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Differential λ-calculus and (Cartesian) Differential Categories

Differential λ-calculus
A function f : E → F is differentiable in x if

f (x + u) ' f (x) + f ′(x) · u

With f ′(x) : E → F a linear map.

Differential in terms
If Γ, x : A ` P : B and Γ ` Q : A

Γ, x : A ` ∂P
∂x · Q : B

substitute one occurrence of x by Q in P.

Taylor Expansion

(λx .P)Q 7→
∞∑

n=0

1
n!

∂nP
∂xn · (Q, . . . ,Q︸ ︷︷ ︸

n times

)

 [0/x ]
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Differential λ-calculus and (Cartesian) Differential Categories

Differential Categories and Cartesian Differential Categories

Recall: L!(X ,Y ) := L(!X ,Y ) is a CCC

Differential
Category1 L
(Linear Logic)

Cartesian Differential
Category2 C

(first order λ-calculus)

Kleisli

I Compatibility with the CCC struture: models of differential λ-calculus
Bucciarelli, Ehrhard, and Manzonetto 2010

I Models for Taylor expansion (qualitative setting) Manzonetto 2012
Example: relation model

1Blute, Cockett, and Seely 2006.
2Blute, Cockett, and Seely 2009.
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Differential λ-calculus and (Cartesian) Differential Categories

(Left) additivity and non determinism

Leibniz: f ′(x , y) · (u, v) = ∂0f (x , y) · u + ∂1f (x , y) · v

A Differential Category L must be additive
I L(X ,Y ) is a commutative monoïd
I (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g (left additive)
I h ◦ (f1 + f2) = h ◦ f1 + h ◦ f2 (additive)

Non-deterministic: true, false ∈ L(1, 1⊕ 1). What is true + false ?
I If (λx .P)Q is well typed and reduces to a variable: only one member

of
∑∞

n=0
1
n!

(
∂nP
∂xn · (Q, . . . ,Q)

)
[0/x ] is non zero.

I Interesting models L of LL in which L! is a category with
differentiable morphisms, with a partial addition
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Coherent differentiation

Our work in this paper

Differential
Category3

(Linear Logic)

Coherent Differential
Category4

(Linear Logic)

Generalizes

Cartesian Differential
Category5

(first order λ-calculus)

Kleisli

Cartesian Coherent
Differential Category
(first order λ-calculus)Generalizes

Kleisli

3Blute, Cockett, and Seely 2006.
4Ehrhard 2023.
5Blute, Cockett, and Seely 2009.
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Category4

(Linear Logic)

Generalizes

Cartesian Differential
Category5

(first order λ-calculus)

Kleisli

Cartesian Coherent
Differential Category
(first order λ-calculus)Generalizes

Kleisli

Models of a first order calculus with differentiation (subject reduction)

3Blute, Cockett, and Seely 2006.
4Ehrhard 2023.
5Blute, Cockett, and Seely 2009.
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Coherent differentiation

Comparison with tangeant category

Tangeant
Categories

Cartesian 
Coherent 

Differential 
Categories

Cartesian 
Differential 
Categories

I Tangeant Category: distinguish point/vector, total sum on vectors
I Coherent Differential Category: no distinction point/vector, but

restricted sum
Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories June 29, 2023 5 / 13
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Sum and differentiation in a partial setting

A categorical axiomatization of partial sum

A structure for partial sum

D̃ : Obj(C)→ Obj(C): D̃X = {⟪x0, x1⟫|x0 + x1 is defined}
I π0, π1 ∈ C(D̃X ,X ) jointly monic

I Sum σ ∈ C(D̃X ,X ) σ : ⟪x0, x1⟫ 7→ x0 + x1

f0, f1 ∈ C(X ,Y ) summable: ∃ ⟪f0, f1⟫ ∈ C(X , D̃Y ) s.t. πi ◦ ⟪f0, f1⟫ = fi .

x 7→ ⟪f0(x), f1(x)⟫
X D̃Y

Y

⟪f0,f1⟫

f0+f1
σ

D̃X = X & X (= X × X ) ⇐⇒ Cartesian Left Additive Category
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Sum and differentiation in a partial setting

Summability structure

Compatibility with composition
If g0 and g1 are summable, then g0 ◦ f and g1 ◦ f are summable.
I 0 ◦ f = 0 and (g0 + g1) ◦ f = g0 ◦ f + g1 ◦ f (left additive)
I h ◦ 0 = 0 and h ◦ (f0 + f1) = h ◦ f0 + h ◦ f1

Left summability structure
Axioms that endows C(X ,Y ) with the structure of a partially additive
monoid, see Arbib and Manes 1980

D̃ is not a functor (yet)!
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Sum and differentiation in a partial setting

