A new categorical axiomatization of Taylor expansion

Thomas Ehrhard Aymeric Walch

IRIF

February 8, 2024

Plan

Taylor expansion in the lambda calculus

- 2 The puzzling interpretation of sums
- 3 Coherent Differentiation
- 4 The whole Taylor expansion
- 5 Going back to syntax
- 6 Taylor expansion in the elementary case

Conclusion

Differential: A function $f : E \to F$ is differentiable in x if

$$f(x+u)\simeq f(x)+f'(x)\cdot u$$

With $f'(x): E \multimap F$ a linear map, that is, $f': E \to (E \multimap F)$

Differential: A function $f : E \to F$ is differentiable in x if

$$f(x+u)\simeq f(x)+f'(x)\cdot u$$

With $f'(x): E \multimap F$ a linear map, that is, $f': E \to (E \multimap F)$

Iterated differential: We can differentiate f'

$$f^{(2)}(x):(E\multimap E\multimap F)$$

Differential: A function $f : E \to F$ is differentiable in x if

$$f(x+u)\simeq f(x)+f'(x)\cdot u$$

With $f'(x): E \multimap F$ a linear map, that is, $f': E \to (E \multimap F)$

Iterated differential: We can differentiate f'

$$f^{(2)}(x):(E\multimap E\multimap F)=(E\otimes E\multimap F)$$

Differential: A function $f : E \to F$ is differentiable in x if

$$f(x+u)\simeq f(x)+f'(x)\cdot u$$

With $f'(x): E \multimap F$ a linear map, that is, $f': E \to (E \multimap F)$

Iterated differential: We can differentiate f'

$$f^{(2)}(x):(E\multimap E\multimap F)=(E\otimes E\multimap F)$$

We iterate the process to get

$$f^{(n)}(x): E \otimes \ldots \otimes E \multimap F$$

Differential: A function $f : E \to F$ is differentiable in x if

$$f(x+u)\simeq f(x)+f'(x)\cdot u$$

With $f'(x): E \multimap F$ a linear map, that is, $f': E \to (E \multimap F)$

Iterated differential: We can differentiate f'

$$f^{(2)}(x):(E\multimap E\multimap F)=(E\otimes E\multimap F)$$

We iterate the process to get

$$f^{(n)}(x): E \otimes \ldots \otimes E \multimap F$$

Taylor expansion: A function $f : E \to F$ is analytic around x if

$$f(x+u) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) \cdot (\underbrace{u, \dots, u}_{n \text{ times}})$$

Differentiation in Linear Logic

Reminder: if $\mathcal L$ is a model of linear logic, then $\mathcal L_!$ where

$$\mathcal{L}_!(X,Y) = \mathcal{L}(!X,Y)$$

is a model of λ -calculus (CCC)

In finiteness spaces and Koethe spaces

- morphisms in $\mathcal{L}(X, Y)$ are linear maps
- morphisms in $\mathcal{L}_!(X, Y)$ are analytic maps

It means that programs are interpreted as analytic maps that can be computed by the sum of their derivatives!

Differential and Taylor expansion in calculus

Differential in terms

If $\Gamma, x : A \vdash P : B$ and $\Gamma \vdash Q : A$

$$\Gamma, x : A \vdash \frac{\partial P}{\partial x} \cdot Q : B$$

substitute one occurrence of x by Q in P.

Differential and Taylor expansion in calculus

Differential in terms

If $\Gamma, x : A \vdash P : B$ and $\Gamma \vdash Q : A$

$$\Gamma, x : A \vdash \frac{\partial P}{\partial x} \cdot Q : B$$

substitute one occurrence of x by Q in P.

Taylor Expansion

$$(\lambda x.P)Q \rightsquigarrow \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot (\underbrace{Q, \ldots, Q}_{n \text{ times}}) \right) [0/x]$$

We can do Taylor expansion in all applications at once

Taylor expansion

Lambda Term M Taylor expansion regular application \mathcal{T} Hinfinite sum $\sum_{i \in I} r_i \cdot t_i$ t_i Ressource Terms, $r_i \in \mathbb{Q}$ multilinear application

Resource terms:
$$t, u = \lambda x.t | x | \langle t \rangle \cdot \overline{u}$$

