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Abstract. We consider the LTL model-checking problem of concurrent
self modifying code, i.e., concurrent code that has the ability to modify
its own instructions during execution time. This style of code is fre-
quently utilized by malware developers to make their malicious code
hard to detect. To model such programs, we consider Self-Modifying
Dynamic Pushdown Networks (SM-DPN). A SM-DPN is a network of
Self-Modifying Pushdown processes, where each process has the ability
to modify its current set of rules and to spawn new processes during
execution time. We consider model checking SM-DPNs against single in-
dexed LTL formulas, i.e., conjunctions of separate LTL formulas on each
single process. This problem is non trivial since the number of spawned
processes in a given run can be infinite. Our approach is based on com-
puting finite automata representing the set of configurations from which
the SM-DPN has a run that satisfies the single-indexed LTL formula. We
implemented our techniques in a tool and obtained promising results. In
particular, our tool was able to detect a concurrent, self-modifying mal-
ware.

1 Introduction

Most of the programs implement concurrent routines for efficiency. However,
analysis of concurrent programs is a notoriously hard challenge. Therefore, sig-
nificant efforts were made in the direction of automatic verification of concurrent
programs [4, 16,20,25].

On the other hand, self-modifying code is a code that modifies its own in-
structions during the rexecution time. This technique is widely used by packers
to decrease the size of a program and by malware developers to confuse anti-
virus software and make their malware hard to detect. The problem of analysing
self-modifying code was approached by more recent studies [6, 9, 20,26].

This paper focuses on analysing programs that are both concurrent and self-
modifying. Indeed, modern malware, e.g. some variants of Mirai, employs concur-
rency for parallel execution of different tasks and contains self-modifying code
to stay undetected for as long as possible.

Self-modifying behaviour of a program is achieved by writing to the exe-
cutable region of the binary, which is an array of memory locations from where
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# Address Bytecode Assembly
0x04 0x31c0 xor eax , eax
0x06 0xb001 mov al , 1
0x08 0xbb80cd02b0 mov ebx , 0xb002cd80
0x0d 0x891d04000000 mov [0x04], ebx
0x13 0xebe7 jmp 0x04

Listing 1.1. Binary code with a self-modifying instruction.

# Address Bytecode Assembly
0x04 0xb002 mov al , 0x2
0x06 0xcd80 int 0x80
0x08 0xbb80cd02b0 mov ebx , 0xb002cd80
0x0d 0x891d04000000 mov [0x04], ebx
0x13 0xebe7 jmp 0x04

Listing 1.2. Binary code with after executing a self-modifying instruction.

a computer reads instructions to execute. Self-modifying behaviour can be imple-
mented using different techniques. For example, let us consider a self-modifying
concurrent binary code of a Linux program running on a CPU with x86 archi-
tecture. Programs for this architecture mostly use mov instructions to write data
into memory, including the memory of executable instructions. A portion of the
program’s assembly is demonstrated in Listing 1.1. The first column denotes
relative addresses of instructions. The second column contains bytes stored at
that address, and the third column is the corresponding assembly code for the
binary code. eax and ebx are CPU registers, and al points to the lowest byte
of eax. For example, two bytes stored at the memory address 0x04 are 0x31c0,
which is a bytecode for the assembly instruction xor eax, eax, which sets eax
to 0.

Let us explain why this code is self-modifying and concurrent. First, a process
starts executing the program at the address 0x04 and reads bytes 0x31c0 stored
at this location. Bytecode 0x31c0 corresponds to the instruction xor eax, eax,
which means the process sets eax to 0. This instruction is two bytes long, so the
process reads the next instruction from the address 0x06. This address contains
bytes 0xb001, which is the bytecode of the instruction mov al, 0x1, which sets
the lowest byte of eax to 0x1. Then, the process executes the instruction mov
ebx, 0xb002cd80, which corresponds to the bytecode 0xbb80cd02b0 stored at
the address 0x08. This sets ebx to 0xb002cd80. Next, the process executes the
instruction stored at the address 0x0d. This instruction is mov [0x04], ebx
and it stores the values of ebx (previously set to 0xb002cd80) to the address
0x04. This changes the instructions stored at address 0x04. Since 0xb002cd80 is
the binary code for instructions mov al, 0x2 and int, 0x80, the instruction at
address 0x04 and 0x06 will be replaced by these two instructions. Therefore, mov
[0x04], ebx is a self-modifying instruction. The code of the program after self-
modification occurs is presented in Listing 1.2. The next instruction the process
reads will be jmp 0x04 (corresponding to the bytecode 0xebe7 contained at
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the location 0x13), which will make the process jump to the address 0x04. As
explained, this address now contains a modified instruction with the bytecode
0xcd80. The new assembly is mov al, 0x2, which sets eax to 2 (remember that
we set higher bytes of eax to 0 with xor eax, eax). Then, the process will
execute the modified instruction at the address 0x06 with the new bytecode
0xcd80, which corresponds to the assembly int, 0x80. This instruction tells
Linux kernel to execute a system function (or system call / syscall) with the
function code stored in eax. The function code 0x2 corresponds to the kernel’s
fork function, which spawns a copy of the current process. Since the previous
instruction sets eax to 0x2, Linux kernel executes the fork function, making this
program also concurrent.

0x04: xor eax, eax

0x06: mov al, 0x1

0x08: mov ebx, 0xb002cd80

0x0d: mov [0x04], ebx

0x13: jmp 0x04

(a) Naive CFG

0x04: xor eax, eax

0x06: mov al, 0x1

0x08: mov ebx, 0xb002cd80

0x0d: mov [0x04], ebx

0x13: jmp 0x04

0x04: mov al, 0x2

0x06: int 0x80

(b) Accurate CFG

Fig. 1. Naive and accurate CFGs of code from Listing 1.1.

You can see that if we analyze this program blindly, using the instructions of
Listing 1.1, without taking into account the self-modifying nature of instruction
mov [0x04], ebx, then we will obtain the Control Flow Graph (CFG) as shown
in Figure 1(a). However in reality, the program will spawn parallel processes in-
definetely. This is clear if we look at the more accurate CFG in Figure 1(b). This
is one of the tecnhiques malware developers use to obscure the real behaviour
of the malware from antivirus software. Therefore, it is necessary to take into
account the self-modifying nature of the code for an accurate analysis.

The aim of this paper is to provide an efficient algorithm for model check-
ing such self-modifying and concurrent code. To analyse such kind of programs,
we need an abstract model suitable for both self-modifications and concurrency.
Pushdown System (PDS) is a natural abstraction for sequential programs that
utilize stack and can call recursive functions [14]. Since modelling sequential ex-
ecution is not enough for concurrent programs, Dynamic Pushdown Networks
(DPNs) were proposed to model how a program can spawn parallel processes [8].
A DPN is a network of pushdown systems with each PDS being able to spawn
a new process controlled by another PDS. On the other hand, to model pro-
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grams with self-modifying instructions, authors of [26] proposed Self-Modifying
Pushdown Systems (SM-PDS). Intuitively, SM-PDS is a PDS with the ability
to modify its set of rules during runtime. To model both concurrent and self-
modifying programs, a previous work [20] introduced Self-Modifying Dynamic
Pushdown Networks (SM-DPNs) as a network of self-modifying pushdown sys-
tems. [20] proposed an efficient algorithm for reachability analysis of SM-DPNs.
In this work, we go one step further and propose an efficient LTL model checking
algorithm for SM-DPNs.

Model checking concurrent programs imposes additional challenges. In fact,
model checking LTL formulas that reason about two concurrent processes, i.e.
formulas where atomic propositions are distributed over the control states of
two processes, is undecidable [17], even in the absence of thread creation. To
overcome this problem, we consider single-indexed LTL formulas of the form
f =

∧
i fi, such that fi is an LTL formula over process i. This problem of single-

indexed LTL model checking of DPNs was tackled by [25], however, this work
does not take into account self-modification of programs.

In this paper, we go one step further and consider LTL model checking of
Self-Modifying Dynamic Pushdown Networks (SM-DPNs). Since SM-DPNs are
equivalent to standard DPNs, we could translate the SM-DPN into a DPN,
and then use the LTL model checking algorithm of [25]. But, as shown by the
experiments in Section 7, this approach is not efficient. Therefore, we propose
a direct and efficient model checking algorithm for SM-DPNs against single-
indexed LTL formulas. First, we tackle the problem of LTL model checking of
a single process. We construct an automaton Ai for each sequential process
i, such that Ai accepts a configuration of the process i if it has a run that
satisfies the corresponding LTL formula fi. During the construction of Ai, to
tackle the self-modifying instructions, we keep track of the current phase of the
process i(the current set of the transitions of the process). Ai also keeps track
of the spawned processes during the execution because we need to check that
every spawned process j satisfies the formula fj as well. Then, we use all of the
obtained automata to compute the largest set of processes Dfp, such that every
process i in Dfp satisfies the LTL formula fi, and does not spawn a process j
that violates the formula fj (j ≥ 0). Then, we check that every initial process
satisfies the LTL formula and spawns only processes from Dfp. Our experiments
show that our direct approach is much more efficient than model checking an
equivalent DPN using the approach in [25]. Moreover, we show the applicability
of our approach for malware detection.
Related Works. Model checking of sequential binaries has been extensively
studied in [17, 24]. However, these studies do not consider neither concurrency
of programs, nor self-modifying instructions.