Differentiation

An operator for differentiation

Given f ∈ C(X ,Y ), there is D̃f ∈ C(D̃X , D̃Y ) such that π0 ◦ D̃f = f ◦ π0

D̃f : D̃X → D̃Y
⟪x , u⟫ 7→ ⟪f (x), f ′(x).u⟫

Define f ′ = π1 ◦ D̃f ∈ C(D̃X ,Y )

Axioms of differentiation: very structural properties
I D̃ is a functor (Chain rule)
I π0, π1 are linear (h linear if h′(x) · u = h(u))
I σ is linear ((f + g)′ = f ′ + g ′)
I Leibniz + Schwarz + the differential is linear = naturality !
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Differentiation

An operator for differentiation

Given f ∈ C(X ,Y ), there is D̃f ∈ C(D̃X , D̃Y ) such that π0 ◦ D̃f = f ◦ π0

D̃f : D̃X → D̃Y
⟪x , u⟫ 7→ ⟪f (x), f ′(x).u⟫

Define f ′ = π1 ◦ D̃f ∈ C(D̃X ,Y )

Axioms of differentiation: very structural properties
I D̃ is a functor (Chain rule)
I π0, π1 are linear (h linear if h′(x) · u = h(u))
I σ is linear ((f + g)′ = f ′ + g ′)
I Leibniz + Schwarz + the differential is linear = naturality !

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories June 29, 2023 8 / 13



Sum and differentiation in a partial setting

Define ι0, θ, c and l

ι0 ◦ x = ⟪x , 0⟫
θ ◦ ⟪⟪x , u⟫, ⟪v ,w⟫⟫ = ⟪x , u + v⟫
c ◦ ⟪⟪x , u⟫, ⟪v ,w⟫⟫ = ⟪⟪x , v⟫, ⟪u,w⟫⟫

l ◦ ⟪x , u⟫ = ⟪⟪x , 0⟫, ⟪0, u⟫⟫

I D̃ is a monad with unit ι0 and sum θ (The differential is additive =
Leibniz)

I c is natural (Schwarz)
I l is natural (The differential is linear)

Cartesian Differential Categories
Naturality equations ⇐⇒ equations on the differential f ′.
They are exactly the equations of Cartesian Differential Categories.

Cartesian Differential Category ⇐⇒ D̃X = X & X
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Compatibility with the Cartesian product

Compatibility with Cartesian Product

Compatibility with the Cartesian product
I Product and sum : 〈x , y〉+ 〈u, v〉 = 〈x + y , u + v〉
I Product and differential: the projections of the cartesian product are

linear, D〈f , g〉 = 〈Df ,Dg〉

In analysis (and Cartesian Differential Categories)

∂0f (x , y) · u = f ′(x , y) · (u, 0)

In our setting: strength Φ0 ∈ C(D̃X0 & X1, D̃(X0 & X1))

Φ0 : D̃X0 & X1 → D̃X0 & D̃X1 ' D̃(X0 & X1)
〈⟪x , u⟫, y〉 7→ 〈⟪x , u⟫, ⟪y , 0⟫〉 7→ ⟪〈x , y〉, 〈u, 0〉⟫

Partial derivative of f ∈ C(X0 & X1,Y ): D̃0f ∈ C(D̃X0 & X1, D̃Y )

D̃X0 & X1 D̃(X0 & X1) D̃YΦ0 D̃f
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Compatibility with the Cartesian product

Leibniz and Schwarz

Leibniz
In analysis :

f ′(x , y) · (u, v) = ∂0f (x , y) · u + ∂1f (x , y) · v

In Cartesian Coherent Differential Categories

D̃f ◦ c−1& = θ ◦ D̃0D̃1f = θ ◦ D̃1D̃0f

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories June 29, 2023 11 / 13



Conclusion and perspectives

Plan

1 Differential λ-calculus and (Cartesian) Differential Categories

2 Coherent differentiation

3 Sum and differentiation in a partial setting

4 Compatibility with the Cartesian product

5 Conclusion and perspectives

Thomas Ehrhard, Aymeric Walch (IRIF) Cartesian Coherent Differential Categories June 29, 2023 11 / 13



Conclusion and perspectives

Takeaway

I Axiomatization of differentiation with partial sums
I Axioms of differentiation: functoriality and naturality
I Nice theory of partial derivatives
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Conclusion and perspectives

TODO list

I Introduce closure to interpret a deterministic differential λ-calculus
I Deal with fixpoints to interpret the Coherent Differential PCF of

Ehrhard
I Revisit syntactical Taylor expansion in a coherent setting
I It should provide generic denotational proofs of important results on

syntactical Taylor expansion
I Is this construction insigthful for traditional analysis ?
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