Bags/Multisets: $\overline{u} = [u_1, \dots, u_n]$

Taylor expansion

Lambda Term M Taylor expansion regular application \mathcal{T} Hinfinite sum $\sum_{i \in I} r_i \cdot t_i$ t_i Ressource Terms, $r_i \in \mathbb{Q}$ multilinear application

Resource terms:
$$t, u = \lambda x.t \mid x \mid \langle t \rangle \cdot \overline{u}$$

Bags/Multisets:
$$\overline{u} = [u_1, \ldots, u_n]$$

Redex: if x occurs n times in t

$$\langle \lambda x.t \rangle \cdot [u_1, \ldots, u_n] \rightarrow \sum_{\sigma} t[u_{\sigma(1)}/x_1, \ldots, u_{\sigma(n)}/x_n]$$

Resource term are strongly normalizing: any resource term t reduces to a finite sum nf(t) of normal resource terms.

The sum in the Taylor expansion is not arbitrary

Taylor expansion has a normal form: if $\mathcal{T}(M) = \sum_{i \in I} r_i \cdot t_i$

$$\operatorname{nf}(\mathcal{T}(M)) = \sum_{i \in I} r_i \cdot \operatorname{nf}(t_i)$$

The sum in the Taylor expansion is not arbitrary

Taylor expansion has a normal form: if $\mathcal{T}(M) = \sum_{i \in I} r_i \cdot t_i$

$$\operatorname{nf}(\mathcal{T}(M)) = \sum_{i \in I} r_i \cdot \operatorname{nf}(t_i)$$

Crucial observation

If $\mathcal{T}M = \sum_{i \in I} r_i \cdot t_i$, the finite sums $nf(t_i)$ are of disjoint support.

Proof based on Uniformity properties.

Another proof of normalization by Lionel Vaux is based on finiteness spaces.

Plan

2 The puzzling interpretation of sums

- Coherent Differentiation
- 4 The whole Taylor expansion
- 5 Going back to syntax
- 6 Taylor expansion in the elementary case

Conclusion

 $\begin{array}{c} {\sf Differential} \\ {\sf Category}^1 \ {\cal L} \\ {\sf (Linear \ Logic)} \end{array}$

¹Blute, Cockett, and Seely 2006. ²Blute, Cockett, and Seely 2009.

Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

¹Blute, Cockett, and Seely 2006.

²Blute, Cockett, and Seely 2009.

Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

¹Blute, Cockett, and Seely 2006.

²Blute, Cockett, and Seely 2009.

Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

Cartesian Differential Category² C(first order λ -calculus)

¹Blute, Cockett, and Seely 2006. ²Blute, Cockett, and Seely 2009.

Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

Cartesian Differential Category² C(first order λ -calculus)

Compatibility with the CCC struture: models of differential λ-calculus Bucciarelli, Ehrhard, and Manzonetto 2010

▶ Models for Taylor expansion Manzonetto 2012

Example: relation model, weighted relational model.

²Blute, Cockett, and Seely 2009.

¹Blute, Cockett, and Seely 2006.

(Left) additivity and non determinism

Leibniz:
$$f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v$$

(Left) additivity and non determinism

Leibniz:
$$f'(x,y) \cdot (u,v) = \partial_0 f(x,y) \cdot u + \partial_1 f(x,y) \cdot v$$

A Differential Category ${\mathcal L}$ must be left additive

- $\mathcal{L}(X, Y)$ is a commutative monoïd
- $(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g$ (left additive)
- $h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2$ (additive)

We exclude coherence spaces and probabilistic coherence spaces

If we want Taylor expansion, we do even worse: we allow for $\frac{arbitrary}{arbitrary}$ countable sums. We exclude finiteness spaces.

Plan

- Taylor expansion in the lambda calculus
- 2 The puzzling interpretation of sums
- Coherent Differentiation
 - 4 The whole Taylor expansion
 - 5 Going back to syntax
- 6 Taylor expansion in the elementary case

Conclusion

Let ${\mathcal L}$ be a model of linear logic.

A structure for partial sum

Functor S. Intuitively, $SX = \{\langle \langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \}$

• $\pi_0, \pi_1 \in \mathcal{L}(\mathsf{S}X, X)$ jointly monic $\pi_i : \langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto x_i$

8 / 26

Let ${\mathcal L}$ be a model of linear logic.

