5]
Our work in this paper

[^6]
Our work in this paper

Models of a first order calculus with differentiation (subject reduction)

[^7]
Comparison with tangeant category

- Tangeant Category: distinguish point/vector, total sum on vectors
- Coherent Differential Category: no distinction point/vector, but restricted sum

Plan

(1) Differential λ-calculus and (Cartesian) Differential Categories
(2) Coherent differentiation
(3) Sum and differentiation in a partial setting
(4) Compatibility with the Cartesian product
(5) Conclusion and perspectives

A categorical axiomatization of partial sum

A structure for partial sum
$\widetilde{\mathrm{D}}: \mathbf{O b j}(\mathcal{C}) \rightarrow \mathbf{O b j}(\mathcal{C}): \widetilde{\mathrm{D}} X=\left\{\left\langle\left\langle x_{0}, x_{1}\right\rangle\right| \mid x_{0}+x_{1}\right.$ is defined $\}$

- $\pi_{0}, \pi_{1} \in \mathcal{C}(\widetilde{\mathrm{D}} X, X)$ jointly monic

A categorical axiomatization of partial sum

A structure for partial sum
$\widetilde{\mathrm{D}}: \mathbf{O b j}(\mathcal{C}) \rightarrow \mathbf{O b j}(\mathcal{C}): \widetilde{\mathrm{D}} X=\left\{\left\langle\left\langle x_{0}, x_{1}\right\rangle\right| \mid x_{0}+x_{1}\right.$ is defined $\}$

- $\pi_{0}, \pi_{1} \in \mathcal{C}(\widetilde{\mathrm{D}} X, X)$ jointly monic
- Sum $\sigma \in \mathcal{C}(\widetilde{\mathrm{D}} X, X) \sigma:\left\langle\left\langle x_{0}, x_{1}\right\rangle \mapsto x_{0}+x_{1}\right.$

A categorical axiomatization of partial sum

A structure for partial sum
$\widetilde{\mathrm{D}}: \mathbf{O b j}(\mathcal{C}) \rightarrow \mathbf{O b j}(\mathcal{C}): \widetilde{\mathrm{D}} X=\left\{\left\langle\left\langle x_{0}, x_{1}\right\rangle\right| \mid x_{0}+x_{1}\right.$ is defined $\}$

- $\pi_{0}, \pi_{1} \in \mathcal{C}(\widetilde{\mathrm{D}} X, X)$ jointly monic
- Sum $\sigma \in \mathcal{C}(\widetilde{\mathrm{D}} X, X) \sigma:\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle x_{0}+x_{1}$
$f_{0}, f_{1} \in \mathcal{C}(X, Y)$ summable: $\exists\left\langle\left\langle f_{0}, f_{1}\right\rangle\right\rangle \mathcal{C}(X, \widetilde{D} Y)$ s.t. $\pi_{i} \circ\left\langle\left\langle f_{0}, f_{1}\right\rangle=f_{i}\right.$.

$$
x \mapsto\left\langle\left\langle f_{0}(x), f_{1}(x)\right\rangle\right.
$$

A categorical axiomatization of partial sum

A structure for partial sum
$\widetilde{\mathrm{D}}: \mathbf{O b j}(\mathcal{C}) \rightarrow \mathbf{O b j}(\mathcal{C}): \widetilde{\mathrm{D}} X=\left\{\left\langle\left\langle x_{0}, x_{1}\right\rangle\right| \mid x_{0}+x_{1}\right.$ is defined $\}$

- $\pi_{0}, \pi_{1} \in \mathcal{C}(\widetilde{\mathrm{D}} X, X)$ jointly monic
- Sum $\sigma \in \mathcal{C}(\widetilde{\mathrm{D}} X, X) \sigma:\left\langle\left\langle x_{0}, x_{1}\right\rangle \mapsto x_{0}+x_{1}\right.$
$f_{0}, f_{1} \in \mathcal{C}(X, Y)$ summable: $\exists\left\langle\left\langle f_{0}, f_{1}\right\rangle\right\rangle \mathcal{C}(X, \widetilde{D} Y)$ s.t. $\pi_{i} \circ\left\langle\left\langle f_{0}, f_{1}\right\rangle=f_{i}\right.$.

