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Abstract. We propose Markov two-components processes (M2CP) as a probabilistic
model of asynchronous systems based on the trace semantics for concurrency. Consid-
ering an asynchronous system distributed over two sites, we introduce concepts and tools
to manipulate random trajectories in an asynchronous framework: stopping times, an
Asynchronous Strong Markov property, recurrent and transient states and irreducible com-
ponents of asynchronous probabilistic processes. The asynchrony assumption implies that
there is no global totally ordered clock ruling the system. Instead, time appears as partially
ordered and random.

We construct and characterize M2CP through a finite family of transition matrices.
M2CP have a local independence property that guarantees that local components are
independent in the probabilistic sense, conditionally to their synchronization constraints.
A synchronization product of two Markov chains is introduced, as a natural example of
M2CP.

Dedicated to the memory of Philippe Darondeau (–)

Introduction

General settings and requirements. In this paper we introduce a probabilistic frame-
work for a simple asynchronous system distributed over two sites, based on the trace seman-
tics of concurrency. Consider a communicating system consisting of two subsystems, called
site 1 and site 2, that need to synchronize with one another from time to time, for example
for message exchange. Intended applications are, for instance, simple client-server situa-
tions, device-device driver interactions, communication bridge between two asynchronous
networks. The synchronization is modeled, for each site, by the fact that the concerned
subsystem is entering some synchronizing state, corresponding to a synchronization task—
there shall be several synchronization states corresponding to different tasks. It is natural
to consider that the synchronization states are shared: both subsystems are supposed to
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enter together into a shared synchronization state. Beside synchronization states, we as-
sume that each subsystem may evolve between other states that concern the local activity
of each subsystem, and seen as private states. Hence we consider for each site i = 1, 2 some
finite set of states Si, with the intended feature that Q = S1 ∩ S2 is a nonempty set of
synchronization states.

Whenever the two subsystems enter some of their private states, the corresponding
events are said to be concurrent. It is natural to consider that the private activity of a
given site should not influence the private activity of the other site. This ought to be
reflected by some kind of statistical independence in the probabilistic modeling. Another
feature that we are seeking is that the local time scales of private activities do not need
to be synchronous. Indeed, the local time scale of each subsystem might be driven for
instance by the input of a user, by the arrival of network events, or by its internal chipset
clock; therefore, it is realistic not to assume any correlation between local time scales, but
for synchronization. In particular, in a discrete time setting, the synchronization instants
counted on the two different local time scales shall not need to be equal, making the two
subsystems asynchronous.

Sequential probabilistic systems and concurrency. Classically, Markov chains in ei-
ther discrete or continuous time are a popular model for adding a probabilistic layer to
describe the evolution of a transition system. Since the Markov chain formalism is intrin-
sically sequential, its straightforward application to a concurrent system brings the issue of
translating a concurrent system into a sequential one. A solution to this issue, found in the
Probabilistic Automata literature for instance [18, 12], is the introduction of a non determin-
istic scheduler in charge of deciding which subsystem is about to run at each time instant.
This defines a Markov Decision Process, a model introduced earlier for control issues in [5].
Other ways of composing probabilistic systems to form a Markov process, with or without
non determinism, are usually based on Milner’s CCS [13] or Hoare’s CSP [11], where the
synchronization policy for possibly synchronizing processes is either to allow or to force
synchronization. In [8] for instance, where both synchronization methods à la CSS and à la
CSP are encoded in the model of bundle probabilistic transition systems, renormalization
occurs at each step to take into account the selected synchronization paradigm.

Probabilistic trace semantics. Lattice of trajectories. We introduce another way of
randomizing our simple concurrent system. We first accept as a basic fact that modeling
the evolution of a system as ordered paths of events jeopardizes the concurrency feature of
the model. Adopting instead the so-called trace semantics for concurrency (or partial order
semantics) [15, 16], lattices replace ordered paths to model trajectories. Unordered events
of a trajectory are then intrinsically concurrent. This raises a question on the probabilistic
side: which part of Markov chain theory can we rebuild on this new basis?

The aim of this paper is to provide an answer to the question. Our work is thus
largely inspired by Markov chain theory; but we try to adapt the theory to the partial order
semantics of concurrency, instead of directly turning a concurrent system into a Markov
chain (or a variant of it) as in [12, 8].

Let us be precise about what we mean in this paper by a partial order semantics
for concurrency, referring to the two sets of local states S1 and S2 with synchronization
constraint Q = S1∩S2. We will then explain how probability concepts apply in this setting.
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Figure 1: Lattice of subtrajectories of v = (a · c, e · f · c).

If two sequences of states in S1 ∪ S2 only differ by the interleaving order of private
states of different sites, such as a · e and e · a with a ∈ S1 \ Q and e ∈ S2 \ Q, the trace
semantics suggests to simply identify them: a · e ≡ e · a. Propagating this identification
to sequences of events of arbitrary length, we obtain an equivalence relation on sequences.
Sequences that cannot be permuted are those of the form x · y with x, y ∈ S1 or x, y ∈ S2,
which include those of the form x · c with c ∈ Q and any x ∈ S1 ∪ S2. We adopt a simple
representation for equivalence classes of sequences by mapping each equivalence class to a
pair of sequences, where each coordinate is reserved for a given site; synchronization states
appear in both coordinates. Hence the equivalence class of a · e ≡ e · a is mapped to (a, e),
the equivalence class of a · e · c ≡ e · a · c is mapped to (a · c, e · c). We define thus a
trajectory as a pair (s1, s2), where si is a sequence of elements in Si , and such that the
sequences of synchronization states extracted from s1 and from s2, and taken in their order
of appearance, shall be equal.

An infinite trajectory is defined as a trajectory ω = (ω1, ω2) where both sequences ω1

and ω2 are infinite. So for example, if S1 = {a, b, c,d} and S2 = {c,d, e, f}, and thus
Q = {c,d}, an infinite trajectory could be ω = (ω1, ω2) with ω1 and ω2 starting as fol-
lows: ω1 = a · c · b · a · b · b · d · (· · · ) and ω2 = e · f · c · f · d · (· · · ). The common extracted
sequence of synchronization states starts in this example with c · d. Note the important
feature that each local trajectory ωi is permitted to have a free evolution between synchro-
nizations: synchronizations occur at instants 2 and 7 for ω1, while they occur at instants 3
and 5 for ω2; here, the instants of synchronization are relative to the local time scales. The
set Ω of infinite trajectories is the natural sample space to put a probability measure on.

There is a natural notion of subtrajectory : in the previous example, v = (a · c, e · f · c)
is a finite subtrajectory of ω = (ω1, ω2). “Being a subtrajectory” defines a binary relation
that equips subtrajectories of a given trajectory with a lattice structure. For instance, and
denoting by ε the empty word, the subtrajectories of v are: (ε, ε), (a, ε), (ε, e), (ε, e·f), (a, e),
(a, e · f) and (a · c, e · f · c). Their lattice is depicted in Figure 1. Observe that, for a given
trajectory, its subtrajectories are naturally identified with two-components “time instants”.
In case of v, these time instants are (0, 0), (1, 0), (0, 1), (0, 2), (1, 1), (1, 2) and (2, 3), and
they form a sublattice of the lattice N × N. However, even if one considers an infinite
trajectory ω, the associated lattice of two-components time instants is only a sublattice of
N × N in general. For instance, if ζ is any infinite trajectory that has v as subtrajectory,
then (2, 2) is a time instant that does not correspond to any subtrajectory of ζ, because of
the synchronization on state c.

Obviously, considering another trajectory ω′ would lead to another lattice of subtrajec-
tories, not necessarily isomorphic to the one associated with ω. We sum up the previous
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observations by saying that time is partially ordered on the one hand, since time instants
form a lattice and not a total order, and random on the other hand, since the lattice
structure depends on the trajectory considered, that is, on the execution of the system.

Defining M2CP: absence of transition matrix. This has consequences for the way one
may construct a probability measure on the space Ω of infinite trajectories. Consider again
the finite trajectory encountered above, v = (a · c, e · f · c). The occurrences of a on site 1,
and of e on site 2, are concurrent. Trying to determine the precise interleaving of a and e
is irrelevant for us. This desired feature prevents us from applying the standard recursive
construction to assign a probability to trajectory v (that is: the probability that v occurs
as a subtrajectory of a sample infinite trajectory ω): starting from the initial state, there
is no obvious choice between a and e; which one should be first plugged in the probability
computation?