A structure for partial sum

Functor S. Intuitively, $SX = \{\langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \}$

• $\pi_0, \pi_1 \in \mathcal{L}(\mathsf{S}X, X)$ jointly monic $\pi_i : \langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto x_i$

Sum $\sigma \in \mathcal{L}(SX, X)$ $\sigma : \langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto x_0 + x_1$

Let ${\mathcal L}$ be a model of linear logic.

A structure for partial sum

Functor S. Intuitively, $SX = \{\langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \}$

*π*₀, *π*₁ ∈ *L*(SX, X) jointly monic *π_i* : ((*x*₀, *x*₁)) → *x_i*Sum *σ* ∈ *L*(SX, X) *σ* : ((*x*₀, *x*₁)) → *x*₀ + *x*₁

► $f_0, f_1 \in \mathcal{L}(X, Y)$ summable: $\exists \langle\!\langle f_0, f_1 \rangle\!\rangle \in \mathcal{L}(X, SY)$ s.t. $\pi_i \circ \langle\!\langle f_0, f_1 \rangle\!\rangle = f_i$ $\langle\!\langle f_0, f_1 \rangle\!\rangle : x \mapsto \langle\!\langle f_0(x), f_1(x) \rangle\!\rangle$

Let ${\mathcal L}$ be a model of linear logic.

A structure for partial sum

Functor S. Intuitively, $SX = \{\langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \}$

*π*₀, *π*₁ ∈ *L*(S*X*, *X*) jointly monic *π_i* : ((*x*₀, *x*₁)) → *x_i*Sum *σ* ∈ *L*(S*X*, *X*) *σ* : ((*x*₀, *x*₁)) → *x*₀ + *x*₁

► $f_0, f_1 \in \mathcal{L}(X, Y)$ summable: $\exists \langle\!\langle f_0, f_1 \rangle\!\rangle \in \mathcal{L}(X, SY)$ s.t. $\pi_i \circ \langle\!\langle f_0, f_1 \rangle\!\rangle = f_i$ $\langle\!\langle f_0, f_1 \rangle\!\rangle : x \mapsto \langle\!\langle f_0(x), f_1(x) \rangle\!\rangle$

$$\blacktriangleright f_0 + f_1 := \sigma \circ \langle \langle f_0, f_1 \rangle \rangle : x \mapsto f_0(x) + f_1(x)$$

Let ${\mathcal L}$ be a model of linear logic.

A structure for partial sum

Functor S. Intuitively, $SX = \{\langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \}$

*π*₀, *π*₁ ∈ *L*(S*X*, *X*) jointly monic *π_i* : ((*x*₀, *x*₁)) → *x_i*Sum *σ* ∈ *L*(S*X*, *X*) *σ* : ((*x*₀, *x*₁)) → *x*₀ + *x*₁

► $f_0, f_1 \in \mathcal{L}(X, Y)$ summable: $\exists \langle\!\langle f_0, f_1 \rangle\!\rangle \in \mathcal{L}(X, SY)$ s.t. $\pi_i \circ \langle\!\langle f_0, f_1 \rangle\!\rangle = f_i$ $\langle\!\langle f_0, f_1 \rangle\!\rangle : x \mapsto \langle\!\langle f_0(x), f_1(x) \rangle\!\rangle$

$$f_0 + f_1 := \sigma \circ \langle \langle f_0, f_1 \rangle \rangle : x \mapsto f_0(x) + f_1(x)$$

 $SX = X \& X \iff$ Cartesian Additive Category

Partial commutative monoid

summability structure : $(S, \pi_0, \pi_1, \sigma)$ and some axioms:

- A zero morphism 0 neutral with regard to the sum: f + 0 = 0 + f = f
- Commutativity of sums $f + g \cong g + f$
- Associativity $f + (g + h) \cong (f + g) + h$

 $\mathcal{L}(X, Y)$ is a <u>partial commutative monoid</u>. This is the finite counterpart of the notion of $\overline{\Sigma}$ -monoid found in literature.

Partial commutative monoid

summability structure : $(S, \pi_0, \pi_1, \sigma)$ and some axioms:

- A zero morphism 0 neutral with regard to the sum: f + 0 = 0 + f = f
- Commutativity of sums $f + g \cong g + f$
- Associativity $f + (g + h) \cong (f + g) + h$

 $\mathcal{L}(X, Y)$ is a <u>partial commutative monoid</u>. This is the finite counterpart of the notion of Σ -monoid found in literature.