To solve the problem of model checking concurrent programs, different models
were proposed. Some studies use the Dynamic Pushdown Network (DPN) model
[8,21,25] and its extensions [12]. Other studies [18,22] performed model checking
on networks of pushdown systems. However, these works do not consider self-
modifying code.
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To analyze self-modifying programs, several dynamic analysis approaches
were proposed [11,27], which imply executing the binary in a debugger and ob-
serve the behaviour of the program. However, these techniques do not allow to an-
alyze every possible behaviours of the program. Static analysis of self-modifying
code was proposed in, for example, [6,9]. However, [9] needs extra invariant an-
notations. As for [6], it proposes an abstract representation without a specific
approach to automated analysis. Another model to represent self-modifying code
is State-Enhanced Control Flow Graph (SE-CFG) [3]. Reachability analysis of
binaries with self-modifying instructions was also proposed by [5]. However, both
of these studies [3,5] do not take into account the stack of the program, and thus,
do not provide an accurate enough model of execution. Self-modifying pushdown
systems (SM-PDS) were successfully used for model checking self-modifying pro-
grams [26]. However, these works do not support concurrency.

As far as we know, the only work that considers both concurrent and self-
modifying programs is [20], where the SM-DPN model was proposed. But, [20]
considers only reachability analysis. In this paper, we go one step further and
propose an efficient LTL model checking of SM-DPNs.
Outline. Section 2 introduces our SM-DPN model. Section 3 proposes our al-
gorithm for model checking SM-DPNs. Section 4 describes how the LTL model
checking of one process can be reduced to the computation of predecessors. Sec-
tion 5 proposes an efficient automata-based approach for computing the regular
set of predecessors of a single process. Section 7 describes the practical exper-
iments conducted using the proposed LTL model checking. For lack of space,
proofs are omitted. They can be found in the full version of the paper.

2 Preliminaries

In this section, we introduce Self-Modifying Pushdown Networks (SM-DPNs).

2.1 Self-Modifying Pushdown Network

A Self-Modifying Dynamic Pushdown Network (SM-DPN) is an extension of
standard Pushdown Systems (PDS) that models programs that can spawn par-
allel processes and can change their instruction sets in real-time. SM-DPN con-
sists of several Self-Modifying Dynamic Pushdown Systems (SM-DPDS) each
modelling a single sequential process. Formally:

Definition 1. A Self-Modifying Dynamic Pushdown Network (SM-DPN) is a
tuple M = (P1,P2, . . . ,Pn), such that for every i, 1 ≤ i ≤ n, Pi = (Pi, Γi, ∆i, ∆

c
i )

is a Self-Modifying Dynamic Pushdown System (SM-DPDS), where Pi is a finite
set of control locations (for any j ̸= k, Pj ∩Pk = ∅), Γi is the stack alphabet, ∆i

is a finite set of rules of the forms: (a) pγ ↪→ p1ω1 and (b) pγ ↪→ p1ω1 ▷ p2ω2θ2,
such that p, p1 ∈ Pi, γ ∈ Γi, ω1 ∈ Γ ∗

i , p2 ∈ Pj, ω2 ∈ Γ ∗
j , θ2 ⊆ ∆j ∪ ∆c

j, and

∆c
i is a finite set of self-modifying rules of the form p

(ρ1,ρ2)
↪−−−−→ p1, such that

ρ1, ρ2 ⊆ ∆i ∪∆c
i . A Dynamic Pushdown System (DPDS) is a SM-DPDS, such
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that ∆c
i = ∅. A Dynamic Pushdown Network (DPN) is a SM-DPN, such that

for every 1 ≤ i ≤ n, Pi is a DPDS.

Consider a SM-DPN M = (P1,P2, . . . ,Pn). A SM-DPDS Pi = (Pi, Γi, ∆i, ∆
c
i )

can be seen as a Pushdown System with the ability (1) to spawn a new process
and (2) to change its current set of rules during its execution. Because a process
modelled by a SM-DPDS can change its set of rules at runtime, we introudce
the notion of a phase. A phase θ ⊆ ∆i∪∆c

i is the current set of rules that can be

applied. θ changes when a self-modifying rule of type p
(ρ1,ρ2)
↪−−−−→ p1 ∈ θ is applied.

Such rule denotes that if the process is at the control location p, it can transition
to the control location p1 while removing rules in ρ1 from θ and adding rules
from ρ2 to θ. Note that unlike the definition of SM-DPN in [20], we allow ρ1 and
ρ2 have different numbers of rules. The rules of type pγ ↪→ p1ω1 ∈ θ define that
if the process is at the control location p and has γ on the top of its stack, then
it can pop γ from the stack, push ω1 onto it, and go to the control location p1.
Similarly, the rules of type pγ ↪→ p1ω1 ▷ p2ω2θ2 ∈ θ describe the same behaviour
as pγ ↪→ p1ω1 but additionally, the rule spawns another process at the control
location p2, with ω2 as content of the stack, and phase θ2. This new process will
be executed by its corresponding SM-DPDS Pj = (Pj , Γj , ∆j , ∆

c
j) ∈ M, such

that p2 ∈ Pj .

2.2 Configurations and DCLICs

A local configuration of a SM-DPDS Pi is a tuple (⟨pi, ωi⟩, θi), where pi ∈ Pi
is the current state of the process, ωi ∈ Γ ∗

i is the current stack content, and
θi ⊆ ∆i∪∆c

i is the current phase. The set of all local configurations of a process
of Pi is denoted as Confi. A global configuration of a SM-DPN is a multi-set
over

⋃n
i=1 Confi.

When a process can spawn a new process with a local configuration (⟨pj , ωj⟩, θj),
we say that pjωjθj is a Dynamically Created Local Initial Configuration (DCLIC).
The finite set of all DCLICs created by a process of Pi is denoted as Di and
is equal to {p2ω2θ2 ∈ Pj × Γ ∗

j × 2∆j∪∆c
j |∃p, p′ ∈ Pi, γ ∈ Γi, ω

′ ∈ Γ ∗
i , pγ ↪→

p′ω′ ▷ p2ω2θ2 ∈ ∆i}.
For a SM-DPDS Pi and a set of DCLICs D ⊆ Di, we define the successor op-

erator D
==⇒i on a pair of local configurations of Pi as follows: (⟨p, ω⟩, θ) D

==⇒i

(⟨p′, ω′⟩, θ′) means that a process at the configuration (⟨p, ω⟩, θ) can transi-
tion into the configuration (⟨p′, ω′⟩, θ′) by applying one of the rules in the cur-
rent phase θ and the rule applied spawns processes with DCLICs D. Formally,
(⟨p, ω⟩, θ) D

==⇒i (⟨p′, ω′⟩, θ′) iff one of these conditions holds:

1. ∃γ ∈ Γi, u, v ∈ Γ ∗
i , s.t. ω = γu, ω′ = vu, θ = θ′, D = ∅, and pγ ↪→ p′v ∈ θ,

or
2. ω = γu, ω′ = vu, θ = θ′, D = {p2ω2θ2}, and pγ ↪→ p′v ▷ p2ω2θ2 ∈ θ, or

3. ω = ω′, D = ∅, p
(ρ1,ρ2)
↪−−−−→ p′ ∈ θ, θ′ = (θ\ρ1) ∪ ρ2.
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Intuitively, condition 1 specifies that if the process is at the local configuration
(⟨p, γu⟩, θ), such that the rule pγ ↪→ p′v is in the current phase θ, then the
process can pop γ from the stack, push v onto it, and transition to the state
p′ without spawning any new process, getting (⟨p′, vu⟩, θ). Condition 2 means
that if the process is at the local configuration (⟨p, γu⟩, θ), such that the current
phase θ contains a rule pγ ↪→ p′v ▷ p2ω2θ2, then it can pop γ from the top of
the stack, push v, go to p′, and spawn a new process with the DCLIC p2ω2θ2,
i.e. starting at local configuration (⟨p2, ω2⟩, θ2), getting (⟨p′, vu⟩, θ). Condition
3 defines that if the process is at the local configuration (⟨p, u⟩, θ), such that

the rule p
(ρ1,ρ2)
↪−−−−→ p′ is in the current phase θ, the process can remove all rules

r1 ∈ ρ1 from the phase θ and add all rules r2 ∈ ρ2 to θ, changing the current
state to p′, getting (⟨p′, u⟩, θ′), such that θ′ = (θ\ρ1) ∪ ρ2.

For local configurations c, c′ ∈ Confi and set of DCLICs D ⊆ Di, we define a
reflexive-transitive closure c D

==⇒∗
i c

′ as follows, where c′′ ∈ Confi and D′, D′′ ⊆

Di: (1) c ∅
==⇒∗

i c and (2) if c D′

==⇒i c
′ and c′

D′′

==⇒∗
i c

′′, then c
D
==⇒∗

i c
′′, where

D = D′ ∪ D′′. We also define the non-reflexive transitive closure c D
==⇒+

i c′ as

follows: c D
==⇒+

i c′ iff ∃D′, D′′ ⊆ Di, such that D = D′ ∪ D′′, c D′

==⇒i c
′′ and

c′′
D′′

==⇒∗
i c

′ .

Consider an arbitrary set of pairs of local configurations and sets of DCLICs
W ⊆ Confi × 2Di . Let pre : 2Confi×2Di → 2Confi×2Di be such that pre(W ) =

{(c,D ∪ D′), c ∈ Confi|∃D ⊆ Di, (c′, D′) ∈ W : c
D
==⇒i c

′}. Let pre+ and
pre∗ be the transitive and reflexive-transitive closures of pre, respectively. In
other words, pre takes a pair of a local configuration and a set of DCLICs, and
returns a set of predecessors of the given configurations paired with a superset
of the given DCLICs that will be generated by the predecessors. Consider a local
configuration c′ and a set of DCLICs D′.

A local run of Pi is a possibly infinite sequence of local configurations c0c1c2 . . . ,
s.t. ∀j ≥ 0 : ∃D ⊆ Di : cj

D
==⇒i cj+1. A global run σ starting from a global con-

figuration g0 = c00c
1
0c

2
0...c

n
0 is a (potentially infinite) set of local runs. Initially, σ

contains local runs for n processes, with each starting from initial local configu-
ration ci0 for 0 ≤ i ≤ n. Whenever a SM-DPDS responsible for a local run spawns
a new process with the DCLIC p2ω2θ2, a local run starting from (⟨p2, ω2⟩, θ2) is
added to σ.