Therefore the lattice structure of trajectories implies to give up, at least temporarily, the
familiar inductive computation of probabilities based on transition matrices. Nevertheless,
two important notions can be defined in the asynchronous framework by analogy with
Markov chain theory: first, the notion of state reached by (“after”) a finite trajectory (§ 1.1);
second, the probabilistic evolution of the system “after” execution of a finite trajectory
(Definition 1.6 in § 1.3). We define a Markov two-components process (M2CP) as a random
system where the probabilistic future after execution of a finite trajectory v only depends
on the state reached by v.

Stopping times for M2CP. Recall that a stopping time in Markov chain theory iden-
tifies with a random halting procedure that does not need anticipation: an observer can
decide whether the stopping time has been reached based on the only knowledge of the
process history at each step. Stopping times are a basic tool in Markov chain theory. Im-
portant notions such as the first return time to a state, recurrent and transient states are
defined by means of stopping times. Stopping times are manipulated with the help of the
Strong Markov property, a central result in Markov chain theory. We show that several
aspects of the Markovian language carry over to the asynchronous framework. Once an
adequate notion of stopping time for asynchronous probabilistic processes has been defined
(Definition 3.1 in § 3.1), derived notions such as the first hitting time to a state, and the
notions of recurrent and transient states follow by almost literally translating the original
ones into the asynchronous language. We show that the Strong Markov property also has
an equivalent, called the Asynchronous Strong Markov property, which serves as a basic
tool for probabilistic reasoning. Some other notions translate in a more subtle way: the
first reaching time of a set of states needs some additional care, since the lattice structure of
trajectories prevents a straightforward generalization of the analogous notion from Markov
chain theory, providing an interesting difference with Markov chain theory. Irreducible pro-
cesses have an equivalent counterpart in the asynchronous framework, and we detail the
decomposition of a M2CP into irreducible components.
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The Local Independence Property. Therefore, we have on the one hand these notions
obtained as a generalization of analogous notions from Markov chain theory to the asyn-
chronous framework. But on the other hand, we also have other notions specific to the
asynchronous framework, and that would not make sense for Markov chains. In partic-
ular,the way the two local components behave with respect to one another is a question
specific to the asynchronous framework. Since the two local components synchronize with
one another, they cannot be fully independent in the probabilistic sense. There is however
a weaker notion of independence in probability theory, adapted to our purpose, which is
conditional independence. We call Local Independence Property (LIP) the property that
the two components are independent conditionally to their synchronization constraint. In-
formally, the LIP says that the local components have the maximal independence that they
can have, up to their synchronization constraint. We characterize M2CP with the LIP
by a finite family of transition matrices; and we show how to construct a M2CP from an
adapted family of such transition matrices. The finite collection of numbers this family of
matrices defines is an equivalent, in the asynchronous framework, of the transition matrix
for a Markov chain.

Synchronization of systems. The composition of probabilistic systems has always been
a challenge, with multiple applications in the theory of network analysis [8, 12, 4]. The
main limitation of the theory of probabilistic event structures as it has been developed
so far by the author together with A. Benveniste in [3, 2] (another probabilistic model
with trace semantics targeting applications to probabilistic 1-safe Petri nets), and by other
authors in [19] is the non ability to define a suitable synchronization product. This very
limitation has motivated the development of the present framework, by starting with the
definition of a synchronization product for two Markov chains. By recursively “forcing”
their synchronization, it is shown in this paper how the synchronization of two Markov
chains on shared common states naturally leads to a M2CP. Even if one was interested in
this construction only (the author is aware of current work on this kind of a priori model,
simply because it was the only one people could think of), including it inside a more general
picture as it is done in this paper is useful to better understand its properties.

Organization of the paper. We describe the model in § 1, defining a general notion
of probabilistic two-components process, and then specializing to Markov two-components
processes. In § 2 we introduce the synchronization product of two Markov chains. This
construction provides an example of M2CP, intended to support the intuition for M2CP in
general. Next section, § 3, is devoted to Markovian concepts in the asynchronous framework,
centered around the Asynchronous Strong Markov property. We introduce recurrence and
transience of states and the decomposition of M2CP into irreducible components. The new
notions of closed and open processes are studied in this section, as well as the definition of
stopping times for asynchronous processes. The Local Independence Property (LIP) is the
topic of § 4, and it is shown that the synchronization of Markov chains introduced in § 2
satisfies the LIP. Finally, § 5 is devoted to the construction and characterization of general
M2CP with the LIP. A concluding section introduces directions for future work. It discusses
limitations imposed by the two-components hypothesis, and possible ways to remove this
limitating hypothesis.
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1. Probabilistic Processes and Markov Processes on Two Sites

1.1. General Framework. A distributed system is given by a pair (S1, S2), where Si

for i = 1, 2 is a finite set, called the set of local states of site i. A local trajectory
attached to site i is a sequence of local states of this site. For i = 1, 2, we denote by Ωi the
set of infinite local trajectories attached to site i.

The two local state sets S1 and S2 are intended to have a non empty intersection,
otherwise the theory has little interest. We put Q = S1 ∩ S2. Elements of Q are called
common states or shared states. In contrast, states in Si \Q are said to be private to
site i, for i = 1, 2. From now on, we will always assume that Si \Q 6= ∅ for i = 1, 2:
each site has at least one private state. This is a convenient technical assumption; removing
it would not harm if needed.

Given a sequence (xj)j of elements in a set S, either finite or infinite, and given a subset
A ⊆ S, the A-sequence induced by (xj)j is defined as the sequence of elements of A
encountered by the sequence (xj)j , in their order of appearance. Given two local trajectories
(x1
n)n≥0 and (x2

n)n≥0 on sites 1 and 2 respectively, we will say that they synchronize if the
two Q-sequences they induce are equal. A pair of two synchronizing local trajectories will
be called a global trajectory, or simply a trajectory for brevity. Among them, finite
trajectories are those whose components are both finite sequences of states.

Trajectories are ordered component by component: if s = (s1, s2) and t = (t1, t2) are
two trajectories, we define s ≤ t if s1 ≤ t1 and s2 ≤ t2, where the order on sequences is
the usual prefix order. The resulting binary relation on trajectories is a partial order, the
maximal elements of which are exactly those whose components are both infinite: this relies
on the fact that Si \ Q 6= ∅ for i = 1, 2 (for instance, if S1 = {a, b} and S2 = {b} so that
Q = {b} and S2 \Q = ∅, then (baaa · · · , b) is maximal, but the second component is finite).
The set of maximal trajectories is denoted by Ω, and we have that Ω ⊆ Ω1 × Ω2. For s a
finite trajectory, the subset of Ω defined by

↑ s = {ω ∈ Ω | s ≤ ω} (1.1)

is called the elementary cylinder of base s—adapting a standard notion from Measure
theory to our framework.

Given any trajectory s = (s1, s2), the subtrajectories of s are those trajectories t
such that t ≤ s. Observe that not any prefix t of s is a subtrajectory; since t could very
well not be a trajectory itself.

Given a trajectory (s1, s2), we denote by (yj)j the Q-sequence induced by both se-
quences s1 and s2 . It can be finite or infinite, even empty. We refer to (yj)j as to the
Q-sequence induced by (s1, s2).

A global state is any pair α = (x1, x2) ∈ S1 × S2. We reserve the letters α and β
to denote global states. Observe that trajectories are not defined as sequences of global
states; since the length of the two components may very well differ. Let α = (x, y) be some
fixed global state, thought of as the initial state of the system. If s = (s1, s2) is a finite
trajectory, we define

γα(s) = (x1, x2) ∈ S1 × S2 (1.2)

as the pair of last states of the two sequences x · s1 and y · s2 . We understand γα(s) as the
current global state after the execution of finite trajectory s, starting from α. Note that,
with this definition, γα is well defined on the empty sequence and γα(∅) = α. By an abuse
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of notation, we will omit α and write γ instead of γα , the context making clear which initial
state α we refer to.

We introduce a notion of length for trajectories. We denote by T the set

T =
(
N× N) ∪ {∞} .

The set T is partially ordered component by component, with the natural order on each
component, and (m,n) ≤ ∞ for all (m,n) ∈ N × N. If s = (s1, s2) is any trajectory, the
length of s is defined by

|s| =

{
(|s1|, |s2|) ∈ T , if s is finite,

∞, otherwise,

where |s1| and |s2| denote the length of sequences. Roughly speaking, lengths can be thought
of as time instants; it becomes then clear that time is only partially ordered, and not totally
ordered—see random times in § 3.1 for a finer notion.