- Naturality of π_i : Sf : $\langle\!\langle x_0, x_1 \rangle\!\rangle \mapsto \langle\!\langle f \cdot x_0, f \cdot x_1 \rangle\!\rangle$
- Naturality of σ : $f \circ (h_0 + h_1) \sqsubseteq f \circ h_0 + f \circ h_1$

How to formalize differentiation

We want $f \in \mathcal{L}(!X, Y)$ to be differentiable.

$$f(x+u) \simeq f(x) + f'(x) \cdot u$$

So differentiation should be interpreted as an operator T that maps $f \in \mathcal{L}(!X, Y)$ to $Tf \in \mathcal{L}(!SX, SY)$

$$\begin{array}{rccc} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y \\ & \langle\!\langle x,u\rangle\!\rangle & \mapsto & \langle\!\langle f(x),f'(x).u\rangle\!\rangle \end{array}$$

It performs a first order Taylor expansion.

How to formalize differentiation

We want $f \in \mathcal{L}(!X, Y)$ to be differentiable.

$$f(x+u) \simeq f(x) + f'(x) \cdot u$$

So differentiation should be interpreted as an operator T that maps $f \in \mathcal{L}(!X, Y)$ to $Tf \in \mathcal{L}(!SX, SY)$

$$\begin{array}{rcccc} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y\\ & \langle\!\langle x,u\rangle\!\rangle & \mapsto & \langle\!\langle f(x),f'(x).u\rangle\!\rangle \end{array}$$

It performs a first order Taylor expansion.

- Chain rule: T is a functor in $\mathcal{L}_!$;
- Leibniz + Schwarz + Linearity of the derivatives: naturality assumptions.

$$\begin{split} \iota_{0} &\in \mathcal{L}(X, \mathsf{S}X) & \iota_{0} \circ x = \langle\!\langle x, 0 \rangle\!\rangle \\ \hline \theta &\in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}X) & \theta \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x, u + v \rangle\!\rangle \\ \mathsf{c} &\in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}^{2}X) & \mathsf{c} \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle \\ \mathsf{l} &\in \mathcal{L}(\mathsf{S}X, \mathsf{S}^{2}X) & \mathsf{l} \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle \end{split}$$

All natural in \mathcal{L} , $(S, \iota_0, \theta, \sigma, I, c)$ is a c-bimonad.

$$\begin{split} \iota_{0} &\in \mathcal{L}(X, \mathsf{S}X) & \iota_{0} \circ x = \langle\!\langle x, 0 \rangle\!\rangle \\ \hline \theta &\in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}X) & \theta \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle x, u + v \rangle\!\rangle \\ \mathsf{c} &\in \mathcal{L}(\mathsf{S}^{2}X, \mathsf{S}^{2}X) & \mathsf{c} \circ \langle\!\langle \langle\!\langle x, u \rangle\!\rangle, \langle\!\langle v, w \rangle\!\rangle \rangle\!\rangle = \langle\!\langle \langle\!\langle x, v \rangle\!\rangle, \langle\!\langle u, w \rangle\!\rangle \rangle\!\rangle \\ \mathsf{l} &\in \mathcal{L}(\mathsf{S}X, \mathsf{S}^{2}X) & \mathsf{l} \circ \langle\!\langle x, u \rangle\!\rangle = \langle\!\langle \langle\!\langle x, 0 \rangle\!\rangle, \langle\!\langle 0, u \rangle\!\rangle \rangle\!\rangle \end{split}$$

All natural in \mathcal{L} , $(S, \iota_0, \theta, \sigma, I, c)$ is a c-bimonad.

Any $f \in \mathcal{L}(X, Y)$ can be sent to a morphism in $\mathcal{L}_!(X, Y)$ as follows:

$$\mathsf{Der}\,f = \ !X \xrightarrow{\mathsf{der}} X \xrightarrow{f} Y$$

But if $\alpha : S^k \Rightarrow_{\mathcal{L}} S^l$ is a natural transformation, Der α has no reason to be a natural transformation $T^k \Rightarrow_{\mathcal{L}_1} T^l$.