$$
\begin{gathered}
x \mapsto\left\langle\left\langle f_{0}(x), f_{1}(x)\right\rangle\right. \\
x \xrightarrow{\left\langle\left\langle f_{0}, f_{1}\right\rangle\right\rangle} \widetilde{D} Y \\
\vdots \\
f_{0}+f_{1} \cdot \ddots \\
\\
\\
\\
\hline
\end{gathered}
$$

A categorical axiomatization of partial sum

A structure for partial sum
$\widetilde{\mathrm{D}}: \mathbf{O b j}(\mathcal{C}) \rightarrow \mathbf{O b j}(\mathcal{C}): \widetilde{\mathrm{D}} X=\left\{\left\langle\left\langle x_{0}, x_{1}\right\rangle\right| \mid x_{0}+x_{1}\right.$ is defined $\}$

- $\pi_{0}, \pi_{1} \in \mathcal{C}(\widetilde{\mathrm{D}} X, X)$ jointly monic
- Sum $\sigma \in \mathcal{C}(\widetilde{\mathrm{D}} X, X) \sigma:\left\langle\left\langle x_{0}, x_{1}\right\rangle \mapsto x_{0}+x_{1}\right.$
$f_{0}, f_{1} \in \mathcal{C}(X, Y)$ summable: $\exists\left\langle\left\langle f_{0}, f_{1}\right\rangle\right\rangle \mathcal{C}(X, \widetilde{D} Y)$ s.t. $\pi_{i} \circ\left\langle\left\langle f_{0}, f_{1}\right\rangle=f_{i}\right.$.

$$
\begin{aligned}
& x \mapsto\left\langle\left\langle f_{0}(x), f_{1}(x)\right\rangle\right\rangle \\
& X \xrightarrow{\left\langle f_{0}, f_{1}\right\rangle} \widetilde{\mathrm{D}} Y \\
& \begin{array}{cl}
\ddots & \\
f_{0}+f_{1} & \ddots \\
& \\
&
\end{array}
\end{aligned}
$$

$$
\widetilde{\mathrm{D}} X=X \& X(=X \times X) \Longleftrightarrow \text { Cartesian Left Additive Category }
$$

Summability structure

Compatibility with composition
If g_{0} and g_{1} are summable, then $g_{0} \circ f$ and $g_{1} \circ f$ are summable.
$\triangleright 0 \circ f=0$ and $\left(g_{0}+g_{1}\right) \circ f=g_{0} \circ f+g_{1} \circ f$ (left additive)
$-h \circ 0 \equiv 0$ and $h \circ\left(f_{0}+f_{1}\right)=h \circ f_{0} \perp h \circ f_{1}$

Summability structure

Compatibility with composition
If g_{0} and g_{1} are summable, then $g_{0} \circ f$ and $g_{1} \circ f$ are summable.
$\triangleright 0 \circ f=0$ and $\left(g_{0}+g_{1}\right) \circ f=g_{0} \circ f+g_{1} \circ f$ (left additive)
$-h \circ 0 \equiv 0$ and $h \circ\left(f_{0}+f_{1}\right) \equiv h \circ f_{0} \perp h \circ f_{1}$
Left summability structure
Axioms that endows $\mathcal{C}(X, Y)$ with the structure of a partially additive monoid, see Arbib and Manes 1980

Summability structure

Compatibility with composition
If g_{0} and g_{1} are summable, then $g_{0} \circ f$ and $g_{1} \circ f$ are summable.
$\triangleright 0 \circ f=0$ and $\left(g_{0}+g_{1}\right) \circ f=g_{0} \circ f+g_{1} \circ f$ (left additive)
$-h \circ 0 \equiv 0$ and $h \circ\left(f_{0}+f_{1}\right) \equiv h \circ f_{0} \perp h \circ f_{1}$
Left summability structure
Axioms that endows $\mathcal{C}(X, Y)$ with the structure of a partially additive monoid, see Arbib and Manes 1980
\widetilde{D} is not a functor (yet)!