There is a concatenation operation partially defined on trajectories. If s = (s1, s2)
is a finite trajectory, and t = (t1, t2) is any trajectory, then the concatenation denoted by
s · t and defined by s · t = (s1 · t1, s2 · t2) is obviously a trajectory. If t ∈ Ω, then s · t ∈ Ω
as well. There is an obvious addition on lengths, compatible with concatenation of finite
trajectories, in the sense that |s · t| = |s| + |t|. If we fix s, the concatenation defines a
bijection onto the cylinder of base s:

Φs :

{
Ω→↑ s
ω 7→ Φs(ω) = s · ω .

(1.3)

1.2. Trajectory Structure. The fact that we consider only two sites allows to precisely
describe the structure of trajectories.

Definition 1.1.

(1) An elementary trajectory is a finite trajectory with a unique synchronization, that
occurs at its end. Equivalently, a finite trajectory s is elementary if γ(s) = (x, x) for
some x ∈ Q, and (x) is the Q-sequence induced by s.

(2) We say that a trajectory is synchronization free if its associated Q-sequence is empty.

We omit the proof of the following proposition, which is elementary, but fundamental for
some constructions introduced later in § 2 and in § 5.

Proposition 1.2.

(1) Any finite trajectory has a unique decomposition as a concatenation of elementary tra-
jectories, followed by a synchronization free trajectory.

(2) Any maximal trajectory is either, according to its Q-sequence being infinite or finite:
(a) A countable infinite concatenation of elementary trajectories, and the decomposition

as such a concatenation is unique; or
(b) A finite concatenation of elementary trajectories, followed by a synchronization free

trajectory, infinite on both sides. This decomposition is unique.

Figure 2 depicts the decomposition of global trajectories in cases 2a and 2b. Finally, the
following lemma will be useful.
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Figure 2: Illustration of the decomposition of a maximal trajectory, according to Proposi-
tion 1.2, Cases 2a and 2b. The framed boxes represent the synchronizations, the
arrows represent the private paths. In Case 2a, the synchronization pattern keeps
repeating on the right.

Lemma 1.3. For any trajectory v, the set of subtrajectories of v is a well founded and
complete lattice. Lower and upper bounds are taken component by component.

Proof. Let v = (s1, s2), and let I(si) denote, for i = 1, 2, the set of initial subsequences
of si . It is well known that I(si) is a total and well-founded order with arbitrary lubs (least
upper bounds). Therefore the component-wise order on I(s1)×I(s2) is a complete lattice,
with lower and upper bounds taken component by component.

To prove the lemma, it suffices thus to check that the component-wise upper and lower
bounds of subtrajectories of v yield again subtrajectories of v, and this is obvious, hence we
are done.

1.3. Probabilistic Two-Components Processes. Although time has been abstracted
from the framework, the notion of trajectory is still present; this is all we need to introduce
a probabilistic layer. We consider the σ-algebra F on Ω generated by the countable family
of elementary cylinders, defined above in Eq. (1.1). The σ-algebra F coincides with the
trace on Ω of the product σ-algebra on the infinite product Ω1 × Ω2 = (S1 × S2)N , where
of course Si, as a finite set for i = 1, 2, is equipped with the discrete σ-algebra.

Unless stated otherwise, the set Ω will be equipped with the σ-algebra F. Assume thus
that P is a probability defined on Ω. By an abuse of notation, if s is a finite trajectory
we simply denote by P(s) the probability of the elementary cylinder of base s, so that
P(s) = P(↑ s). We say that a global state α is reachable w.r.t. P if there exists a finite
trajectory s such that P(s) > 0 and α = γ(s). A probabilistic two-components process on
a distributed system is defined as follows.

Definition 1.4.

(1) A probabilistic two-components process, or probabilistic process for brevity,
is a family P = (Pα)α∈X0 of probability measures on Ω indexed by a set X0 of global
states, and satisfying the following property: for all α ∈ X0, if β is reachable with
respect to Pα , then β ∈ X0 .
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(2) If β is reachable w.r.t. Pα , we say that β is reachable from α.
(3) A subprocess of a probabilistic process P is a subfamily (Pα)α∈X1 , with X1 ⊂ X0,

that forms a probabilistic process.

The probability Pα is intended to describe the probabilistic behavior of the system starting
from α. However, for technical reasons that will appear later, we consider the evolution of
the system after α. In other words, we assume that α has already been reached, and we
put ourselves just after it. In particular, we do not assume that Pα(↑ α) = 1, contrary to
the usual convention adopted in Markov chain theory.

Definition 1.5. Let P = (Pα)α∈X0 be a probabilistic two-components process. Let also ∗
be an arbitrary specified value not in S1 ∪ S2.

(1) For ω ∈ Ω, we denote by Y (ω) =
(
Yn(ω)

)
n≥0

the Q-sequence induced by ω, followed by

the constant value ∗ if the Q-sequence is finite. In all cases, we also put Y−1 = ∗. We
refer to Y as to the (random) synchronization sequence.

(2) We say that ω ∈ Ω synchronizes infinitely often if Yn(ω) 6= ∗ for all n ≥ 0.
(3) We say that P is closed if for all α ∈ X0 , Yn 6= ∗ for all n ≥ 0 and Pα-a.s.
(4) We say that P is open if for all α ∈ X0 , Yn = ∗ for all n ≥ 0 and Pα-a.s.

Consider any probability measure P on Ω, and let s be a finite trajectory. Observe that
Φs : Ω→↑ s is not only a bijection, it is also bi-measurable. Considering the action of Φ−1

s

on measures is thus meaningful. In particular, if P(s) > 0, we define the probability Ps on
Ω as the image of the conditional probability P( · | ↑ s). It satisfies, and is characterized by
the relations Ps(t) = 1

P(s)P(s · t), for t ranging over the set of finite trajectories.

Definition 1.6. If P is a probability measure on Ω, and if s is a finite trajectory such that
P(s) > 0, we define the probability measure Ps on Ω characterized by:

Ps(t) =
1

P(s)
P(s · t), (1.4)

for t ranging over the set of finite trajectories, as the probabilistic future of s w.r.t.
probability P.

Markov two-components processes can now be defined as follows, without reference to
any explicit notion of time.

Definition 1.7. Given a distributed system, a Markov two-components process, ab-
breviated M2CP, is defined as a probabilistic process P = (Pα)α∈X0 over this system,
satisfying the following property: for α ranging over X0 and s ranging over the set of finite
trajectories such that Pα(s) > 0, the probabilistic future of trajectory s w.r.t. Pα only
depends on γ(s). This is equivalent to saying:

∀α ∈ X0 ∀s Pα(s) > 0⇒
(
Pα

)
s

= Pγ(s) . (1.5)

Equation (1.5) formalizes the intuition that “the probabilistic future only depends on
the present state”; we shall refer to it as to the Markov property. Some additional comments
about Definition 1.7:

1. Markov chains are usually defined by their transition matrix, from which a probability
measure on the space of trajectories is derived. Here, on the contrary, the lack of a totally
ordered time index leads us to first consider a measure on the space of trajectories with
the Markov property already encoded in it. It will be our task to find an equivalent for
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the transition matrix, that would characterize the probability measure through a finite
number of real parameters with adequate normalization conditions. This is the topic
of § 5.

2. Considering the same definition for a probability measure on a space of trajectories
with only one component—for instance, taking S2 = {∗} a singleton disjoint from S1—,
would exactly bring us back to the definition of a homogeneous Markov chain on S1.
The transition matrix Pi,j would then be given by Pi,j = P(i,∗)

(
↑ (j, ∗)

)
.

3. Contrast this definition with an alternative, naive model consisting of a Markov chain on
the state of global states. Note that the Markov property stated in Eq. (1.5) is relative
to any “cut” γ(s) of the trajectory. However, for a Markov chain, the property would
only hold for particular cuts, namely those such that |s| has the form (n, n) for some
integer n.

Checking that a probabilistic process P satisfies the Markov property amounts to verifying
the equality:

1

Pα(s)
Pα(s · t) = Pγ(s)(t) (1.6)

for all finite trajectories s and t such that Pα(s) > 0. The following lemma however shows
that, for closed processes, it suffices to verify Eq. (1.6) for elementary trajectories t.

Lemma 1.8. Let P = (Pα)α∈X0 be a closed two-components process, such that:

∀α ∈ X0

(
Pα

)
s
(t) = Pγ(s)(t), (1.7)

for every elementary trajectory t and finite trajectory s with Pα(s) > 0. Then P is a Markov
two-components process.

Proof. Let E denote the set of elementary trajectories (Definition 1.1). We also denote by
E+ the set of trajectories that are finite concatenations of elementary trajectories, and by
V the set of finite trajectories. We proceed in two steps to show that Eq. (1.7) is valid for
s, t ∈ V.