Axioms of differentiation as naturality

Axioms of differentiation

- Der ι_0 and Der θ are natural in $\mathcal{L}_!$ (Leibniz)
- ▶ Der c is natural in *L*_! (Schwarz)
- ▶ Der I is natural in L_! (The differential is linear)

 $SX = X \& X \iff \mathcal{L}_!$ is a Cartesian Differential Category

Der σ is <u>not</u> natural in $\mathcal{L}_{!}$: $f(x + u) \neq f(x) + f'(x) \cdot u$

Axioms of differentiation as naturality

Axioms of differentiation

- Der ι_0 and Der θ are natural in \mathcal{L}_1 (Leibniz)
- ▶ Der c is natural in *L*_! (Schwarz)
- Der I is natural in L₁ (The differential is linear)

 $SX = X \& X \iff \mathcal{L}_!$ is a Cartesian Differential Category

Der σ is <u>not</u> natural in $\mathcal{L}_{!}$: $f(x + u) \neq f(x) + f'(x) \cdot u$

Observe that the axioms above are only about \mathcal{L}_1 : it is possible to directly axiomatize coherent differentiation in any CCC.

Distributive law

If $f \in \mathcal{L}(!X, Y)$, $Tf \in \mathcal{L}(!SX, SY)$.

Chain Rule

T is a functor in $\mathcal{L}_!$

Distributive law

If $f \in \mathcal{L}(!X, Y)$, $\mathsf{T} f \in \mathcal{L}(!SX, SY)$.

Chain Rule

T is a functor in $\mathcal{L}_{!}$ that extend S to $\mathcal{L}_{!}$:

$$T(\operatorname{Der} f) = \operatorname{Der}(Sf)$$

The differential of a linear map is the map itself

The existence of such functor is equivalent to the existence of a distributive law $\partial \in \mathcal{L}(!SX, S!X)$.

$$\mathsf{T}f = \ \mathsf{!S}X \xrightarrow{\partial} \mathsf{S}\mathsf{!}X \xrightarrow{\mathsf{S}f} \mathsf{S}Y$$

Naturality of Der (α) in $\mathcal{L}_{!}$ is equivalent to a coherence diagrams between α and ∂ .

Plan

- 1 Taylor expansion in the lambda calculus
- 2 The puzzling interpretation of sums
- 3 Coherent Differentiation
- The whole Taylor expansion
- 5 Going back to syntax
- 6 Taylor expansion in the elementary case

Conclusion

An order 2 coherent Taylor expansion

Coherent differentiation is a first order Taylor expansion.

$$\begin{array}{rccc} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y \\ & \langle\!\langle x, u \rangle\!\rangle & \mapsto & \langle\!\langle f(x), f'(x) \cdot u \rangle\!\rangle \end{array}$$

An order 2 coherent Taylor expansion

Coherent differentiation is a first order Taylor expansion.

$$\begin{array}{rccc} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y\\ & \langle\!\langle x, u \rangle\!\rangle & \mapsto & \langle\!\langle f(x), f'(x) \cdot u \rangle\!\rangle \end{array}$$

But we can do the same for second order

$$\begin{array}{rcl} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y \\ & \langle\!\langle x, u, v \rangle\!\rangle & \mapsto & \langle\!\langle f(x), \ f'(x) \cdot u, \ \frac{1}{2}f''(x) \cdot (u, u) + f'(x) \cdot v \rangle\!\rangle \end{array}$$

An order 2 coherent Taylor expansion

Coherent differentiation is a first order Taylor expansion.

$$\begin{array}{cccc} f: & \mathsf{S}X & o & \mathsf{S}Y \\ & \langle\!\langle x, u
angle & \mapsto & \langle\!\langle f(x), f'(x) \cdot u
angle
angle \end{array}$$

But we can do the same for second order

Т

$$\begin{array}{rcl} \mathsf{T}f: & \mathsf{S}X & \to & \mathsf{S}Y \\ & \langle\!\langle x, u, v \rangle\!\rangle & \mapsto & \langle\!\langle f(x), \ f'(x) \cdot u, \ \frac{1}{2}f''(x) \cdot (u, u) + f'(x) \cdot v \rangle\!\rangle \end{array}$$

We can express order 2 Taylor expansion

$$\mathsf{T}f \ \langle\!\langle x, u, \mathbf{0} \rangle\!\rangle = \left\langle\!\langle f(x), \ f'(x) \cdot u, \ \frac{1}{2}f''(x) \cdot (u, u) \right\rangle\!\rangle$$

but the red term is necessary for compositionality.