Differentiation

An operator for differentiation
Given $f \in \mathcal{C}(X, Y)$, there is $\widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, \widetilde{\mathrm{D}} Y)$ such that $\pi_{0} \circ \widetilde{\mathrm{D}} f=f \circ \pi_{0}$

$$
\begin{array}{cccc}
\widetilde{\mathrm{D}} f: & \widetilde{\mathrm{D}} X & \rightarrow & \widetilde{\mathrm{D}} Y \\
& \langle x, u\rangle\rangle & \mapsto & \left.\left\langle f(x), f^{\prime}(x) \cdot u\right\rangle\right\rangle
\end{array}
$$

Differentiation

An operator for differentiation
Given $f \in \mathcal{C}(X, Y)$, there is $\widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, \widetilde{\mathrm{D}} Y)$ such that $\pi_{0} \circ \widetilde{\mathrm{D}} f=f \circ \pi_{0}$

$$
\begin{array}{cccc}
\widetilde{\mathrm{D}} f: & \widetilde{\mathrm{D}} \mathrm{X} & \rightarrow & \widetilde{\mathrm{D}} Y \\
& \langle\langle x, u\rangle & \mapsto & \left.\left\langle f(x), f^{\prime}(x) \cdot u\right\rangle\right\rangle
\end{array}
$$

Define $f^{\prime}=\pi_{1} \circ \widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, Y)$

Differentiation

An operator for differentiation
Given $f \in \mathcal{C}(X, Y)$, there is $\widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, \widetilde{\mathrm{D}} Y)$ such that $\pi_{0} \circ \widetilde{\mathrm{D}} f=f \circ \pi_{0}$

$$
\begin{array}{cccc}
\widetilde{\mathrm{D}} f: & \widetilde{\mathrm{D}} \mathrm{X} & \rightarrow & \widetilde{\mathrm{D}} Y \\
& \langle\langle x, u\rangle & \mapsto & \left.\left\langle f(x), f^{\prime}(x) \cdot u\right\rangle\right\rangle
\end{array}
$$

Define $f^{\prime}=\pi_{1} \circ \widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, Y)$
Axioms of differentiation: very structural properties

- \widetilde{D} is a functor (Chain rule)

Differentiation

An operator for differentiation
Given $f \in \mathcal{C}(X, Y)$, there is $\widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, \widetilde{\mathrm{D}} Y)$ such that $\pi_{0} \circ \widetilde{\mathrm{D}} f=f \circ \pi_{0}$

$$
\begin{array}{cccc}
\widetilde{\mathrm{D}} f: & \widetilde{\mathrm{D}} \mathrm{X} & \rightarrow & \widetilde{\mathrm{D}} Y \\
& \langle\langle x, u\rangle\rangle & \mapsto & \left.\left\langle f(x), f^{\prime}(x) \cdot u\right\rangle\right\rangle
\end{array}
$$

Define $f^{\prime}=\pi_{1} \circ \widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, Y)$
Axioms of differentiation: very structural properties

- $\widetilde{\mathrm{D}}$ is a functor (Chain rule)
- π_{0}, π_{1} are linear (h linear if $h^{\prime}(x) \cdot u=h(u)$)
- σ is linear $\left((f+g)^{\prime}=f^{\prime}+g^{\prime}\right)$

Differentiation

An operator for differentiation
Given $f \in \mathcal{C}(X, Y)$, there is $\widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, \widetilde{\mathrm{D}} Y)$ such that $\pi_{0} \circ \widetilde{\mathrm{D}} f=f \circ \pi_{0}$

$$
\begin{array}{cccc}
\widetilde{\mathrm{D}} f: & \widetilde{\mathrm{D}} \mathrm{X} & \rightarrow & \widetilde{\mathrm{D}} Y \\
& \langle\langle x, u\rangle & \mapsto & \left.\left\langle f(x), f^{\prime}(x) \cdot u\right\rangle\right\rangle
\end{array}
$$

Define $f^{\prime}=\pi_{1} \circ \widetilde{\mathrm{D}} f \in \mathcal{C}(\widetilde{\mathrm{D}} X, Y)$
Axioms of differentiation: very structural properties

- $\widetilde{\mathrm{D}}$ is a functor (Chain rule)
- π_{0}, π_{1} are linear (h linear if $h^{\prime}(x) \cdot u=h(u)$)
- σ is linear $\left((f+g)^{\prime}=f^{\prime}+g^{\prime}\right)$
- Leibniz + Schwarz + the differential is linear $=$ naturality !