Step 1: Equation (1.7) is true for s ∈ V and t ∈ E+. By induction, we show that
Eq. (1.7) is true for s ∈ V and t = t1 · . . . · tn with ti ∈ E . The case n = 1 is given
by the hypothesis of the lemma, assume it is true for all k < n. Assume moreover that
Pα(s · t1 · . . . · tk) > 0 for all k = 1, . . . , n− 1. We calculate as follows, using the hypothesis
of the lemma and the induction hypothesis:(

Pα

)
s
(t1 · . . . · tn) =

Pα(s · t1 · . . . · tn)

Pα(s)

=
(
Pα

)
s
(t1 · . . . · tn−1) ·

(
Pα

)
s·t1·...·tn−1

(tn)

= Pγ(s)(t1 · . . . · tn−1) ·Pγ(tn−1)(tn). (1.8)

We also have, using again the hypothesis of the lemma:

Pγ(s)(t1 · . . . · tn) = Pγ(s)(t1 · . . . · tn−1) ·Pγ(s)(t1 · . . . · tn|t1 · . . . · tn−1)

= Pγ(s)(t1 · . . . · tn−1) ·
(
Pγ(s)

)
t1·...·tn−1

(tn)

= Pγ(s)(t1 · . . . · tn−1) ·Pγ(tn−1)(tn) . (1.9)

Comparing (1.8) and (1.9), we get
(
Pα

)
s
(t1 · . . . · tn) = Pγ(s)(t1 · . . . · tn) , completing the

induction in this case.
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To be complete, we examine the case where Pα(s · t1 · . . . · tk) = 0 for some integer
k ∈ {1, . . . , n − 1}. Then, on the one hand, this implies Pα(s · t1 · . . . · tn) = 0 and thus(
Pα

)
s
(t1 · . . . · tn) = 0. On the other hand, let i be the smallest integer 1 ≤ i < n such

that Pα(s · t1 · . . . · ti) = 0. Then the minimality of i yields
(
Pα

)
s·t1·...·ti−1

(ti) = 0, and

by the hypothesis of the lemma this is Pγ(ti−1)(ti) = 0 . Applying again the hypothesis
of the lemma: Pγ(s)(t1 · . . . · ti) = Pγ(s)(t1 · . . . · ti−1) · Pγ(ti−1)(ti) = 0, which implies
Pγ(s)(t1 · . . . tn) = 0. The induction is complete.

Step 2: Equation (1.7) is true for s, t ∈ V. Let s and t be any finite trajectories. For
ω ∈↑ (s · t), we put

Eω = {v ∈ E+ | s · t ≤ v ≤ ω} , ωT = inf Eω .

On the one hand, Eω 6= ∅ Pα-a.s. since P is assumed to be closed. On the other hand, the
trajectories of Eω form a chain, which is well founded by Lemma 1.3; hence ωT = minEω
is Pα-a.s. well defined and ωT ∈ Eω . It is easy to observe that, for v = ωT , we have:

{ω′ ∈ Ω | ω′T = v} =↑ v. (1.10)

(Later, we will interpret this by saying that ω 7→ ωT is a stopping time). Since ωT ranges
over finite trajectories, the set of values it can take is countable. Therefore, decomposing
with respect to the possible values:(

Pα

)
s
(t) =

∑
v

(
Pα

)
s
(↑ t ∩ {ωT = v})

=
∑
v

(
Pα

)
s
(ωT = v) since ↑ t ⊂ {ωT = v}

=
∑
v

(
Pα

)
s
(↑ v) by Eq. (1.10)

=
∑
v

Pγ(s)(↑ v) by Step 1 since v ∈ E+

= Pγ(s)(t) recomposing.

The proof is complete.

2. Synchronization of Two Markov Chains

In this section we introduce a way of constructing M2CPs. It first shows that our object of
study is not empty. It also provides a bridge between M2CPs and usual Markov chains—
another, maybe deeper link is developed in § 3.

Consider two Markov chains (X1
n)n≥0 and (X2

n)n≥0 on S1 and S2 respectively. We de-
note by M i

x the probability measure on Ωi associated with the chain Xi starting from state
x ∈ Si, for i = 1, 2. We assume for simplicity that both transition matrices have all their co-
efficients positive. The construction consists of recursively forcing the next synchronization
of the chains on a shared state. The formal construction is given in Definition 2.1 below,
after an informal explanation. The case where there is only one synchronization state is
trivial, in the sense that it reduces to the independent product of the two Markov chains as
shown by Proposition 4.6, point 2. A numerical example with two synchronization states is
analyzed in § 5.3.
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Denoting as above by Q the set S1 ∩S2 of shared states, let τ i be the first hitting time
of Q for the chain Xi, defined on Ωi by

τ i = inf{n > 0 | Xi
n ∈ Q}, noting that τ i <∞ M i

x-a.s.

We consider the subset X0 of global states given by

X0 = {(x, z) ∈ S1 × S2 | x ∈ Q ∧ z ∈ Q⇒ x = z}.
Introduce also ∆ =

{
(τ1 < ∞) ∧ (τ2 < ∞) ∧ (X1

τ1 = X2
τ2)
}

, a measurable subset of

Ω1 × Ω2. Since the transition matrices we consider have all their coefficients positive, we
have M1

x ⊗M2
z (∆) > 0 for any global state (x, z). We therefore equip the random pair of

sequences σ0 =
(
X1

1X
1
2 . . . X

1
τ1 , X

2
1X

2
2 . . . X

2
τ2

)
with the conditional law

U(x,z)( · ) = M1
x ⊗M2

z ( · |∆).

Starting now from the global state (X1
τ1 , X

2
τ2), we consider a fresh copy σ1 of the same ran-

dom pair of sequences, now equipped with the law U(X1
τ1
,X2
τ2

) (observe that, by construction,

X1
τ1 = X2

τ2).
We construct inductively in this way a sequence (σn)n≥0 of random trajectories, for

which the concatenation ω = σ0 · σ1 · . . . is an element of Ω since |σk| ≥ (1, 1) for all k ≥ 0.
Denoting by P(x,z) the law of ω thus constructed, we obtain a probabilistic two-components
process (Definition 1.4), which is a closed process by construction.

Definition 2.1. The synchronization of the two Markov chains (X1
n)n≥0 and (X2

n)n≥0

is the probabilistic process P = (Pα)α∈X0 , where:

(1) α ranges over the set X0 = {(x, z) ∈ S1 × S2 | x ∈ Q ∧ z ∈ Q⇒ x = z} .
(2) P(x,z) is defined as the law of the infinite concatenation σ1 · σ2 · . . ., where (σn)n≥0

is the countable Markov chain on the set E of elementary trajectories with U(x,z) =

M1
x ⊗M2

z ( · |∆) as initial law, and transition kernel K given by:

∀σ, σ′ ∈ E , K(σ, σ′) = Uγ(σ)(σ
′).

Translating the above definition in the two-components processes language consists of de-
termining the value of Pα(↑ v) for any finite trajectory v. This can be easily done only for
v of the following special form:

v = σ1 · . . . · σn , σi ∈ E , Pα(↑ v) = Uα(σ1) ·K(σ1, σ2) · . . . ·K(σn−1, σn) .

Note that this entirely determines the probability Pα ; since Pα(v) for any finite trajectory
v will be computed as the sum of all Pα(w), for w of the form w = σ1 · . . . · σn and v ≤ w,
very much as we did in Step 2 in the proof of Lemma 1.8.

Theorem 2.2. The synchronization of two Markov chains is a Markov two-components
process.

Proof. Let α = (x, z) be an initial state. Let t ∈ E be any elementary trajectory, and let s
be any finite trajectory. Denote the coordinates of trajectories on each site by s = (s1, s2)
and t = (t1, t2), and put γ(s) = (x′, z′). Applying Lemma 1.8, we have to show that(
Pα

)
s
(t) = Pγ(s)(t). We proceed in two steps.
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(1) Step 1: s is synchronization free. Then s ·t is an elementary trajectory, and by construc-
tion of σ0 we have ↑ (s · t) = {σ0 = s · t} and thus Pα(s · t) = Uα(s · t) by construction.
From this we compute:(

Pα

)
s
(t) =

Mx ⊗Mz

(
↑ (s · t) ∩∆

)
Mx ⊗Mz(↑ s ∩∆)

. (2.1)

On the one hand, noting that ↑ (s · t) ⊂ ∆, we have Mx ⊗Mz

(
↑ (s · t) ∩∆

)
= Mx(s1 ·

t1)Mz(s
2 · t2). On the other hand, we have Mx ⊗Mz(↑ s ∩∆) = Mx(s1)Mz(s

2)Mx ⊗
Mz(∆| ↑ s) and, since Mx and Mz are Markov chains, Mx⊗Mz(∆| ↑ s) = Mx′⊗Mz′(∆).
Going back to Eq. (2.1) we get:(

Pα

)
s
(t) =

Mx(s1 · t1)

Mx(s1)
× Mz(s

2 · t2)

Mz(s2)
× 1

Mx′ ⊗Mz′(∆)

= Mx′(t
1)Mz′(t

2)
1

Mx′ ⊗Mz′(∆)

= Mx′ ⊗Mz′(t|∆) = Pγ(s)(t).