Going to infinity

Introduce infinitary summability structures:

$$\mathsf{S} \mathsf{X} = \{ \langle\!\langle x_i \rangle\!\rangle_{i=0}^{\infty} | \sum_{i=0}^{\infty} x_i \text{ is defined} \}$$

Taylor expansion is still a functor

$$\mathsf{T} f \langle\!\langle x_i \rangle\!\rangle_{i=0}^{\infty} = \langle\!\langle \sum_{m \in \mathcal{M}(n)} \frac{1}{m!} \frac{\mathsf{d}^{|m|} f}{\mathsf{d}^{|m|} x}(x_0) \cdot \vec{x}_m \rangle\!\rangle_{n=0}^{\infty}$$

M(n) is the set of multisets m ∈ M_{fin}(N*) s.t. ∑_{i∈N*} i m(i) = n
m! = ∏_{i∈N*} m(i)!
x_m = (x₁,...,x₁,...,x_i,...,x_i,...,x_n,...,x_n) m(i) times m(i) times

Going to infinity

We recover the usual Taylor expansion.

$$\mathsf{T} f \ \langle\!\langle x, u, \mathbf{0}, \ldots \rangle\!\rangle = \langle\!\langle \frac{1}{n!} \frac{\mathsf{d}^n f}{\mathsf{d}^n x}(x) \cdot (u, \ldots, u) \rangle\!\rangle_{i=0}^{\infty}$$

Morphisms are analytic: naturality of Der σ

$$f \circ (x + u) = f \circ \operatorname{Der} \sigma \circ \langle \! \langle x, u, \mathbf{0}, \dots \rangle \! \rangle$$

= Der $\sigma \circ \mathsf{T} f \circ \langle \! \langle x, u, \mathbf{0}, \dots \rangle \! \rangle$
= $\sum_{n \in \mathbb{N}} \frac{1}{n!} \frac{\mathsf{d}^n f}{\mathsf{d}^n x}(x) \cdot (u, \dots, u)$

Same axioms as Coherent Differentiation

- ▶ T is a functor that extends S (Chain rule)
- Der ι_0 and Der θ are natural in $\mathcal{L}_!$
- Der c is natural in L_!
- Der I is natural in L_!
- Der σ is natural in \mathcal{L}_1 (Morphisms are analytic)

Taylor expansion = $(T, \iota_0, \theta, \sigma, I, c)$ is a c-bimonad in $\mathcal{L}_!$

Same axioms as Coherent Differentiation

- T is a functor that extends S (Chain rule)
- Der ι_0 and Der θ are natural in $\mathcal{L}_!$
- Der c is natural in L_!
- Der I is natural in L₁
- Der σ is natural in \mathcal{L}_1 (Morphisms are analytic)

Taylor expansion = $(T, \iota_0, \theta, \sigma, I, c)$ is a c-bimonad in $\mathcal{L}_!$

Again, we can give the axioms in any CCC.

Notes on summability

The axioms of infinitary summability structures are essentially the same as the axioms of summability structure.

 $\mathcal{L}(X, Y)$ is a Σ -monoid.

In particular, coefficients are positive: if x + y = 0 then x = y = 0.

Notes on summability

The axioms of infinitary summability structures are essentially the same as the axioms of summability structure.

 $\mathcal{L}(X, Y)$ is a Σ -monoid.

In particular, coefficients are positive: if x + y = 0 then x = y = 0.

It excludes finiteness spaces and Köethe spaces.

- ▶ I am working on a new axiomatization of summability to include those
- ► In this axiomatization, L(X, Y) is a Partial Commutative Monoid (PCM), see Hines 2013

Plan

- Taylor expansion in the lambda calculus
- 2 The puzzling interpretation of sums
- 3 Coherent Differentiation
- 4 The whole Taylor expansion
- Going back to syntax
 - 6 Taylor expansion in the elementary case

Conclusion

PCF with probability and Taylor expansion

Ehrhard introduced a coherent differential PCF whose semantic is based on coherent differentiation. We can adapt this calculus to get a PCF with Taylor expansion.

We can define ${\cal T}$ that performs Taylor expansion in 0.