2.3 From SM-DPN to DPN

We show in this section that every SM-DPN model is equivalent to a non self-
modifying DPN as defined in [25]. Since the number of phases is finite, we can
show that encoding every phase into the state set gives an equivalent DPN. Our
translation follows the logic of the translation given in [20].
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Let M = (P1,P2, . . . ,Pn) be a SM-DPN for n ∈ N, such that for i ≤
n, Pi = (Pi, Γi, ∆i, ∆

c
i ) is a SM-DPDS. We can construct an equivalent DPN

M′ = (P ′
1,P ′

2, . . . ,P ′
n), where for i ≤ n, P ′

i = (P ′
i , Γi, ∆

′
i) is a DPDS equivalent

to Pi, such that P ′
i = Pi× 2∆i∪∆c

i and ∆′
i is computed as follows. Initially, ∆′

i is
empty. For every r ∈ ∆i ∪∆c

i and for every phase θ ∈ 2∆i∪∆c
i , such that r ∈ θ:

1. if r = pγ ↪→ p1ω1, then add (p, θ)γ ↪→ (p1, θ)ω1 ∈ ∆′
i;

2. if r = pγ ↪→ p1ω1 ▷ p2ω2θ2, then add (p, θ)γ ↪→ (p1, θ)ω1 ▷ (p2, θ2)ω2 ∈ ∆′
i;

3. if r = p
(ρ1,ρ2)
↪−−−−→ p1 and ρ1 ⊆ θ, then for every γ ∈ Γ , add (p, θ)γ ↪→

(p1, (θ\ρ1) ∪ ρ2) ∈ ∆′
i.

This algorithm terminates because we have a finite number of rules and hence,
a finite number of phases. We can show that:

Proposition 1. Let (⟨p, ω⟩, θ) and (⟨p1, ω1⟩, θ1) be configurations of Pi, and

D ⊆ Di. (⟨p, ω⟩, θ)
D
==⇒M (⟨p1, ω1⟩, θ1) iff ⟨(p, θ), ω⟩ D′

==⇒M′ ⟨(p1, θ1), ω1⟩, such
that D′ = {(p2, θ2)ω2 | p2ω2θ2 ∈ D}

Thus, we get:

Theorem 1. Let M = (P1,P2, . . . ,Pn) be a SM-DPN for n ∈ N, such that
for i ≤ n, Pi = (Pi, Γi, ∆i, ∆

c
i ) is a SM-DPDS. We can construct an equivalent

DPN M′ = (P ′
1,P ′

2, . . . ,P ′
n), where for i ≤ n, P ′

i = (P ′
i , Γi, ∆

′
i) such that |P ′

i | =
|Pi| · 2O(|∆i|+|∆c

i |) and |∆′
i| = (|∆i|+ |∆c

i ||Γ |) · 2O(|∆i|+|∆c
i |)

2.4 Modelling Self-Modifying Concurrent Code with SM-DPN

We give in this section a general process of converting a binary executable
containing self-modifying code and concurrency into a SM-DPN. We suppose
that we have an oracle that translates a binary program into a Control Flow
Graph (CFG), such that each CFG transition corresponds to one instruction.
One can obtain such an oracle using existing tools like Jakstab [19], IDA Pro [15],
Radare2 [2], or ANGR [23].

We use the translation of [24] that models non self-modifying sequential in-
structions of the program by a standard PDS. We refer the reader to [24] for
more details on this translation.

A self-modifying CFG transition that writes a binary value v to an address
d, where d is the destination address for an executable region and v is a new
value. Let ρ1 be the set of rules obtained from translating instructions at d before
self-modification and let ρ2 be the set of rules obtained at d after the memory is
modified. Suppose the CFG transition starts at control location p and leads to

a control location p′. In this case, we add a rule p
(ρ1,ρ2)
↪−−−−→ p′ to the SM-DPDS

model.
If a CFG transition spawns a new thread, we add a rule pγ ↪→ p′ω ▷ p2ω2θ2,

where (⟨p2, ω2⟩, θ) is the initial configuration of the newly created process.
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2.5 LTL and Büchi Automata

In this section, we consider standard LTL formulas and Büchi Automata. Let
AP be a set of atomic propositions.
Definition 2. An LTL formula ψ is defined as follows (where a ∈ AP ):

ψ ::= ⊤ | ⊥ | a | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Let w = α0α1α2 . . . be an ω-word over 2AP and ψ be an LTL formula. Let
wi = αiαi+1 . . . be the subsequence of w starting from the i-th symbol, where
i ≥ 0. The satisfiability w |= ψ is defined as follows: w |= ⊤; w ̸|= ⊥; w |= a iff
a ∈ α0; w |= ¬ψ iff w ̸|= ψ; w |= ψ1 ∧ ψ2 iff w |= ψ1 and w |= ψ2; w |= Xψ iff
w1 |= ψ; w |= ψ1Uψ2 iff there exists k ≥ 0 such that for j < k, wj |= ψ1, and
wk |= ψ2. We define the eventually operator as follows: Fψ = ⊤Uψ, which means
that ψ will hold at some point of the run. The globally operator Gψ = ¬F¬ψ
means that ψ holds universally along the run.

Definition 3. A Büchi Automaton is a tuple B = (G,Σ, T, g0, F ), where G is a
finite set of states, T ⊆ G×Σ ×G is the set of transitions, g0 ∈ G is the initial
state, and F ⊆ G is the set of accepting states.

For an ω-word w = α0α1α2 . . . , such that αi ∈ Σ, i ≥ 0, a run on a BA B is
an infinite sequence r = g0g1g2 . . . , such that (gi−1, αi−1, gi) ∈ T for i ≥ 1. A
run r is accepting if the run visits some accepting state gf ∈ F infinitely often.
B accepts an infinite word iff there is an accepting run on B. It is well known
that given an LTL formula ψ, we can construct a Büchi Automaton (BA) Bψ on
words over Σ = 2AP that accepts all ω-words that satisfy ψ [28].

2.6 Single-Indexed LTL for SM-DPNs

Definition 4. A Single-indexed LTL formula is a formula of the form f =∧n
i=1 fi, where fi is a standard LTL formula over APi.

Let us consider a SM-DPN M = (P1,P2, . . . ,Pn), such that Pi = (Pi, Γi, ∆i, ∆
c
i ),

1 ≤ i ≤ n, and a single-indexed LTL formula f =
∧n
i=1 fi over AP =

⋃n
i=1APi,

where fi is an LTL formula over APi for Pi and a labelling function λi : Pi →
2APi . For each control location p ∈

⋃n
i=1 Pi, let π(p) be a function that maps p to

the index i of its corresponding SM-DPDS, or π(p) = i if p ∈ Pi. For a local run
σ = (⟨p0, ω0⟩, θ0)(⟨p1, ω1⟩, θ1) . . . , let π(σ) = π(p0). Let τ = σ0σ1 . . . be a global
run on M, where for j ≥ 0, σj is a local run in τ . We define the satisfiability
condition for a global run τ = σ0σ1 . . . on SM-DPN M = (P0,P1, . . . ,Pn) and
a single-indexed LTL formula f =

∧n
i=0 fi:

Definition 5. τ |= f if for every local run σj ∈ τ , where j ≥ 0:
1. there exists Dj = {p0jω0

j θ
0
j , p

1
jω

1
j θ

1
j , . . . , p

m
j ω

m
j θ

m
j }, such that σj |=Dj fπ(σj),

2. for every 0 ≤ k ≤ m there exists a local run σkj starting from (⟨pkj , ωkj ⟩, θkj ),
such that τ ∪ {σkj } |= f .

For σ = (⟨p0, ω0⟩, θ0)(⟨p1, ω1⟩, θ1) . . . , σ |=D fi if the ω-word w = λi(p0)λi(p1) . . .
satisfies fi and σ spawns new processes with DCLICs D. For a local configuration
c, c |=D fi if there is a local run σc = cc2c3 . . . , such that σc |=D fi.
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3 LTL Model-Checking for SM-DPNs

From now on, we fix a SM-DPN M = (P0,P1, . . . ,Pn) be a SM-DPN, where
for 0 ≤ i ≤ n, Pi = (Pi, Γi, ∆i, ∆

c
i ) is a SM-DPDS, and a single-indexed LTL

formula f =
∧n
i=0 fi, such that fi is an LTL formula corresponding to Pi, and let

APi be the set of all atomic propositions used in fi. Let Bi = (Gi, 2
APi , Ti, g

0
i , Fi)

be a Büchi automaton for the corresponding LTL formula fi. Model checking a
global configuration G of M over f is not trivial for two reasons. First, it is not
enough to check every local run starting from local configurations in G, because
we also need to check spawned processes. Second, model checking every possibly
spawned process is too restrictive, because not all processes are required to be
spawned during an accepting run, so even if they violate their LTL formulas, the
global run would still be accepting if it does not spawn such processes. Therefore,
when model checking Pi over fi, it is important to remember which processes
were spawned during the accepting run. We divide the problem of checking
whether a global run starting from G satisfies f into the following steps:

1. We compute a Self-Modifying Büchi Dynamic Pushdown System (SM-BDPDS)
BPi for each pair of Pi and Bi, 1 ≤ i ≤ n.

2. For each BPi, we compute sets of pairs of local configurations and DCLICs
of form

(
c,D

)
, such that c |=D fi.

3. To be able to compute such sets, we need to be able to finitely represent
such pairs. For each BPi we will construct a MA Ai, such that it accepts all
configurations c of Pi satisfying fi and produces a set of DCLICs D spawned
during an accepting run, or c |=D fi.