(2) Step 2: s is any finite trajectory. Let s = σ0 · σ1 · . . . · σp · s′ be the decomposition of s
according to Proposition 1.2, case 1, so that σ0, . . . , σp are elementary trajectories, and
s′ is a synchronization free trajectory (the case s′ = ∅ is admissible). We compute:(

Pα

)
s
(t) =

Pα(σ0 · . . . · σp · s′ · t)
Pα(σ0 · . . . · σp · s′)

=
U(x,z)(σ0)K(σ0, σ1) . . .K(σp−1, σp)K(σp, s

′ · t)
U(x,z)(σ0)K(σ0, σ1) . . .K(σp−1, σp)Uγ(σp)(↑ s′)

= Uγ(σp)(s
′ · t| ↑ s′)

=
(
Pγ(σp)

)
s′

(t)

= Pγ(s)(t),

the last equality following from Step 1 together with γ(s′) = γ(s).

Conclusion: Lemma 1.8 applies, and (Pα)α∈X0 is a M2CP.

3. Stopping Times and the Asynchronous Strong Markov Property

All the notions and results of this section do not depend on the particular structure of
trajectories, and in particular they do not rest on Proposition 1.2. It follows that they have
straightforward generalizations to an asynchronous model with an arbitrary number n ≥ 2
of sites.

3.1. Stopping Times. Stopping times are a fundamental tool in the theory of probabilistic
processes in general, and in the theory of Markov chain in particular. Recall that a stopping
time associated to a Markov chain is a random integer, maybe infinite and seen as a random
time instant, with the following property: an observer aware of the successive values of the
chain can decide at each instant whether the stopping time has already been reached or not.
Standard examples of stopping times in Markov chain theory are: constant times (trivial
since non random); the first instant where the chain hits a given state; more generally the
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first instant where a chain reaches a given set of states. A standard example of a random
time which is not a stopping time is the last instant where the chain hits a given state.

It is natural to introduce an equivalent notion for two-components processes, and this
is the topic of this subsection. We will see that the first instant a process hits a global
state defines a stopping time; but, and contrasting with Markov chains, the first instant of
reaching a given set of global states does not define a stopping time in general, unless one
considers special kinds of sets.

Recall that T =
(
N× N

)
∪ {∞} denotes the partially ordered set of “two-components

time instants”.

Definition 3.1 (Random times and stopping times). Let T : Ω → T be an arbitrary
mapping. For any ω ∈ Ω, we denote by ωT the prefix of ω of length T (ω) if T (ω) <∞, and
we put ωT = ω if T (ω) =∞.

(1) We say that T is a random time if ωT is a subtrajectory of ω for all ω ∈ Ω.
(2) If T is a random time we say that T is a stopping time if furthermore the following

property holds:
∀ω, ω′ ∈ Ω ω′ ≥ ωT ⇒ ωT = ω′T . (3.1)

Actually since the space Ω is always implicitly equipped with an initial state α, a more
general notion of stopping times would be as for probabilistic processes a family of random
times (Tα)α∈X0 , each one satisfying condition (3.1). But, since we will only be concerned
with stopping times independent of α, we prefer limiting ourselves to Definition 3.1 as it is
formulated.

Since T is a countable set, it is naturally equipped with its discrete σ-algebra. It
turns out that a stopping time T : Ω → T is always measurable; and so is the mapping
ω ∈ Ω 7→ ωT , provided we equip the set of trajectories (either finite or infinite) with the
σ-algebra generated by the sets of the form {v | s ≤ v}, for s ranging over finite trajectories,
and v ranging over trajectories. If the set of trajectories is seen as a DCPO (Directed
Complete Partial Order [10]), this is the Borel σ-algebra associated with the Scott topology
on the DCPO. Obviously, it induces by restriction the σ-algebra F on the subset Ω.

Proposition 3.2. Let T : Ω→ T be a stopping time. We equip T with its discrete σ-alge-
bra, and we equip the set of trajectories with its Borel σ-algebra described above.

(1) Then T and ωT are two measurable mappings.
(2) Let FT denote the σ-algebra generated by ωT . Then FT is finer than the σ-algebra

generated by T , and it is characterized as follows:

∀A ∈ F A ∈ FT ⇐⇒ ∀ω, ω′ ∈ Ω ω ∈ A ∧ ω′ ≥ ωT ⇒ ω′ ∈ A.

Proof. If Y : (Ω,F)→ (A,G) is a measurable mapping, we denote by 〈Y 〉 the sub-σ-algebra
of F generated by Y , and given by 〈Y 〉 = {Y −1(U) | U ∈ G}. For ω ∈ Ω, let ζ(ω) = ωT .
For any finite trajectory v, we put

Sv = {w trajectory | v ≤ w} .
Since T is a stopping time, ζ−1

(
{v}
)

is either empty or equal to ↑ v, so ζ−1
(
{v}
)

is measur-
able in either cases. Let us denote by V the set of finite trajectories. Since V is countable,
it follows that ζ−1(Sv ∩ V) =

⋃
w∈Sv∩V ζ

−1
(
{w}

)
is measurable for any v ∈ V, as well as

ζ−1(V). By definition of ζ = ωT , we have that ζ(ω) is either finite or maximal. From this,
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it follows first that ζ−1(Ω) = Ω \ ζ−1(V) is measurable; and second:

ζ−1(Sv) = ζ−1(Sv ∩ V) ∪ ζ−1(↑ v).

But ζ−1(↑ v) = ζ−1(Ω)∩ ↑ v, hence ζ−1(Sv) is the union of two measurable subsets of Ω,
and is thus measurable. This shows that ζ is a measurable mapping.

To prove that T is measurable, observe that:

∀(m,n) ∈ T
{
T = (m,n)

}
=

⋃
|v|=(m,n)

ζ−1(v) .

Since the union is finite, it follows that {T = (m,n)} is a 〈ζ〉-measurable subset, from
which we deduce that {T =∞} =

⋃
(m,n)∈N×N{T 6= (m,n)} is also a 〈ζ〉-measurable subset.

Therefore 〈T 〉 ⊂ 〈ζ〉. By the property of stopping times ω′ ≥ ωT is equivalent to ωT = ω′T ,
from which follows the characterization of FT = 〈ζ〉.

Note that any function f : (Ω,F) → (A,G) with value in some measurable space is
measurable with respect to FT if and only if it is constant on elementary cylinders of the
form ↑ v = {ωT = v} with v ranging over the values of ωT—since it is well known that f
is FT -measurable if and only if it can be written as f(ω) = g(ωT ) with g some measurable
mapping.

3.2. Shift Operators. In Markov chain theory, the “universal” shift operator θ is classi-
cally defined on the space of trajectories of a Markov chain by θ(x0x1 . . .) = (x1x2 . . .). Its
iterations θn are defined for n ≥ 0 by θ0 = Id and θn+1 = θ ◦ θn . Allowing the time index
n to be random, one defines θT , for T : Ω→ N any random variable, by θT (ω) = θT (ω)(ω).
In our framework, there is no such “universal” shift operator θ. Yet, each stopping time
T : Ω→ T induces a shift operator θT : Ω→ Ω. Informally θT (ω) is the queue of trajectory
ω that remains “after” the prefix trajectory ωT .

Definition 3.3. Let T : Ω → T be a stopping time. The shift operator associated with
T is the mapping θT : Ω→ Ω , which is only partially defined; if T (ω) <∞, then θT (ω) is
defined as the unique element of Ω such that

ω = ωT · θT (ω),

and θT (ω) is undefined otherwise.

The shift operator allows to define an addition on stopping times, as shown by the
following result which mimics an equivalent result widely used in Markov chain theory.

Lemma 3.4. Let S, T : Ω→ T be two stopping times. Then U = S + T ◦ θS is a stopping
time (it is understood that U =∞ if S =∞).

Proof. It is clear that U is a random time. Let ω, ω′ ∈ Ω such that ω′ ≥ ωU , we have to
show that ω′U = ωU . If S(ω) =∞ then U(ω) =∞ and then ω′ = ω and ωU = ω′U , trivially.