▶ If
$$\Gamma \vdash M : A$$
 then $\Gamma \vdash \mathcal{T}(M) : \mathsf{T}A$

$$\blacktriangleright \ \llbracket \mathcal{T}(M) \rrbracket = \mathsf{T}\llbracket M \rrbracket \circ \langle \langle 0, \mathsf{id}, 0 \ldots \rangle \rangle.$$

So we can compile a term into an infinite sum of terms

$$M\mapsto \sum_{i\in\mathbb{N}}\pi_i(\mathcal{T}(M))$$

In any analytic category

$$\llbracket M \rrbracket = \sum_{i \in \mathbb{N}} \llbracket \pi_i(\mathcal{T}(M)) \rrbracket$$

Link between summability and normalization

The $\pi_i(\mathcal{T}(M))$ are not resource term. Fortunately, they should be normalizing and reduce to finite sums of normal terms (Work In Progress).

Crucial observation

The $nf(\pi_i(\mathcal{T}(M)))$ have disjoint support

We can show it in 3 lines using normalization and the fact that the $[\pi_i(\mathcal{T}(M))]$ are summable in coherent spaces.

Plan

- 1 Taylor expansion in the lambda calculus
- 2 The puzzling interpretation of sums
- 3 Coherent Differentiation
- 4 The whole Taylor expansion
- 5 Going back to syntax
- Taylor expansion in the elementary case

Conclusion

Elementary summability structure

It turns out that often:

Binary summability structure: $SX = 1 \& 1 \multimap X$

Infinitary summability structure: $SX = \&_{i \in \mathbb{N}} 1 \multimap X$

We call such summability structures elementary.

Elementary summability structure

It turns out that often:

Binary summability structure: $SX = 1 \& 1 \multimap X$

Infinitary summability structure: $SX = \&_{i \in \mathbb{N}} 1 \multimap X$

We call such summability structures elementary.

Example

The set [0,1] is a partial commutative monoid: $x_0, x_1 \in [0,1]$ are summable if $x_0 + x_1 \le 1$.

This is equivalent to the existence of $arphi: [0,1]^2 \multimap X$ such that

$$egin{aligned} x_0 &= arphi(1,0) \qquad x_1 &= arphi(0,1) \ & x_0 + x_1 &= arphi(1,1) \end{aligned}$$

Take $\varphi : (\lambda, \mu) \mapsto \lambda x_0 + \mu x_1$.

Elementary summability structure

It turns out that often:

Binary summability structure: $SX = 1 \& 1 \multimap X$

Infinitary summability structure: $SX = \&_{i \in \mathbb{N}} 1 \multimap X$

We call such summability structures elementary.

Example

The set [0,1] is a partial commutative monoid: $x_0, x_1 \in [0,1]$ are summable if $x_0 + x_1 \le 1$.

This is equivalent to the existence of $arphi: [0,1]^2 \multimap X$ such that

$$egin{aligned} x_0 &= arphi(1,0) \qquad x_1 &= arphi(0,1) \ & x_0 + x_1 &= arphi(1,1) \end{aligned}$$

Take $\varphi : (\lambda, \mu) \mapsto \lambda x_0 + \mu x_1$.

The bimonoid structure of $\mathbb D$

Let $\mathbb{D}=\&_{\mathbb{N}}1.$ The same results work for $1\ \&\ 1$ for the exact same reasons. In Rel

 $\mathbb{D} = \mathbb{N}$

and

 $SX = \mathbb{N} \times X$

Bimonoid structure

Relating the bimonad S to a bimonoid structure on $\ensuremath{\mathbb{D}}$

 $SX = \mathbb{D} \multimap X$ is the right adjoint of the functor $\underline{\ } \otimes \mathbb{D}$.

Unit Δ Multiplication \tilde{I} co-Unit p₀ co-Multiplication $\tilde{\theta}$ Commutativity γ Unit Multiplication co-Unit co-Multiplication Commutativity co-Unit σ co-Multiplication I Unit ι_0 Multiplication θ Commutativity c

 \Leftrightarrow

Relating the bimonad S to a bimonoid structure on $\ensuremath{\mathbb{D}}$

 $SX = \mathbb{D} \multimap X$ is the right adjoint of the functor $\underline{} \otimes \mathbb{D}$.