Define $\iota_{0}, \theta, \mathrm{c}$ and I

$$
\begin{aligned}
\iota_{0} \circ x & =\langle\langle x, 0\rangle\rangle \\
\theta \circ\langle\langle\langle\langle x, u\rangle,,\langle\langle v, w\rangle\rangle\rangle & =\langle\langle x, u+v\rangle\rangle \\
c \circ\langle\langle\langle\langle x, u\rangle,\langle\langle v, w\rangle\rangle\rangle & =\langle\langle\langle\langle x, v\rangle\rangle,\langle\langle u, w\rangle\rangle\rangle \\
\mid \circ\langle\langle x, u\rangle\rangle & =\langle\langle\langle\langle x, 0\rangle,\langle\langle 0, u\rangle\rangle\rangle
\end{aligned}
$$

- $\widetilde{\mathrm{D}}$ is a monad with unit ι_{0} and sum θ (The differential is additive $=$ Leibniz)
- c is natural (Schwarz)
- I is natural (The differential is linear)

Define $\iota_{0}, \theta, \mathrm{c}$ and I

$$
\begin{aligned}
\iota_{0} \circ x & =\langle\langle x, 0\rangle\rangle \\
\theta \circ\langle\langle\langle x, u\rangle,,\langle v, w\rangle\rangle\rangle & =\langle\langle x, u+v\rangle\rangle \\
c \circ\langle\langle\langle x, u\rangle,\langle\langle v, w\rangle\rangle\rangle & =\langle\langle\langle\langle x, v\rangle,\langle\langle u, w\rangle\rangle\rangle \\
\mid \circ\langle\langle x, u\rangle\rangle & =\langle\langle\langle\langle x, 0\rangle,,\langle 0, u\rangle\rangle\rangle
\end{aligned}
$$

- $\widetilde{\mathrm{D}}$ is a monad with unit ι_{0} and sum θ (The differential is additive $=$ Leibniz)
- c is natural (Schwarz)
- I is natural (The differential is linear)

Cartesian Differential Categories
Naturality equations \Longleftrightarrow equations on the differential f^{\prime}. They are exactly the equations of Cartesian Differential Categories.

$$
\text { Cartesian Differential Category } \Longleftrightarrow \widetilde{\mathrm{D}} X=X \& X
$$

Plan

(1) Differential λ-calculus and (Cartesian) Differential Categories
(2) Coherent differentiation
(3) Sum and differentiation in a partial setting
(4) Compatibility with the Cartesian product

(5) Conclusion and perspectives

Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum : $\langle x, y\rangle+\langle u, v\rangle=\langle x+y, u+v\rangle$
- Product and differential: the projections of the cartesian product are linear, $\mathrm{D}\langle f, g\rangle=\langle\mathrm{D} f, \mathrm{D} g\rangle$

Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum : $\langle x, y\rangle+\langle u, v\rangle=\langle x+y, u+v\rangle$
- Product and differential: the projections of the cartesian product are linear, $\mathrm{D}\langle f, g\rangle=\langle\mathrm{D} f, \mathrm{D} g\rangle$

In analysis (and Cartesian Differential Categories)

$$
\partial_{0} f(x, y) \cdot u=f^{\prime}(x, y) \cdot(u, 0)
$$

Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum : $\langle x, y\rangle+\langle u, v\rangle=\langle x+y, u+v\rangle$
- Product and differential: the projections of the cartesian product are linear, $\mathrm{D}\langle f, g\rangle=\langle\mathrm{D} f, \mathrm{D} g\rangle$

In analysis (and Cartesian Differential Categories)

$$
\partial_{0} f(x, y) \cdot u=f^{\prime}(x, y) \cdot(u, 0)
$$

In our setting: strength $\Phi^{0} \in \mathcal{C}\left(\widetilde{\mathrm{D}} X_{0} \& X_{1}, \widetilde{\mathrm{D}}\left(X_{0} \& X_{1}\right)\right)$

$$
\begin{aligned}
\Phi^{0}: & \widetilde{\mathrm{D}} X_{0} \& X_{1} \\
& \rightarrow \\
& \rightarrow\left\langle\widetilde{\mathrm{D}} X_{0} \& \widetilde{\mathrm{D}} X_{1}\right.
\end{aligned} \quad \simeq \tilde{\mathrm{D}}\left(X_{0} \& X_{1}\right)
$$

Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum : $\langle x, y\rangle+\langle u, v\rangle=\langle x+y, u+v\rangle$
- Product and differential: the projections of the cartesian product are linear, $\mathrm{D}\langle f, g\rangle=\langle\mathrm{D} f, \mathrm{D} g\rangle$