Hence we assume without loss of generality that S(ω) <∞, and we put ζ = θS(ω) and
ζ ′ = θS(ω′). We have ωU = ωS · ζT . Hence ω′ ≥ ωS and thus ω′S = ωS since S is a stopping
time. Therefore: ω′ = ωS · ζ ′ ≥ ωU = ωS · ζT , hence ζ ′ ≥ ζT . Thus ζ ′T = ζT since T is a
stopping time. We have finally ω′U = ω′S · ζ ′T = ωS · ζT = ωU , proving that U is a stopping
time.
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Starting from a given stopping time T , we use Lemma 3.4 above to iterate the “addition”
of T to itself.

Definition 3.5. Let T : Ω → T be a stopping time, and let θT be the associated shift
operator. The sequence (Tn)n≥0 of mappings Ω→ T defined as follows:

T 0 = (0, 0) ∀n ≥ 0 Tn+1 = Tn + T ◦ θTn

with the convention that Tn+1 = ∞ on {Tn = ∞}, is a sequence of stopping times, called
iterated stopping times associated with T .

Remark that θT 0 = IdΩ, and T 1 = T .

3.3. Examples of Stopping Times. In this subsection we review some examples of ran-
dom times, and analyze whether they are stopping times or not. Some of the examples
introduced here will be used later in §§ 3.5–3.7.

3.3.1. Constant Times are not Random Times in General. In general, if (m,n) ∈ N × N,
then the random variable constant and equal to (m,n) is not a random time. For instance,
take (m,n) = (2, 2) and consider as in the Introduction a maximal trajectory ω starting
with (a · c, e · f · c) with c as synchronization state. Then the prefix of length (2, 2) of ω
is (a · c, e · f), which is not a trajectory. Hence the constant T = (2, 2) is not a random
time. This contrasts with Markov chain theory, where constant times are a basic example
of stopping times.

However note that any constant time is indeed a random time if the process is open
(Definition 1.5). And in this case, it is also a stopping time.

3.3.2. A Random Time which is not a Stopping Time. For ω a maximal trajectory, let v
be the first elementary trajectory in the decomposition of ω as in Proposition 1.2, which
is defined if ω has at least one synchronization. Then v has the form v = u · (y, y) for
some unique finite trajectory u and state y ∈ Q. Put ωT = u in this case, and ωT = ω if
v is not defined. Time T (ω) represents the “last instant before first synchronization”. By
construction, T is a random time since ωT is a subtrajectory of ω.

However T is not a stopping time in general. For example, consider S1 = {a, b, c,d} and
S2 = {c,d, e, f}, if ω starts with (a · c, f · f · e · c), then T (ω) = (1, 3) and ωT = (a, f · f · e),
corresponding to the last private states a and e before synchronization on (c, c). And if ω′

starts with (a · b · c, f · f · e · f · c), then T (ω′) = (2, 3) 6= T (ω) although ω′ ≥ ωT . This
shows that T is not a stopping time.

3.3.3. The First Return Time of a Global State. Let α ∈ X0 be a given global state. For
ω ∈ Ω, consider the following set of finite subtrajectories of ω:

Nα(ω) = {v ≤ ω | v finite subtrajectory of ω ∧ γ(v) = α ∧ |v| ≥ (1, 1)}.
If nonempty, Nα is a sublattice of the lattice of subtrajectories of ω since, by Lemma 1.3,
lower bounds are taken component by component so that γ(v ∧ v′) = α whenever v, v′ ∈
Nα(ω) and |v ∧ v′| ≥ (1, 1). In particular, if we put v = minNα(ω), which exists whenever
Nα(ω) 6= ∅, then γ(v) = α and |v| ≥ (1, 1). We define thus the first return time to α as
follows.
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Figure 3: A finite trajectory synchronizing on shared states c and d.

Definition 3.6. For any α ∈ X0 , the first return time to α is the stopping time
Rα : Ω→ T defined by:

∀ω ∈ Ω ωRα =

{
ω, if Nα(ω) = ∅, and thus Rα(ω) =∞,

minNα(ω), otherwise, and thus Rα(ω) =
∣∣minNα(ω)

∣∣.
The successive return times to α are the iterated stopping times (Rnα)n≥1 associated
with Rα as in Definition 3.5.

For any finite subtrajectory v of ω, we have:(
γ(v) = α ∧ |v| ≥ (1, 1)

)
=⇒ ωRα ≤ v ,

which is consistent with the intuition of what a “first return time” should be. To show
that Rα is indeed a stopping time, observe first that ωRα is clearly a subtrajectory of ω.
And second, if ω′ ∈ Ω is such that ω′ ≥ ωRα , that implies that ωRα ∈ Nα(ω′), and thus
ω′Rα ≤ ωRα by minimality of ω′Rα . But then ω′Rα ∈ Nα(ω), and thus ωRα ≤ ω′Rα by
minimality of ωRα . Hence ωRα = ω′Rα , and this shows that Rα is a stopping time.

As an example, consider S1 = {a, b, c,d} and S2 = {c,d, e, f}, and a maximal trajec-
tory ω starting with (a · b · c · a · d, e · c · e · f · d), which is depicted in Figure 3. Consider
the global state α = (a, e). Then Rα(ω) = (1, 1), and ωRα = (a, e). Note that, since Rα is
indeed a stopping time, we do not need to know the queue of ω to already have information
on R(ω).

Let us determine the value of next return R2
α(ω) to α. The shifted trajectory θRα(ω)

starts with (b·c·a·d, c·e·f ·d). Therefore Rα
(
θRα(ω)

)
= (3, 2), and R2

α(ω) = (1, 1)+(3, 2) =

(4, 3). Note that R3(ω) is undetermined at this stage.
If ζ is the trajectory (b · b · . . . , e · ·e · . . .), with only b on the first component and only

e on the second component, then Rα(ζ) =∞ and ζRα = ζ.

3.3.4. Supremum of Stopping Times. If S and T are two stopping times, then the random
time S∨T defined by ωS∨T = ωS∨ωT is a stopping time. For, if ω′ ≥ ωS∨ωT , then ω′ ≥ ωS
and ω′ ≥ ωT , therefore ω′S = ωS and ω′T = ωT , hence ω′S∨T = ωS∨T . The same line of proof
shows that the supremum of any family of stopping times is a stopping time.
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3.3.5. The Infimum of Stopping Times may not be a Stopping Time. Contrasting with
stopping times from Markov chain theory however, the infimum of two stopping times S
and T , defined by ωS∧T = ωS∧ωT , may not be a stopping time. Let us consider an example.
Let S1 = {a, b, c} and S2 = {c, e, f}. Let α = (a, e) and β = (b, f), and let S = Tα and
T = Tβ be the first return times to α and to β respectively. Consider a trajectory ω starting
with (a · b, f · e). Then ωS = (a, f · e) and ωT = (a · b, f), and thus ωS∧T = (a, f). However,
if ω′ is the maximal trajectory defined by ω′ = (a · a · · · , f · f · · · ) we have ω′ ≥ ωS∧T on
the one hand, and ω′S = ω′ and ω′T = ω′ on the other hand, so that ω′S∧T = ω′ 6= ωS∧T .
This show that S ∧ T is not a stopping time.

This example is specific to the asynchronous structure we consider, since it makes use
of the partially ordered structure of trajectories.

3.3.6. First Return Time to a Square Set of Global States. Since the infimum of stopping
times is not a stopping time in general, there is an issue for defining the first return time to
a set of global states. There is actually no obvious way of defining such a thing in general,
as the analysis of the above example reveals. The situation however becomes favorable if
one considers a set of states satisfying the following property.

Definition 3.7. We say a subset A ⊂ X0 of global sets is a square set if it has the form
A = X0 ∩ (S′1 × S′2) where S′1 ⊂ S1 and S′2 ⊂ S2 .

A first example of a square set is X0 itself. We will also encounter the square set
(Q×Q) ∩X0 . If α = (x, z) and β = (x′, z′), the smallest square set containing α and β is
{α, β, (x, z′), (x′, z)}.

Assume that A is a square set of global states. Define then, for any ω ∈ Ω:

NA(ω) = {v ≤ ω | v finite subtrajectory of ω ∧ γ(v) ∈ A ∧ |v| ≥ (1, 1)} .
Then NA(ω) is a sublattice of the lattice of finite subtrajectories of ω whenever it is
nonempty. Indeed, since A is a square set. The random time RA defined by

ωRA = minNA(ω) ,

and by RA =∞ as usual when NA(ω) is empty, is a stopping time that satisfies γ(ωRA) ∈ A
whenever or RA < ∞. We define RA as the first return time to the square set A. One
furthermore checks that ωRA =

∧
α∈A ωRα , providing an example of infimum of stopping

times the result of which is indeed a stopping time.