$Bimonoid\ \mathbb{D}$		$Bimonad \ _ \otimes \mathbb{D}$		Bimonad S
Unit Δ Multiplication \tilde{I} co-Unit p_0 co-Multiplication $\tilde{\theta}$ Commutativity γ	\Leftrightarrow	Unit Multiplication co-Unit co-Multiplication Commutativity	mates	co-Unit σ co-Multiplication I Unit ι_0 Multiplication θ Commutativity c
$\begin{array}{l} Coalgebra\\ \widetilde{\partial} \in \mathcal{L}(\mathbb{D}, !\mathbb{D}) \end{array}$	\Leftrightarrow	Distributive law $\mathcal{L}(!X\otimes\mathbb{D},!(X\otimes\mathbb{D}))$	mates ↔	Distributive law ∂ $\mathcal{L}(!SX, S!X)$

Compatibility between bimonoid and coalgebra \iff Compatibility between bimonad and ∂ .

The coalgebra structure of $\mathbb D$

In Rel: $\widetilde{\partial} \in \text{Rel}(\mathbb{D}, !\mathbb{D})$

$$\widetilde{\partial} = \{(n, [i_1, \ldots, i_k]) \mid n = i_1 + \cdots + i_k\}$$

Induce $\partial \in \mathcal{L}(!SX, S!X)$. Explicitely, it is the curryfication of

$$!(\mathbb{D}\multimap X)\otimes\mathbb{D}\xrightarrow{!(\mathbb{D}\multimap X)\otimes\widetilde{\partial}} !(\mathbb{D}\multimap X)\otimes!\mathbb{D}\xrightarrow{\mu^2} !((\mathbb{D}\multimap X)\otimes\mathbb{D})\xrightarrow{!ev} !X$$

The coalgebra structure of $\mathbb D$

In Rel: $\widetilde{\partial} \in \text{Rel}(\mathbb{D}, !\mathbb{D})$

$$\widetilde{\partial} = \{ (n, [i_1, \ldots, i_k]) \mid n = i_1 + \cdots + i_k \}$$

Induce $\partial \in \mathcal{L}(!SX, S!X)$. Explicitely, it is the curryfication of

$$!(\mathbb{D}\multimap X)\otimes\mathbb{D}\xrightarrow{!(\mathbb{D}\multimap X)\otimes\widetilde{\partial}} !(\mathbb{D}\multimap X)\otimes!\mathbb{D}\xrightarrow{\mu^2} !((\mathbb{D}\multimap X)\otimes\mathbb{D})\xrightarrow{!ev} !X$$

To sum up

If S is elementary then the category is analytic if and only if there is a coalgebra $\tilde{\partial}$ compatible with the bimonoid structure of $\tilde{\partial}$.

In particular: this is always the case if !_ is Lafont.

A curious isomorphism

Comonoid $\mathbb D$ in ${\boldsymbol{\mathsf{Rel}}}$

Co-unit
$$p_0 \in \operatorname{Rel}(\mathbb{D}, 1)$$
 $p_0 = \{(0, *)\}$ Co-multitiplication $\widetilde{\theta} \in \operatorname{Rel}(\mathbb{D}, \mathbb{D} \otimes \mathbb{D})$ $\widetilde{\theta} = \{(n, (i, j)) \mid n = i + j\}$

Comonoid !1 in **Rel**: !1 = {
$$\underbrace{[*,\ldots,*]}_{n}$$
 | $n \in \mathbb{N}$ } = { $n \cdot [*]$ | $n \in \mathbb{N}$ }

$$\begin{aligned} & \mathsf{wk} \in \mathsf{Rel}(!1,1) \quad \{([],*)\} \\ & \mathsf{ctr} \in \mathsf{Rel}(!1,!1 \otimes !1) \quad \{(n \cdot [*], (i \cdot [*], j \cdot [*])) \mid n = i + j\} \end{aligned}$$

$$\mathbb{D}\equiv !1$$

Plan

- 1 Taylor expansion in the lambda calculus
- 2 The puzzling interpretation of sums
- 3 Coherent Differentiation
- 4 The whole Taylor expansion
- 5 Going back to syntax
- 6 Taylor expansion in the elementary case

Conclusion

Takeaway

- Axiomatization of Taylor expansion with partial countable sums (Σ-monoids or PCM)
- Axioms of differentiation: functoriality and naturality
- It covers a wide range of models, especially those with Lafont exponential
- In syntax, Taylor expansion produce an infinite sums of normalizing terms whose semantics is summable in any model
- Different models can provide different insights on how the syntactical sum behaves, especially coherence spaces