4. Using the MAs Ai, we compute the maximal set of DCLICs Dfp, such that it
contains only DCLICs for local configurations that satisfy their LTL formu-
las, and that the accepting runs on that configurations spawn only DCLICs
in Dfp.

5. For every local configuration (⟨p, ω⟩, θ) ∈ G, we use the MA Aπ(p) to check
that there exists D′ ⊆ Dfp, such that (⟨p, ω⟩, θ) |=D′ fπ(p).

The first and second steps reduce the LTL satisfiability problem of a single
process into the emptiness problem of SM-BDPDS. Then, the third step reduces
the emptiness problem of SM-BDPDS to the reachability analysis of SM-BDPDS
using Multi Automata (MA). The fourth step filters out DCLICs that can not
satisfy f . And the fifth step uses filtered DCLICs to check whether a global
configuration can satisfy f without spawning unsatisfiable DCLICs.

4 LTL Model-Checking for SM-DPDS

This section describes how to solve the LTL satisfiability problem of a single pro-
cess by reducing it to the reachability analysis of Self-Modifying Büchi Dynamic
Pushdown Systems (SM-BDPDS). As can be seen in Section 3, we do not only
need to check that a SM-DPDS has a valid run, but also know what processes
are spawned during the run.
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4.1 Self-Modifying Büchi Dynamic Pushdown Systems

It is common for an automata-based LTL model checking to compute a product
of a standard PDS and a Büchi Automaton, which is often called Büchi Push-
down System (BPDS) [7, 13]. Similarly, Self-Modifying Büchi Dynamic Push-
down Systems (SM-BDPDS) is a product of a SM-DPDS and a BA:

Definition 6. A Self-Modifying Büchi Dynamic Pushdown Systems (SM-BDPDS)
BP = (P, Γ,∆,∆c, I, F ) is a SM-DPDS with extra elements I ⊆ P , which is a
set of initial states, and F ⊆ P , which is a set of accepting states.

For a SM-BDPDS BP = (P, Γ,∆,∆c, I, F ), a local configuration c0 = (⟨p0, ω0⟩, θ0)
and a set of DCLICs D, (c0, D) satisfies BP if p0 ∈ I and there is a local run
σ = c0c1c2 . . . in BP, such that BP spawns new processes with DCLICs D
during σ and there is an infinite subsequence of configurations ck0ck1 . . . , where
ckj = (⟨pkj , ωkj ⟩, θkj ) for j ≥ 0 and pkj ∈ F . We denote the set of all configura-
tions and DCLICs accepted by BP as L(BP).

For a SM-DPDS Pi = (Pi, Γi, ∆i, ∆
c
i ), a Büchi Automaton Bi = (G, 2AP , T, g0, F )

that corresponds to an LTL formula fi, and a labelling function λi, we can
compute a SM-BDPDS BPi = (P ′

i , Γi, ∆
′
i, ∆

c′

i , I
′
i, F

′
i ), where P ′

i = Pi × G,
I ′i = Pi × {g0}, and F ′

i = Pi × F . Let p, p1,∈ Pi, g1, g2 ∈ Gi, γ ∈ Γ , ω1 ∈ Γ ∗,
ρ1, ρ2 ⊆ ∆i ∪ ∆c

i , p2 ∈ Pj , ω2 ∈ Γ ∗
j , θ2 ∈ 2∆j∪∆c

j . Initially, ∆′
i = ∆c′

i = ∅. We
construct rules for BPi as follows:

1. [p, g1]γ ↪→ [p1, g2]ω1 ∈ ∆′
i iff pγ ↪→ p1ω1 ∈ ∆i and (g1, λi(p), g2) ∈ Ti,

2. [p, g1]γ ↪→ [p1, g2]ω1 ▷ p2ω2θ2 ∈ ∆′
i iff pγ ↪→ p1ω1 ▷ p2ω2θ2 ∈ ∆i and

(g1, λi(p), g2) ∈ Ti,

3. [p, g1]
(σ1,σ2)
↪−−−−→ [p1, g2] ∈ ∆c′

i iff p
(ρ1,ρ2)
↪−−−−→ p1 ∈ ∆c

i , (g1, λi(p), g2) ∈ Ti, σ1 =
prod(ρ1), and σ2 = prod(ρ2), where prod(ρ) is a set of rules obtained from
ρ ⊆ ∆i ∪∆c

i .

Intuitively, BPi is a product of Pi and the BA Bi. The behavior of the con-
structed SM-BDPDS BPi is the same as of Pi synchronized with Bi for the LTL
formula fi. The intuition behind this construction is that if there is a run on SM-
BDPDS σ = (⟨[p0, g0], ω0⟩, θ0)(⟨[p1, g1], ω1⟩, θ1) . . . , then there should be a valid
run σp = (⟨p0, ω0⟩, θ0)(⟨p0, ω0⟩, θ0) . . . spawning DCLICsD on Pi and a valid run
σb = g0g1 . . . on Bi. Therefore, σp |=D fi iff

(
(⟨[p0, g0], ω0⟩, θ0), D

)
∈ L(BPi).

4.2 LTL Satisfiability to the Emptiness Problem of SM-DPDS

To compute satisfiability of a single process we extend the automata-based ap-
proach for non self-modifying DPNs proposed by [25].

Theorem 2. For a SM-BDPDS BPi = (P ′
i , Γi, ∆

′
i, ∆

c′

i , I
′
i, F

′
i ),

(
(⟨p, ω⟩, θ), D

)
∈

L(BPi) iff ∃D1, D2, D3 ⊆ Di, s.t. D = D1∪D2∪D3 and the following conditions
hold:

α1 (⟨p, ω⟩, θ) D1==⇒∗ (⟨p′, γω′⟩, θ′) for some p′ ∈ P ′
i , θ, θ′ ⊆ (∆′

i ∪∆c′

i ), γ ∈ Γi,
ω′ ∈ Γ ∗, and
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α2 (⟨p′, γ⟩, θ′) D2==⇒+ (⟨g, u⟩, θ′′) and (⟨g, u⟩, θ′′) D3==⇒∗ (⟨p′, γv⟩, θ′) for some

g ∈ F ′
i , θ′′ ⊆ (∆′

i ∪∆c′

i ), u, v ∈ Γ ∗.

Let us explain the intuition behind the theorem. Since
(
(⟨p, ω⟩, θ), D

)
∈ L(BPi),

there must be an infinite sequence of local configurations with an accepting state
g. This sequence is produced by an infinite cycle starting from some (⟨p′, γ⟩, θ′),
visiting (⟨g, u⟩, θ′′), and then going to (⟨p′, γv⟩, θ′). Since rules of BPi only look at
the top symbol of the stack content, BPi can apply the same rules on (⟨p′, γv⟩, θ′)
and end up at (⟨p′, γvv⟩, θ′) and so on. During this cycle, BPi spawns processes
with DCLICs D2 ∪ D3 (D2 to reach (⟨g, u⟩, θ′′) and D3 to go back). This is
ensured by the condition α1. Moreover, the starting state (⟨p, ω⟩, θ) must be
backwards reachable from (⟨p′, γ⟩, θ′), which is ensured by the condition α1. As-
sume that BPi spawns processes with DCLICs D1 along the path from (⟨p, ω⟩, θ)
to (⟨p′, γ⟩, θ′). Therfore, BPi spawns D1∪D2∪D3 during the accepting run and
hence,

(
(⟨p, ω⟩, θ), D

)
is accepted by BPi.

Corollary 1. For a SM-BDPDS BPi = (P ′
i , Γi, ∆

′
i, ∆

c′

i , Fi),
(
(⟨pω⟩, θ), D

)
∈

L(BPi) iff ∃D1, D
′
2 ⊆ Di, ∃θ′ ⊆ ∆′

i ∪∆c′

i , s.t. D = D1 ∪D′
2 and the following

conditions hold:

β1
(
(⟨p, ω⟩, θ), D

)
∈ pre∗({p′} × γΓ ∗

i × {θ′} × {∅}), and
β2

(
(⟨p′, γ⟩, θ′), D′

2

)
∈ pre+((Fi×Γ ∗

i ×2∆
′
i∪∆

c′
i ×2Di)∩pre∗({p′}×γΓ ∗

i ×{θ′}×
{∅})).

The corollary is a rewording of Theorem 2 using pre notation instead of suc-
cessor relationship, and where D′

2 equals to D2 ∪ D3. Intuitively, for the con-
dition β1, if (⟨p, ω⟩, θ) D1==⇒∗ (⟨p′, γω′⟩, θ′), then

(
(⟨p, ω⟩, θ), D

)
∈ pre∗({p′} ×

γΓ ∗
i × {θ′} × {∅}). And for condition β2, if (⟨g, u⟩, θ′′) D3==⇒∗ (⟨p′, γv⟩, θ′), then(

(⟨g, u⟩, θ′′), D3

)
∈ (Fi × Γ ∗

i × 2∆
′
i∪∆

c′
i × 2Di) ∩ pre∗({p′} × γΓ ∗

i × {θ′} × {∅}).
And since (⟨p′, γ⟩, θ′) D2==⇒+ (⟨g, u⟩, θ′′), then

(
(⟨p′, γ⟩, θ′), D′

2

)
is in pre+ of all

such
(
(⟨g, u⟩, θ′′), D3

)
, where D′

2 = D2 ∪D3.

5 Automata-Based Model Checking

As shown in Section 4, the LTL model checking of SM-DPNs boils down to the
efficient computation of the set of predecessors pre∗ for local configurations and
sets of DCLICs of a SM-DPDS. We follow a similar approach as [20, 25] and
give in this section the efficient algorithm for computing this set using Multi
Automata.