Let us examine the first return times associated with the square setsX0 and (Q×Q) ∩X0.
In Markov chain theory, RX0 would correspond to the constant time 1. But in the asynchro-
nous framework its action is less simple. Stopping time RX0 can be described as follows:
ωRX0

is the smallest subtrajectory of ω with length ≥ (1, 1). In particular, RX0(ω) is always
finite.

We detail the action of RX0 on an example. Consider S1 = {a, b, c,d} and S2 =
{c,d, e, f}, and let ω be some maximal trajectory starting with (a · b · c · a · d, e · c · e · f · d),
as depicted in Figure 3 above. The exercise consists in finding the values of RnX0

(ω) for the
first integers n, where RnX0

denote the iterated stopping times associated with RX0 as in
Definition 3.5. Obviously RX0(ω) = (1, 1). The shifted trajectory θRX0

(ω) starts with

(b · c · a · d, c · e · f · d). The smallest subtrajectory of θRX0
(ω) of length at least (1, 1) is
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(b · c, c), and thus RX0

(
θRX0

(ω)
)

= (2, 1). Hence R2
X0

(ω) = (1, 1) + (2, 1) = (3, 2). The
finite trajectories

ωRX0
= (a, e) and

(
θRX0

(ω)
)
RX0

= (b · c, c)

yield the following initial decomposition of ω: ω = (a, e) · (b · c, c) · θR2
X0

(ω). For the next

values n = 3, 4 we find R3
X0

(ω) = (4, 3) and R4
X0

(ω) = (5, 5), corresponding to the initial
decomposition ω = (a, e) · (b · c, c) · (a, e) · (d, f · d) · · · .

Coming now to the square set (Q × Q) ∩ X0 , and denoting by RQ the first return
time associated with it, we may rephrase the definition of infinite synchronization of tra-
jectories (Definition 1.5) as follows: a maximal trajectory ω synchronizes infinitely often
if ω ∈

⋂
n≥1{RnQ <∞}. A probabilistic process P is closed if RnQ < ∞ for all n ≥ 1 and

Pα-almost surely, for all α ∈ X0 . It is open if RQ = ∞, Pα-almost surely and for all
α ∈ X0 .

We end this series of examples with the following result which will be useful in the
study of recurrence of global states. It makes use of the finitary assumption on the set of
global states.

Lemma 3.8. Let A be a square set. Denoting by (RnA)n≥1 the successive returns to A, i.e.,
the iterated stopping times associated with the first return time RA, and by (Rnα)n≥1 the
successive return times to α for any α ∈ A, we have the following equality of sets:⋂

n≥1

{RnA <∞} =
⋃
α∈A

⋂
n≥1

{Rnα <∞} .

Proof. The ⊃ inclusion is obvious. For the converse inclusion, let ω ∈ Ω be such that
RnA(ω) <∞ for all n ≥ 1. Since A is a finite set, there exists some state α ∈ A and a strictly
increasing sequence of integers (nk)k≥1 such that γ(RnkA ) = α for all k. By induction on k,

we show that Rkα(ω) ≤ RnkA (ω) for all integers k ≥ 1. The finite trajectory v = RA(ω) is a
subtrajectory of ω satisfying γ(v) = α and |v| ≥ (1, 1), and therefore ωRα ≤ v. Since the
sequence

(
RnA(ω)

)
n≥1

is increasing, as shown by the formula in Definition 3.5 that defines

it, we have ωRα ≤ v = ωR1
A
≤ ωRn1A . Assume for the induction that Rkα(ω) ≤ RnkA (ω). Then

there is some finite trajectory v such that ωRnkA
= ωRkα · v. Since nk < nk+1, there is also

some finite trajectory v′ such that γ(v′) = α, |v′| ≥ (1, 1) and ω
R
nk+1
A

= ωRnkA
· v′ . We

obtain thus:
ω
R
nk+1
A

= ωRkα · v · v
′, |v · v′| ≥ (1, 1), γ(v · v′) = α.

This implies that Rα
(
θRkα(ω)

)
≤ |v · v′|. By definition, we have Rk+1

α = Rkα + Rα ◦ θRkα ,
whence: ∣∣Rk+1

α (ω)
∣∣ ≤ ∣∣Rkα(ω)

∣∣+ |v|+ |v′| =
∣∣RnkA (ω)

∣∣+ |v′| =
∣∣Rnk+1

A (ω)
∣∣,

completing the induction. This implies in particular that Rkα(ω) < ∞ for all k ≥ 1, as
expected.
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3.4. The Asynchronous Strong Markov Property. The Asynchronous Strong Markov
Property that we state below has the exact same formulation than the Strong Markov prop-
erty for Markov chains found in classical references [17, Theorem 3.5 p.23]. The syntactical
identity underlines the parallel with Markov chain theory, although the interpretation of
symbols must be changed of course: stopping times must be understood in the sense of
Definition 3.1, the associated σ-algebra in the sense given in Proposition 3.2, and of course
M2CPs replace Markov chains. Nevertheless, once the Asynchronous Strong Markov prop-
erty has been established, it is possible to transfer verbatim some pieces of Markov chain
theory. Examples of such transfers are Lemma 3.10 given just after Theorem 3.9 and the
0-1 law for the infinite return to a given global state, given in point 1 of Proposition-
definition 3.11 below.

Theorem 3.9 (Asynchronous Strong Markov property). Let P = (Pα)α∈X0 be a M2CP. For
any measurable and non negative function h : Ω→ R and for any stopping time T : Ω→ T ,
we have

∀α ∈ X0 Eα(h ◦ θT |FT ) = Eγ(ωT )(h) , Pα-a.s., (3.2)

where Eα(·|FT ) denotes the conditional expectation with respect to probability Pα and
σ-algebra FT . By convention, both sides of Eq. (3.2) vanish outside {T <∞}.

Note that, as for the Strong Markov Property for Markov chains, both sides of Eq. (3.2)
are random variables: the left side, since it is a conditional expectation with respect to
σ-algebra FT ; and the right side, since it depends on the random variable γ(ωT ).

Proof. Let Z denote the random variable Z = Eγ(ωT )(h), which is obviously FT -measurable
since γ(ωT ) is. Let φ be any non negative, bounded and FT -measurable function. Denote
by R the set of finite trajectories taken by ωT . Then, since R is at most countable:

Eα

(
φ · h ◦ θT

)
=
∑
v∈R

Eα

(
1{ωT=v} · φ · h ◦ θT

)
. (3.3)

Since T is a stopping time, and since T−1(v) 6= ∅ if v ∈ R, we have {ωT = v} =↑ v.
Furthermore, φ is constant on {ωT = v}, so that if φ(v) denote this constant, we get:

Eα

(
1{ωT=v} · φ · h ◦ θT

)
= φ(v)Pα

(
↑ v
)Eα

(
1{↑v}h ◦ θT

)
Pα

(
↑ v
)

Recognizing the conditional expectation defined as the future of v w.t.r. to probability Pα,
we use the Markov property (1.5) of Definition 1.7 to get:

Eα

(
1{ωT=v} · φ · h ◦ θT

)
= Pα(↑ v)φ(v)Eγ(v)(h).

Going back to Eq. (3.3) we obtain:

Eα

(
φ · h ◦ θT

)
=
∑
v∈R

Pα(↑ v)φ(v)Eγ(v)(h) = Eα

(
φZ
)
.

This shows that Z = Eα(h ◦ θT |FT ).
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The following result is a typical application of the Strong Markov property in Markov
chain theory that applies here too. It intuitively says this: the probability of returning
infinitely often to a state β, starting from α, is the product of the probability of hitting β
once starting from α, by the probability of returning to β infinitely often, starting from β.

Lemma 3.10. Let α, β be two global states, and let (Rnβ)n≥1 be the successive return times
to β. Let h = 1{

⋂
n≥1{Rnβ<∞}} . Then:

Eα(h) = Pα(Rβ <∞) ·Eβ(h) . (3.4)

Proof. Applying the Asynchronous Strong Markov property (Theorem 3.9) with stopping
time Rβ and function h, we get: Eα

(
h ◦ θRβ |FRβ

)
= Eγ(ωRβ )(h) . The right side of this

equality is simply the constant Eβ(h) on {Rβ <∞}. We multiply both sides by 1{Rβ<∞},

which is FRβ -measurable by definition of FRβ and can therefore be put inside the Eα(·|FRβ )
sign, to obtain:

Eα(1{Rβ<∞}h ◦ θRβ |FRβ ) = 1{Rβ<∞}Eβ(h).