In analysis (and Cartesian Differential Categories)

$$
\partial_{0} f(x, y) \cdot u=f^{\prime}(x, y) \cdot(u, 0)
$$

In our setting: strength $\Phi^{0} \in \mathcal{C}\left(\widetilde{\mathrm{D}} X_{0} \& X_{1}, \widetilde{\mathrm{D}}\left(X_{0} \& X_{1}\right)\right)$

$$
\begin{aligned}
& \Phi^{0}: \widetilde{\mathrm{D}} X_{0} \& X_{1} \rightarrow \widetilde{\mathrm{D}} X_{0} \& \widetilde{\mathrm{D}} X_{1} \simeq \widetilde{\mathrm{D}}\left(X_{0} \& X_{1}\right) \\
& \langle\langle\langle x, u\rangle\rangle, y\rangle \mapsto\langle\langle\langle x, u\rangle\rangle,\langle\langle y, 0\rangle\rangle\rangle \quad \mapsto\langle\langle x, y\rangle,\langle u, 0\rangle\rangle
\end{aligned}
$$

Partial derivative of $f \in \mathcal{C}\left(X_{0} \& X_{1}, Y\right): \widetilde{\mathrm{D}}_{0} f \in \mathcal{C}\left(\widetilde{\mathrm{D}} X_{0} \& X_{1}, \widetilde{\mathrm{D}} Y\right)$

$$
\widetilde{\mathrm{D}} X_{0} \& X_{1} \xrightarrow{\Phi^{0}} \widetilde{\mathrm{D}}\left(X_{0} \& X_{1}\right) \xrightarrow{\widetilde{\mathrm{D}} f} \widetilde{\mathrm{D}} Y
$$

Leibniz and Schwarz

Leibniz
In analysis:

$$
f^{\prime}(x, y) \cdot(u, v)=\partial_{0} f(x, y) \cdot u+\partial_{1} f(x, y) \cdot v
$$

In Cartesian Coherent Differential Categories

$$
\widetilde{\mathrm{D}} f \circ \mathrm{c}_{\&}^{-1}=\theta \circ \widetilde{\mathrm{D}}_{0} \widetilde{\mathrm{D}}_{1} f=\theta \circ \widetilde{\mathrm{D}}_{1} \widetilde{\mathrm{D}}_{0} f
$$

Plan

(1) Differential λ-calculus and (Cartesian) Differential Categories

(2) Coherent differentiation
(3) Sum and differentiation in a partial setting
(4) Compatibility with the Cartesian product
(5) Conclusion and perspectives

Takeaway

- Axiomatization of differentiation with partial sums
- Axioms of differentiation: functoriality and naturality
- Nice theory of partial derivatives

TODO list

- Introduce closure to interpret a deterministic differential λ-calculus
- Deal with fixpoints to interpret the Coherent Differential PCF of Ehrhard
- Revisit syntactical Taylor expansion in a coherent setting
- It should provide generic denotational proofs of important results on syntactical Taylor expansion
- Is this construction insigthful for traditional analysis ?

[^0]: ${ }^{1}$ Blute, Cockett, and Seely 2006.
 ${ }^{2}$ Blute, Cockett, and Seely 2009.

[^1]: ${ }^{1}$ Blute, Cockett, and Seely 2006.
 ${ }^{2}$ Blute, Cockett, and Seely 2009.

[^2]: ${ }^{1}$ Blute, Cockett, and Seely 2006.
 ${ }^{2}$ Blute, Cockett, and Seely 2009.

[^3]: ${ }^{1}$ Blute, Cockett, and Seely 2006.
 ${ }^{2}$ Blute, Cockett, and Seely 2009.

[^4]: ${ }^{1}$ Blute, Cockett, and Seely 2006.
 ${ }^{2}$ Blute, Cockett, and Seely 2009.

[^5]: ${ }^{3}$ Blute, Cockett, and Seely 2006.
 ${ }^{4}$ Ehrhard 2023.
 ${ }^{5}$ Blute, Cockett, and Seely 2009.

[^6]: ${ }^{3}$ Blute, Cockett, and Seely 2006.
 ${ }^{4}$ Ehrhard 2023.
 ${ }^{5}$ Blute, Cockett, and Seely 2009.

[^7]: ${ }^{3}$ Blute, Cockett, and Seely 2006.
 ${ }^{4}$ Ehrhard 2023.
 ${ }^{5}$ Blute, Cockett, and Seely 2009.