5.1 Multi Automata

Multi Automata (MA) are widely used to finitely represent potentially infinite
sets of local configurations and DCLICs. Following [25], we use MA to represent
sets of local configurations and DCLICs of SM-DPDS:
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Definition 7. A Multi-Automaton is a tuple Ai = (Qi, Γi, δi, Ii, Acci), where Qi
is a finite set of states, Γi is the alphabet of Pi, δi ⊆ Qi× (Γi∪{ε})×2Di ×Qi is
a set of transitions, Ii = Pi × 2∆i∪∆c

i ⊆ Qi is a set of initial states representing
the control point and the phase of the configuration, and Acci ⊆ Qi is a set of

accepting states. Transition (q, γ,D, q′) ∈ δi can be denoted as q
γ/D−−−→i q

′.

The reflexive-transitive closure q
ω/D−−−→∗

i q
′ for transitions is defined as: (1) q

ε/∅−−→∗
i

q, (2) if q
γ/D−−−→i q

′′ and q′′
ω/D′

−−−→∗
i q

′, then q
γω/D∪D′

−−−−−−→∗
i q

′, where ω ∈ Γ ∗
i ,

D′ ⊆ Di.
For a local configuration (⟨p, ω⟩, θ) and a set of DCLICs D, the MA accepts

tuples
(
(⟨p, ω⟩, θ), D

)
iff there is a path (p, θ)

ω/D−−−→∗
i qf for some qf ∈ Acci. From

now on, we will omit the index i for −→i when it is understood from the context.
Let L(Ai) be the set of configurations and DCLICs accepted by the MA Ai.

We say that a set of configurations and DCLICs W is regular iff there exists a
MA Ai, such that W = L(Ai).

5.2 Algorithm for pre∗ Computation

We prove in this section that given a SM-DPDS Pi and a regular set of pairs
of configurations and DCLICs W accepted by a MA Ai, we can compute a
new MA Apre∗

i that accepts pre∗(W ). We introduce a saturation algorithm that
extends original MA into the new MA that also accepts pre∗(W ). Let Ai =
(Qi, Γi, δi, Ii, Acci) be the original MA that accepts configurations of a SM-
DPDS Pi = (Pi, Γi, ∆i, ∆

c
i ).

Without loss of generality, we can assume that there are no rules that remove

themselves. In other words, there are no rules of type r = p
(ρ1,ρ2)
↪−−−−→ p′ ∈ ∆c

i ,
such that r ∈ ρ1. It is possible because we can substitute such rules with two

new rules: r = p
(∅,∅)
↪−−−→ pr and r′ = pr

(ρ1,ρ2)
↪−−−−→ p′, where r′ is a new rule and pr

is a new state. We need this restriction because the algorithm assumes that a
configuration (⟨p, ω⟩, θ) can be reached from every direct predecessor by applying
some rule in θ.

Now, we can construct Apre∗

i = (Qi, Γi, δ
′
i, Ii, Acci). Initially, δ′i = δi. Then,

we apply the following saturation rules:

µ1 If r = pγ ↪→ p′ω ∈ ∆i, then for every θ ∈ 2∆i∪∆c
i , s.t. r ∈ θ and (p′, θ)

ω/D−−−→∗

q ∈ δ′i, add transition (p, θ)
γ/D−−−→ q to δ′i;

µ2 if r = pγ ↪→ p′ω ▷ p′′ω′′θ′′ ∈ ∆i, then for every θ ∈ 2∆i∪∆c
i , s.t. r ∈ θ and

(p′, θ)
ω/D−−−→∗ q ∈ δ′i, add transition (p, θ)

γ/D∪{p′′ω′′θ′′}−−−−−−−−−−→ q to δ′i;

µ3 If r = p
(ρ1,ρ2)
↪−−−−→ p′ ∈ ∆c

i , then for every θ′ ∈ 2∆i∪∆c
i and γ ∈ Γi, s.t. r ∈ θ′,

ρ2 ⊆ θ′ and (p′, θ′)
γ/D−−−→ q, then add (p, θ)

γ/D−−−→ q, such that θ′ = (θ\ρ1)∪ρ2.

This procedure terminates because there is a finite number of transitions we can
add, which is (|Pi||2∆i∪∆c

i |+Qi)
2|Γ ∪ {ε}||Di|.
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Let us explain the intuition behind the saturation rules. Rule µ1 adds prede-
cessors obtained from standard pushdown rules. Consider a rule r = pγ ↪→ p′ω ∈
∆i and let us consider a path of Apre∗

i of the form (p′, θ)
ω/D−−−→∗ q

ω′/D′

−−−−→∗ qf such
that qf ∈ Acci and r ∈ θ, which means (⟨p′, ωω′⟩, θ,D ∪D′) ∈ L(Apre∗

i ). Since
the phase θ contains r, then (⟨p, γω′⟩, θ) is a direct predecessor of (⟨p′, ωω′⟩, θ).
Thus, since r does not spawn new processes, there is no need tp update the
DCLICs D. Therefore, we add the new transition (p, θ)

γ/D−−−→ q to Apre∗

i , so that

(⟨p, γω′⟩, θ,D ∪ D′) will be accepted by the path (p, θ)
γ/D−−−→ q

ω′/D′

−−−−→∗ qf in
Apre∗

i .
Similarly, rule µ2 adds predecessors that require a process to be spawned. In

this case, consider a rule r = pγ ↪→ p′ω ▷ p′′ω′′θ′′ ∈ ∆i and let there be a path

of the form (p′, θ)
ω/D−−−→∗ q

ω′/D′

−−−−→∗ qf such that qf ∈ Acci and r ∈ θ. Therefore,
(⟨p′, ωω′⟩, θ,D ∪D′) ∈ L(Apre∗

i ). Since the phase θ contains r, then (⟨p, γω′⟩, θ)
is a direct predecessor of (⟨p′, ωω′⟩, θ). Since r spawns a new process with the
DCLIC p′′ω′′θ′′, we add p′′ω′′θ′′ to the DCLIC D. Therefore, we add the new

transition (p, θ)
γ/D∪{p′′ω′′θ′′}−−−−−−−−−−→ q, so that (⟨p, γω′′⟩, θ,D ∪ D′ ∪ {p′′ω′′θ′′}) will

be accepted by the path (p, θ)
γ/D∪{p′′ω′′θ′′}−−−−−−−−−−→ q

ω′′/D′

−−−−→∗ qf .
The saturation rule µ3 adds the predecessors that are obtained by self-

modifying rules. Consider a rule r = p
(ρ1,ρ2)
↪−−−−→ p′ ∈ ∆c

i and a path in Apre∗

i of the

form (p′, θ′)
γ/D−−−→ q

ω′′/D′

−−−−→∗ qf , such that qf ∈ Acci, r ∈ θ′, ρ2 ⊆ θ′. Therefore,
(⟨p′, γω⟩, θ′, D∪D′) ∈ L(Apre∗

i ). Since the phase θ′ contains r and all rules in ρ2,
then (⟨p, γω⟩, θ) is a direct predecessor of (⟨p′, γω⟩, θ′), where θ = (θ′\ρ2) ∪ ρ1.
Since this transition does not spawn any new processes, there is no need to up-
date DCLICs D. Therefore, we add the new transition (p, θ)

γ/D−−−→ q to Apre∗

i , so

that (⟨p, γω′′⟩, θ) will be accepted by the path (p, θ)
γ/D−−−→ q

ω′′/D′

−−−−→∗ qf in Apre∗

i .

Lemma 1. Given a regular set of configurations and DCLICs W recognized by
MA Ai = (Qi, Γi, δi, Ii, Acci), we can effectively compute MA Apre∗

i = (Qi, Γi, δ
′
i, Ii, Acci),

such that L(Apre∗

i ) = pre∗(W ).

We can show that the saturation algorithm described above computes MA Apre∗

i

that accepts pre∗ of a regular set of configurations and DCLICs (the proof can
be found in Appendix A). We use Lemma 1 to show:

Theorem 3. For a regular set of local configurations and DCLICs W ⊆ Pi ×
Γ ∗
i ×2∆i∪∆c

i×2Di , the set pre∗(W ) is also regular and can be effectively computed.

6 Effective Algorithm for Model Checking SM-DPNs

Now, we are ready to tackle the main problem of this paper - effective LTL
model checking of SM-DPNs. We combine the concepts presented in Sections 3,
4, and 5.2 to give a full algorithm for LTL model checking SM-DPNs.
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Consider a SM-DPN M = (P1,P2, . . . ,Pn) and a single-indexed LTL formula
f =

∧n
i=0 fi. From Theorem 3 and Corollary 1, given a SM-DPDS Pi and an

LTL formula fi we can construct a MA Ai to determine whether or not Pi
satisfies fi. To construct Ai, we iterate over possible p′,γ′, and θ′. We construct
the MA for pre∗({p′}× {θ′}× γ′Γ ∗

i ×{∅}). {p′}× {θ′}× γ′Γ ∗
i ×{∅} is a regular

set because γ′Γ ∗
i is a regular word and all other items are finite sets. Then, we

compute the intersection with (Fi× 2∆
′
i∪∆

c′
i ×Γ ∗

i × 2Di). This set is also regular
because Γ ∗

i is a regular word and other sets are finite. After that, we contruct
pre+ MA for the intersection and test (⟨p′, γ′⟩θ′, D′

2) on the pre+. If the pre+

automaton accepts (⟨p′, γ′⟩θ′, D′
2), then we add the transition (p′, θ′)

γ′/D′
2−−−−→ qf

to the MA A′
i, where qf is a final state. Next, we compute pre∗ on the A′

i to
get the final automaton Ai = pre∗(A′

i). From Corollary 1, this Ai is such that
if (c,D) ∈ L(Ai), then c |=D fi.

Then, we use Theorem 4 for find Dfp. This theorem requires that given
a configuration (⟨p, ω⟩, θ) and a set of DCLICs D, we need to know whether
(⟨p, ω⟩, θ) |=D fπ(c). We can use the MA Ai constructed by the method above
for that purpose. And after computing Dfp, we proceed with the algorithm in
Section 3 to get whether a global configuration satisfies f .

Consider a SM-DPN M = (P0,P1, . . . ,Pn) and First, we need to compute
the maximal set Dfp. Let F : 2

⋃n
k=1Dk → 2

⋃n
k=1Dk be defined as F (D) =

{pωθ ∈ DI | ∃D′ ⊆ D : (⟨[p, g0π(p)], ω⟩, θ) |=D fπ(i)}. Let D0D1D2 . . . be a
sequence generated by the recursive application of F , such that D0 = DI , and
Dj = F (Dj−1) for j ≥ 1. We can show that Dfp =

⋂
j D

j and can be effectively
computed by F :

Theorem 4. We can effectively compute Dfp, s.t. for every DCLIC pωθ ∈⋃n
k=1 Dk, (⟨p, ω⟩, θ) |=D′ fπ(p) iff pωθ ∈ Dfp and D′ ⊆ Dfp.

Intuitively, the function F takes a set of DCLICs D that hypothetically satisfy
their corresponding LTL formulas. The function returns a smaller set of DCLICs
D′, where for every DCLIC p′ω′θ′ ∈ D′, there exists another set of DCLICs
D′′ ⊆ D, such that (⟨p′, ω′⟩, θ′) |=D′′ fπ(p′). Initially, D0 is the set of all DCLICs
DI . At the first step, we exclude DCLICs that can not satisfy f regardless of
what DCLICs they generate (because we assume that every DCLIC satisfies
f). Then, every next iteration excludes such DCLICs that spawn unsatisfiable
DCLICs during their accepting runs. At the end, the function should plateau at
a constant set of DCLICs that satisfy f . In other words, we can compute the
greatest fixpoint Dfp on the recursion starting from DI because this function
reduces a countable set of DCLICs for each step. Therefore, we can use Theorem
4 to find the set of valid DCLICs for a single-indexed LTL formula.

Now, for a global configuration G = c0c1c2...cm and a single indexed formula
f =

∧n
i=1 fi, we can determine whether the global configuration satisfies f .

We simply check for each local configuration cj = (⟨pj , ωj⟩, θj), if there exists
D ⊆ Dfp, such that cj |=D fπ(pj). G |= f if all configurations cj ∈ G satisfy
their corresponding fπ(pj).
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7 Experiments

7.1 Comparison with Model Checking DPNs

Since SM-DPNs are equivalent to normal DPNs, we compared our direct model
checking approach with the approach that consists of translating SM-DPN to
the equivalent DPN and applying the algorithm proposed by [25]. First, we im-
plemented both algorithms using Python 3. Then, we generated a set of random
SM-DPN s and single-indexed formulas. Then, for each pair of SM-DPN and a
formula we compared the time and memory needed for computing whether the
SM-DPN satisfies the formula. We summarized our results in Table 1. The col-
umn |M| specifies the number of distinct SM-DPDS in the SM-DPN model, |fi|
is the number of transitions in a BA obtained from the i-th LTL formula, |∆i| is
the number of non self-modifying rules in each SM-DPDS, |∆c

i | is the number of
self-modifying rules in each SM-DPDS, T is the time took for the algorithm and
mem is the amount of memory used during the computation. The memory usage
was recorded usign the Python’s built-in tracemalloc package. The fields with
timeout specify that the implementation took more than 10 hours to execute,
and OOM (out-of-memory) means that the algorithm was terminated because
there was not enough memory resource for the computation. The experiments
were conducted on a laptop with a CPU AMD Ryzen 7 8845HS and 10 GB of
available memory (8 GB RAM and 2 GB swap pages).

From Table 1, we can see that our algorithm performs consistently better
in terms of time and memory than translating SM-DPNs into standard DPNs
and applying the LTL algorithm for standard DPNs from [25]. We highlighted
some cases where our algorithm performed significantly better. For example,
when a SM-DPN contains 3 processes, 129 standard rules and 2 self-modifying
rules, our direct LTL model checking took 769.27 seconds (∼13 minutes), while
the model checking of an equivalent DPN took almost 2 days. On average, our
algorithm is 468 times faster for 3 self-modifying rules, and 95 times faster for 2
self-modifying rules.

7.2 LTL Model Checking SM-DPNs for Malware Specification

We evaluated the applicability of our approach for malware detection. We have
collected samples of existing malware from malware databases, such as Virus
Share [10] and Malware Bazaar [1]. We have found one sample of Mirai malware
and one sample of Gozi malware that are both concurrent and self-modifying.
We also considered one self-modifying version of a concurrent generic backdoor.

We translated the malware samples into SM-DPNs using the method de-
scribed in Section 2.4. We obtained the CFGs of malware using ANGR ana-
lyzer [23]. We made use of its symbolic execution to resolve system calls as con-
trol points, identify self-modifying instructions, and compute states of spawned
processes. We use system calls as atomic propositions AP . Our labelling function
λ is that if a there is a system call x at a control point p, then λ(p) = {x} and
otherwise, λ(p) = ∅.
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Our approach SM-DPN to DPN
|M| |fi| |∆i|+ |∆c

i | T, sec mem, KiB T, sec mem, KiB
1 5 10 + 3 0.01 63.57 0.4 1 153.93
1 6 10 + 3 3.98 236.29 2 927.27 2 017.56
1 7 10 + 3 2.87 325.34 815.80 1 232.78
1 8 10 + 3 5.29 674.29 8 894.93 2 420.37
1 5 10 + 1 0.30 63.57 7.23 134.47
1 6 10 + 1 0.10 63.57 3.11 116.18
1 7 10 + 1 2.12 642.30 389.87 1 045.70
2 1 12 + 2 1.24 71.24 21.76 561.31
2 1 22 + 2 1.53 78.41 39.49 706.41
2 1 32 + 2 10.04 179.01 1 473.41 1 542.21
2 12 32 + 2 114.78 1 433.08 timeout timeout
3 4 31 + 3 29.19 483.58 3 586.07 10 920.32
3 5 32 + 5 0.02 72.42 4.21 41 818.15
3 5 42 + 5 1401.31 3 661.34 timeout timeout
2 7 32 + 4 253.80 1 347.30 timeout timeout
3 8 50 + 4 607.18 1 717.22 timeout timeout
2 9 34 + 5 904.25 2 924.89 timeout timeout
2 13 40 + 3 0.02 72.50 1.09 5 212.05
4 1 22 + 2 31.92 476.02 4 644.77 2 492.78
3 14 37 + 2 32.93 585.57 1 824.50 8 695.83
3 41 43 + 2 275.18 5 206.40 timeout timeout
4 1 52 + 2 47.35 919.43 timeout timeout
4 1 62 + 2 60.15 920.29 timeout timeout
5 1 12 + 2 5.03 167.78 232.47 1 341.30
5 1 22 + 2 13.99 291.78 1 804.86 2 088.73
5 2 102 + 2 151.66 587.85 10 392.94 3 288.55
2 2 28 + 3 18.21 246.90 866.46 7 962.37
3 1 33 + 5 54.72 400.27 14 310.20 23 819.53
2 1 48 + 4 251.91 560.40 timeout timeout
4 1 38 + 7 7 548.30 12 901.00 OOM OOM
1 2 81 + 8 56 501.63 11 606.98 OOM OOM
2 2 134 + 4 2 878.35 2 131.24 timeout timeout
4 2 42 + 9 26 804.35 19 890.16 OOM OOM
1 3 59 + 4 184.98 545.51 timeout timeout
1 3 66 + 1 77.44 1 325.73 1 442.53 10 312.03
2 3 149 + 4 7 467.28 3 901.95 timeout timeout
3 1 129 + 2 769.27 3 005.60 151 403.08 52 682.78
3 3 63 + 3 105.41 621.27 81 637.13 41 098.79
3 3 197 + 1 1 115.17 6 529.34 26 151.43 55 853.34
3 3 127 + 4 8 154.62 8 112.27 timeout timeout
4 3 134 + 3 4 002.69 9 294.60 timeout timeout
3 10 161 + 2 981.33 4 854.11 timeout timeout
4 6 90 + 7 14 090.17 5 948.56 OOM OOM
4 11 20 + 7 2 436.91 13 873.57 OOM OOM
3 21 34 + 5 343.70 1 555.08 timeout timeout

Table 1. Performance comparison of proposed algorithm to the algorithm of [25] on
an equivalent DPN.



18 T. Touili and O. Zhangeldinov

We used additional logical operators defined as follows: x ∨ y iff ¬(¬x ∧ ¬y)
(logical or), and x =⇒ y iff ¬x ∨ y (implication). Each standard LTL formula
fi is represented as

[
fi
]i to specify that this formula belongs to the process i.

Mirai malware is a botnet virus that targets IoT devices running on Linux.
Our sample was built for machines with 32-bit ARM processors. It has two
parallel processes. One process performs DDoS attacks and communicates with
a Command and Control (C2) server. The other process evades detection and
maintains persistence on the host machine. The single-indexed LTL formula for
Mirai can be described as:

f =
[
F
(
accept ∧ Ffork

)]1
∧
[
F
(
mount ∧ Fprctl

)]2
Intuitively, the first process waits for a command from C2 server using the accept
syscall and then creates a parallel process to perform DDoS attack using the fork
syscall. The second process disguises itself as a regular software. First, it calls
mount to create a new filesystem to hide there. Then, it changes the name of
itself to a legitimate name using prctl syscall.
Gozi malware is a Windows virus that targets banking field and steals creden-
tials to critical systems such as banking software. The malware uses threads to
run different jobs in parallel. For example, the first thread tries to hide the pres-
ence of the malware by manipulating the filesystem. The second thread waits
for some time to avoid automatic detection by antivirus software, and then tries
to connect to the C2 server or spawn another process. The third thread steals
credentials from browsers and saves them in a temporary file. Here is the single-
indexed formula for such behaviour:

f =
[
F
(
FindFirstF ileW ∧ F(DeleteF ileW ∨ SetF ileAttributesW )

)]1
∧[

F
(
Sleep ∧ F(CreateProcessW ∨ connect)

)]2
∧[

G
(
GetWindowTextW =⇒ FCreateF ileW

)]3
The first thread finds the file of itself using FindFirstF ileW and hides it by ei-
ther deleting it withDeleteF ileW , or making it hidden using SetF ileAttributesW .
The second thread waits until antivirus software marks the program as safe by
calling Sleep. Then, the malware establishes connection with C2 using connect
or calls another malicious process using CreateProcessW . The third thread
performs credential stealing by calling GetWindowTextW on a browser, and
saving the credentials that user writes to login forms into a new file created by
the syscall CreateF ileW .
Generic Backdoor is a group of different malwares that allows a malicious
party to obtain a full access to the infected machine. The obtained sample of
the backdoor employs four threads. The first one modifies the system registry
in such a way that the backdoor file is always executed at the startup of the
system. The second thread establishes connection with a C2 server. The third
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thread sends data to C2. And the fourth thread waits for commands from C2.
The behaviour is dscribed using the following formula:

f =
[
F(GetModuleF ileNameA ∧ FRegSetV alueExA)

)]1
∧[

F(gethostbyname ∧ Frecv)
]2

∧
[
Fsend

]3
∧
[
GF(accept ∧ FCreateThread)

]4
The first thread gets its own filename using GetModuleF ileNameA, and puts
it into registry for automatic execution on system startup using the system call
RegSetV alueExA. The second formula finds the C2 server using gethostbyname
and configures a socket to receive incoming messages with recv. The third thread
sends data using send syscall. And the fourth thread waits for incoming mes-
sages using accept and, on receiving the message, spawns a new thread using
CreateThread to perform malicious activities.

8 Conclusion

In this work, we propose a direct and efficient algorithm for model checking
of SM-DPNs over single-indexed LTL formulas. First, we show an algorithm
for reducing model checking SM-DPDS to the reachability analysis of Self-
Modifying Büchi Dynamic Pushdown Systems using Multi-Automata. Then, we
give an algorithm for single-indexed LTL model checking by computing fixpoint
of DCLICs. During the experiments, we compared our algorithm with an ap-
proach of translating SM-DPN into standard DPN and performing LTL model
checking on DPN, and the results show the efficiency of our approach. Finally, we
show how the model checking can be applied for specification of self-modifying
and concurrent malware.
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A Proof of Lemma 1

Proof (Proof of Lemma 1). We prove in two directions:
(pre∗(W ) ⊆ L(Apre∗

i )): In other words, we need to prove that for every c =

(⟨p, ω⟩θ) ∈ Confi and D ⊆ Di, if c D
==⇒∗ c0 for some (c0, D0) ∈ W , then

(p, θ)
ω/D∪D0−−−−−−→∗ qf for some qf ∈ Acci. Let c0 = (⟨p0, ω0⟩θ0) and q

ω−→∗
j q′

be a path using transitions from δ′i after adding j new transitions for j ≥ 0.

Intuitively, q
ω/D−−−→∗

0 q
′ means that there is a path in δi. Since (c0, D0) ∈W =⇒

(c0, D0) ∈ L(Ai) =⇒ (p0, θ0)
ω0/D0−−−−→∗

0 qf , where qf ∈ Acci. Assume c D
==⇒k c′.

We proceed with induction on k.
Basis k = 0. p0 = p, θ0 = θ, ω0 = ω, D = ∅. The proposition holds.
Step k ≥ 1. Let (⟨p, ω⟩θ) D′

==⇒1 (⟨p′, ω′⟩θ′) and (⟨p′, ω′⟩θ′) D′′

==⇒k−1 (⟨p0, ω0⟩θ0),

D = D′∪D′′. From the induction hypothesis, there is a path (p′, θ′)
ω′/D′′∪D0−−−−−−−→∗

qf . From the definition of D
==⇒, since (⟨p, ω⟩θ) D′

==⇒ (⟨p′, θ′⟩θ′), one of these
propositions holds

1. This transition was caused by a rule r = pγ ↪→ p′v ∈ θ. Then, ω = γu,
ω′ = vu, D′ = ∅, and θ = θ′, where γ ∈ Γi, u, v ∈ Γ ∗. Let (p′, θ′)

v/D1−−−→∗

q′
u/D2−−−→∗ qf , such that D1 ∪D2 = D′′ ∪D0. Then, rule µ1 applies, and we

add a transition (p, θ)
γ/D1−−−→ q′. Thus, with the new transition, (p, θ)

γ/D1−−−→∗

q′
u/D2−−−→∗ qf . D = D′∪D0 = D0 and therefore, D2∪D1 = D′′∪D0 = D′′∪D.

2. This transition was caused by a rule r = pγ ↪→ p′v ▷ p2ω2θ2 ∈ θ. Then,
ω = γu, ω′ = vu, D′ = {p2ω2θ2}, and θ = θ′, where γ ∈ Γi, u, v ∈ Γ ∗. Let

(p′, θ′)
v/D1−−−→∗ q′

u/D2−−−→∗ qf , such that D1 ∪ D2 = D′′ ∪ D0. Then, rule µ2

applies, and we add a transition (p, θ)
γ/D1∪{p2ω2θ2}−−−−−−−−−−→ q′. Thus, with the new

transition, (p, θ)
γ/D1∪{p2ω2θ2}−−−−−−−−−−→∗ q′

u/D2−−−→∗ qf . D = D′∪D0 = D0∪{p2ω2θ2}
and therefore, D2 ∪D1 ∪ {p2ω2θ2} = D′′ ∪D0 ∪ {p2ω2θ2} = D′′ ∪D.

3. This transition was caused by a rule r = p
(ρ1,ρ2)
↪−−−−→ p′ ∈ θ. Then, ω = ω′,D′ =

∅, ρ1 ⊆ θ, ρ2 ⊆ θ′, and θ′ = (θ\ρ1) ∪ ρ2. Let ω = γu for γ ∈ Γ and u ∈ Γ ∗.
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Then, (p′, θ′)
γ/D1−−−→ q′

u/D2−−−→∗ qf , such that D1 ∪D2 = D′′ ∪D0. Then, rule

µ3 applies, and we add a transition (p, θ′′)
γ/D1−−−→ q′. θ′′ = (θ′\ρ2) ∪ ρ1 = θ.

Thus, with the new transition, (p, θ)
γ/D1−−−→∗ q′

u/D2−−−→∗ qf . D = D′∪D0 = D0

and therefore, D2 ∪D1 = D′′ ∪D0 = D′′ ∪D.

Thus, the induction hypothesis holds for all three cases during its step, and the
lemma holds for this direction.

(L(Apre∗

i ) ⊆ pre∗(W )): We prove by induction with the following hypothesis:

If there is a path (p, θ)
ω/D−−−→∗ q, then there exists a configuration (⟨p′, ω′⟩θ′),

such that:

– (⟨p, ω⟩θ) D′

==⇒∗ (⟨p′, ω′⟩θ′), (p′, θ′) ω′/D0−−−−→∗
0 q, and D = D′ ∪D0, and

– if q is an initial state, then ω′ = ε, D′ = ∅.

Let (p, θ)
ω/D−−−→∗

k q for some k. We proceed with the induction on k:
Basis k = 0. Then, p = p′, θ = θ′, ω = ω′, and D = D′ and therefore,

the first item holds. If q is an initial state, considering also that we excluded
transitions into initial states for Ai, then q must be (p, θ) and q

ε/∅−−→∗ q.

Step k ≥ 1. Let t = (p1, θ1)
γ/D1−−−→ q1 be the k-th transition added to δ′i. Let

j be the number of times t was used in the path (p, θ)
ω/D−−−→∗

k q. We proceed with
induction on j:

Basis j = 0. Then, (p, θ)
ω/D−−−→∗

k−1 q and therefore, the lemma holds by
applying the induction hypothesis on k − 1.

Step j ≥ 1. Then, there exists a path (p, θ)
u/D2−−−→∗

k−1 (p1, θ1)
γ/D1−−−→ q1

v/D3−−−→∗
k−1

q, such that ω = uγv and D = D1∪D2∪D3. We apply the induction hypothesis
on (p, θ)

u/D2−−−→∗
k−1 (p1, θ1) to obtain that there exist p′′ ∈ Pi, θ′′ ⊆ 2∆i∪∆c

i ,

D′′ ⊆ Di, such that (p′′, θ′′)
ω′′/D′′

−−−−−→∗
0 (p1, θ1). Moreover, (⟨p, u⟩θ) D2∪D′′

=====⇒∗

(⟨p′′, ω′′⟩θ′′), and since (p1, θ1) is an initial state, we apply the second part of the
induction hypothesis to get that ω′′ = ε and D′′ = ∅. Therefore, (⟨p, u⟩θ) D2==⇒∗

(⟨p1, ε⟩θ1)
Now, we consider the transition (p1, θ1)

γ/D1−−−→ q1. Because it was added by
a saturation rule, one of these cases must hold:

Case µ1: There exists a rule r = p1γ ↪→ p′′′ω′′′ ∈ θ1 for some p′′′ ∈ Pi

and ω′′′ ∈ Γ ∗
i , and (p′′′, θ1)

ω′′′/D1−−−−−→∗
k−1 q1. The rule r allows the successor rela-

tion (⟨p1, γ⟩θ1)
∅
==⇒ (⟨p′′′, ω′′′⟩, θ1) to hold. Now, we can extend this path back-

wards: (⟨p, uγ⟩θ) D2==⇒∗ (⟨p1, γ⟩θ1)
∅
==⇒ (⟨p′′′, ω′′′⟩θ1). Since (p′′′, θ1)

ω′′′/D1−−−−−→∗
k−1

q1
v/D3−−−→∗

q uses transition t fewer times, we apply the induction hypothesis to ob-

tain that there exists a configuration (⟨p0, ω0⟩)θ0, such that (⟨p′′′, ω′′′⟩θ1)
D4==⇒∗
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(⟨p0, ω0⟩θ0), (p0, θ0)
ω0/D5−−−−→∗

0 q, andD1∪D3 = D4∪D5. Now, we get (⟨p, uγω′′′⟩θ) D2==⇒∗

(⟨p′′′, ω′′′⟩θ1)
D4==⇒∗ (⟨p0, ω0⟩θ0). Now, we check the sets of DCLICs D2 ∪ D4 ∪

D5 = D2 ∪ D1 ∪ D3 = D. If q is an initial state and there are no transitions
into initial states in Ai, that means q = (p0, θ0), ω0 = ε, and D5 = ∅. Thus,
D = D2 ∪D4. Therefore, the induction hypothesis holds for this case.

Case µ2: There exists a rule r = p1γ ↪→ p′′′ω′′′▷p2ω2θ2 ∈ θ1 for some p′′′ ∈ Pi

and ω′′′ ∈ Γ ∗
i , and (p′′′, θ1)

ω′′′/D6−−−−−→∗
k−1 q1, such that D1 = D6 ∪ {p2ω2θ2}. The

rule r allows the successor relation (⟨p1, γ⟩θ1)
{p2ω2θ2}
======⇒ (⟨p′′′, ω′′′⟩, θ1) to hold.

Now, we can extend this path backwards: (⟨p, uγ⟩θ) D2==⇒∗ (⟨p1, γ⟩θ1)
{p2ω2θ2}
======⇒

(⟨p′′′, ω′′′⟩θ1). Since (p′′′, θ1)
ω′′′/D6−−−−−→∗

k−1 q1
v/D3−−−→∗ q uses transition t fewer times,

we apply the induction hypothesis to obtain that there exists a configuration
(⟨p0, ω0⟩)θ0, such that (⟨p′′′, ω′′′⟩θ1)

D4==⇒∗ (⟨p0, ω0⟩θ0), (p0, θ0)
ω0/D5−−−−→∗

0 q, and

D6∪D3 = D4∪D5. Now, we get (⟨p, uγω′′′⟩θ) D2∪{p2ω2θ2}
=========⇒∗ (⟨p′′′, ω′′′⟩θ1)

D4==⇒∗

(⟨p0, ω0⟩θ0). Now, we check the sets of DCLICs D2 ∪ {p2ω2θ2} ∪ D4 ∪ D5 =
D2 ∪ {p2ω2θ2} ∪D6 ∪D3 = D2 ∪D1 ∪D3 = D. If q is an initial state and there
are no transitions into initial states in Ai, that means q = (p0, θ0), ω0 = ε, and
D5 = ∅. Thus, D = D2 ∪D4. Therefore, the induction hypothesis holds for this
case.

Case µ3: There exists θ′′′ ⊆ ∆i ∪∆c
i , such that there is a rule r = p1

(ρ1,ρ2)
↪−−−−→

p′′′ ∈ θ′′′, ρ2 ⊆ θ, such that (p′′′, θ′′′)
γ/D1−−−→∗

k−1 q1, and θ′′′ = (θ1\ρ1) ∪ ρ2 for

some p′′′ ∈ Pi. According to the successor relation definition, (⟨p1, ω′′′⟩θ1)
∅
==⇒

(⟨p′′′, ω′′′⟩θ′′′) for any ω′′′ ∈ Γ ∗
i . Thus, (⟨p, uω′′′⟩θ) D2==⇒∗ (⟨p′′′, ω′′′⟩θ′′′). Since

(p′′′, θ′′′)
γ/D1−−−→∗ q1

D3−−→∗ q uses t fewer times, we apply the induction hypothesis
to get that there exists a configuration (⟨p0, ω0⟩)θ0, such that (⟨p′′′, ω′′′⟩θ′′′) D4==⇒∗

(⟨p0, ω0⟩θ0), (p0, θ0)
ω0/D5−−−−→∗

0 q, and D1 ∪D3 = D4 ∪D5. Then, D4 ∪D5 ∪D2 =
D1∪D2∪D3 = D. If q is an initial state and there are no transitions into initial
states in Ai, that means q = (p0, θ0), ω0 = ε, and D5 = ∅. Thus, D = D2 ∪D4.
Therefore, the induction hypothesis holds for this case.

Finally, by proving the induction, we can apply this hypothesis to any transi-
tion (p, θ)

ω/D−−−→∗ qf , where qf ∈ Acci, which means that (⟨p, ω⟩θ,D) ∈ L(Apre∗

i ).

Thus, we get that there is (⟨p′, ω′⟩θ′), such that (⟨p, ω⟩θ) D′

==⇒∗ (⟨p′, ω′⟩θ′),

(p′, θ′)
ω′/D0−−−−→∗

0 qf , and D = D′ ∪ D0. The path (p′, θ′)
ω/D0−−−→∗

0 qf means that
(⟨p′, ω′⟩θ′, D0) ∈ L(Ai), or (⟨p′, ω′⟩θ′, D0) ∈ W . The successor relation implies
that (⟨p, ω⟩θ,D′∪D0) ∈ pre∗(W ). Thus, any configuration with a set of DCLICs
accepted by Apre∗

i is a predecessor of some configuration with DCLICs in W .
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By proving these two directions, we get that the set of configurations and
DCLICs accepted by L(Apre∗

i ) is the same set as the set of predecessors of W .

B Proof of Theorem 2

Proof (Proof of Theorem 2). ( =⇒ ): Let σ = c0c1c2 . . . is an accepting run of
BPi, s.t. for i ≥ 0, ci

Ii==⇒ ci+1 and D =
⋃
i Ii is created during this run. D is

finite because Di is finite. Let cj = (⟨pj , ωj⟩θj) for j ≥ 0. Because we have a
lower bound on the size of stack, we can construct a subsequence ck1ck2 . . . , s.t.
|ωk1 | = min{|ωj | | j ≥ 0} and |ωkl | = min{|ωj | | j ≥ kl−1}, l ≥ 1, where ωm is
a stack content of cm for some m.

Hence, after ck1 is reached, if ωk1 = γv, then, for every m > k1, ωm = ω′
mv,

where γ ∈ Γi, v, ω
′
m ∈ Γ ∗

i . Moreover, since the number of states, phases, and
transitions is limited, we can find a subsequence cj1cj2 . . . , s.t. pjl = p0, θjl = θ0,
and ωjl = γ0ω

′
jl

for l ≥ 0, where pjl and θjl are state and phase at cjl . Therefore,
the run uses transitions

c0
D4==⇒∗ cj1

D5==⇒+ cg
D6==⇒∗

cjm

, where cg = (⟨pgωg⟩θg), pg ∈ Fi, D4 =
⋃j1−1
h=0 Ih, D5 =

⋃g−1
h=j1

Ih, D6 =⋃jm−1
h=g Ih, and ∀h ≥ jm : Ih ⊆ D6.

Let cj1 = (⟨p′, γ′ω′⟩θ′), then α1 holds. Because cj1 has the smallest stack for
the run, ω′ never changes afterwards, ∃u, v ∈ Γ ∗

i , s.t. ωg = uω′ and ωjm = vω′.
Therefore, (⟨p′, γ′⟩θ′) D5==⇒+ and (⟨pg, u⟩θg)

D6==⇒∗ (⟨p′, γ′v⟩)θ′.

( ⇐= ) from α2, we can construct a run (⟨po, γ0vkω⟩θ0)
D2==⇒+ (⟨pg, uvkω⟩θg)

and (⟨pguvk⟩θg)
D3==⇒∗ (⟨p0γ0vk+1ω⟩ω) for every k ≥ 0. Since (pg, θg) ∈ Fi, then

the run is accepting.

C Proof of Theorem 4

Proof (Proof of Theorem 4). We prove in both directions.
( =⇒ ): Suppose the accepting global run ρ, s.t. ∀σ ∈ ρ : σ |= fπ(σ). Let

some σc be a local run starting at c = (⟨p, ω⟩θ). Therefore, ∃Dc ∈ Dπ(p), s.t.
c |=Dc

fπ(c), or (c,Dc) ∈ L(Aπ(c)) and ∀(p′ω′θ′) ∈ Dc : (⟨p′, ω′⟩θ′) |= fπ(p′). Let
Dj be the j-th iteration of F (D). We need to show that c ∈ Dj for every j. We
proceed by induction on j:

Basis j = 0. Dj = DI =⇒ pωθ ∈ Dj by definition of DI .
Step j ≥ 1. By definition of F (D), Dj = {(pωθ) ∈ DI | ∃D′ ⊆ Dj−1 :

(⟨[p, g0π(p)], ω⟩θ,D) ∈ Aπ(p)}. By applying the induction hypothesis on (⟨p′, ω′⟩θ′) |=
fπ(p′), we get that (⟨p′, ω′⟩θ′) ∈ Dj−1, and thus, (⟨p, ω⟩θ) ∈ Dfp.

( ⇐= ): By the definition of the set Dfp and the function F , the presence
of a configuration c in Dfp requires (c,Dc) ∈ L(Aπ(c)), or in other words, that
c |=Dc

fπ(c). for some Dc.