We observe that 1{Rβ<∞}h ◦ θRβ = h, and therefore Eα(h|FRβ ) = 1{Rβ<∞}Eβ(h). Taking

the Eα-expectations yields identity (3.4).

3.5. Recurrent and Transient Global States. In Markov chain theory, the Strong
Markov property is a fundamental tool for studying so-called recurrent states, those states
to which the chain returns infinitely often almost surely. There is a strong parallel between
Markov chain theory and this part of M2CP theory: recurrence concerns global states, and
the infinite return is defined through the successive return times defined in § 3.3. And the
Asynchronous Strong Markov property is the fundamental tool in this study.

Denoting as in Definition 3.6 by (Rnα)n≥1 the successive returns to α ∈ X0 , we say that
a global trajectory ω ∈ Ω returns infinitely often to α if Rnα(ω) < ∞ for all integers
n ≥ 1.

Proposition and definition 3.11. Let (Pα)α∈X0 be a M2CP.

(1) For any α ∈ X0, the set of trajectories that return infinitely often to α has Pα-probability
either 0 or 1. Following Markov chain terminology, we will say that:
• α is recurrent if Pα

(⋂
n≥1{Rnα <∞}

)
= 1, which is equivalent to:

Pα(Rα <∞) = 1 .

• α is transient if Pα

(⋂
n≥0{Rnα <∞}

)
= 0, which is equivalent to:

Pα(Rα <∞) < 1.

(2) There is at least one recurrent state in X0 .
(3) If α is a recurrent state, then the successive returning trajectory to α defined by ρn =(

θRn−1
α

(ω)
)
Rα

for n ≥ 1, form a sequence of independent and identically distributed

finite trajectories w.r.t. probability Pα.
(4) If α is a recurrent state, and if β is reachable from α, then β is recurrent and α is

reachable from β.
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Proof.

(1) The proof is adapted from [17, Proposition 1.2 p.65]. Recall the usual transformation,
for a measurable subset A and some sub-σ-algebra G of a probability space (Ω,F,P):
P(A) = E(1A) = E

(
E(1A|G)

)
. Putting R = Rα and Rn = Rnα, we apply this transfor-

mation to (Ω,F,Pα) with A = {Rn <∞} and G = FRn−1 :

Pα(Rn <∞) = Eα

(
Eα(1{Rn<∞}|FRn−1)

)
.

Since Rn = Rn−1 + R ◦ θRn−1 we have: 1{Rn<∞} = 1{Rn−1<∞} · 1{R◦θRn−1<∞} . Since
1{Rn−1<∞} is FRn−1-measurable, the usual property of conditional expectation yields:

Pα(Rn <∞) = Eα

(
1{Rn−1<∞}Eα(1{R◦θRn−1<∞}|FRn−1)

)
. (3.5)

Applying the Asynchronous Strong Markov property (Theorem 3.9) with stopping time
Rn−1 and function 1{R<∞} we have:

Eα(1{R◦θRn−1<∞}|FRn−1) = Eγ(ωRn−1 )(1{R<∞}) . (3.6)

Since γ(ωRn−1) = α on {Rn−1 < ∞}, multiplying both sides of (3.6) by 1{Rn−1<∞}
brings:

1{Rn−1<∞}Eα(1{R◦θRn−1<∞}|FRn−1) = 1{Rn−1<∞}Eα(1{R<∞}) . (3.7)

We take the Pα-expectation of both sides of (3.7) and report the result in (3.5) to
obtain:

Pα(Rn <∞) = Pα(R <∞) ·Pα(Rn−1 <∞) . (3.8)

It follows from Borel-Cantelli Lemma that α is recurrent if Pα(R < ∞) = 1, and
transient if Pα(R <∞) < 1.

(2) Pick any α ∈ X0 , and let (Rn)n≥1 be the successive return times to the square set X0

(cf. § 3.3.6). With Pα-probability 1, Rn <∞ for all n ≥ 1. It follows from Lemma 3.8
applied with A = X0 that, for some β ∈ X0:

Pα

(⋂
n≥1

{Rnβ <∞}
)
> 0. (3.9)

It remains to show that (3.9) is still valid with Pβ in place of Pα . Let h be the
non negative function h = 1{

⋂
n≥1{Rnβ<∞}}. Then Eα(h) = Pα(Rβ < ∞) · Eβ(h) by

Lemma 3.10. Since Eα(h) > 0 by Eq. (3.9), it follows that Eβ(h) > 0, showing that β
is recurrent.

(3) Observe that the ρn are related to Rnα through the identity: ωRn+1
α

= ωRnα ·ρn . Now, let

v1, . . . , vn be n finite trajectories in the range of Rα . Since the Riα are stopping times,
we have the equality {ρ1 = v1, . . . , ρn = vn} = {ωRnα = v1 · . . . · vn} =↑ (v1 · . . . · vn) .
The chain rule yields:

Pα(ρ1 = v1, . . . , ρn = vn) = Pα(↑ v1 · . . . · vn−1)×Pα

(
↑ v1 · . . . · vn| ↑ v1 · . . . · vn−1

)
. (3.10)

The Markov property (1.5) combines with γ(v1 · . . . · vn−1) = α to rewrite the condi-
tional probability in Eq. (3.10) as follows:

Pα

(
↑ v1 · . . . · vn| ↑ v1 · . . . · vn−1

)
= Pα(↑ vn) .
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Since vn is in the range of Rα , and since Rα is a stopping time, ↑ vn = {Rα = vn}.
We replace thus the conditional probability in Eq. (3.10) by Pα(Rα = vn), and apply
n times the same transformation to finally obtain the identity:

Pα(ρ1 = v1, . . . , ρn = vn) = Pα(Rα = v1) · . . . ·Pα(Rα = vn) ,

showing that the ρn are i.i.d. random variables, with the law of Rα .
(4) Consider the two measurable and non negative functions:

hα = 1{
⋂
n≥1{Rnα<∞}} , hβ = 1{

⋂
n≥1{Rnβ<∞}} .

Since the successive returns to α are i.i.d. by virtue of point 3 above, each ρn one
has positive Pα-probability of hitting β, otherwise the Pα-probability of ever hitting
β would be zero, contradicting the assumption that β is reachable from α. Hence,
by Borel-Cantelli Lemma, Eα(hβ) > 0. Since Eα(hβ) = Pα(Rβ < ∞) · Eβ(hβ) by
Lemma 3.10, this implies that Eβ(hβ) > 0 and thus β is recurrent.

To prove that α is reachable from β, we apply the Asynchronous Strong Markov
property (Theorem 3.9) with stopping time FRβ and function hα . We then multiply the
resulting identity by 1{Rβ<∞}, and take into account that 1{Rβ<∞} is FRβ -measurable

on the one hand, and that γ(ωRβ ) = β on {Rβ <∞} on the other hand to obtain:

Eα

(
1{Rβ<∞}hα ◦ θRβ |FRβ

)
= 1{Rβ<∞} ·Eβ(hα) . (3.11)

Observe that hα◦θRβ = hα on {Rβ <∞}, therefore the following identity is valid every-
where: 1{Rβ<∞}hα ◦ θRβ = 1{Rβ<∞}hα . By assumption, α is recurrent, hence hα = 1
Pα-almost surely, and finally 1{Rβ<∞}hα ◦θRβ = 1{Rβ<∞} Pα-almost surely. Replacing

thus 1{Rβ<∞}hα ◦ θRβ by 1{Rβ<∞} in Eq. (3.11), and taking the Pα-expectations of
both sides yields:

Pα(Rβ <∞) = Pα(Rβ <∞) ·Eβ(hα) .

But β is assumed to be reachable from α, hence Pα(Rβ <∞) > 0, and thus Eβ(hα) = 1,
implying in particular that α is reachable from β.

3.6. Irreducible Components. With the notion of recurrent state at hand, it is now
possible to introduce the notions of irreducible process and irreducible components of a
M2CP.

Definition 3.12. Let P = (Pα)α∈X0 be a M2CP. We say that P is irreducible if every
α ∈ X0 is reachable from every β ∈ X0 .

Proposition 3.13. If a M2CP is irreducible, then every global state is recurrent.

Proof. By Proposition 3.11, point 2, there is some recurrent state α ∈ X0. But then, since
any β ∈ X0 is reachable from α, β is recurrent by point 4 of the same proposition.

The result in Proposition 3.15 below says that the study of Markov two-components
processes essentially reduces to the study of irreducible processes, especially if one is in-
terested in asymptotic properties (so-called limit theorems from probability theory such as
the Law of Large Numbers or the Central Limit Theorem). For this we use the notion of
subprocess introduced in Definition 1.4, and introduce irreducible components for M2CPs.
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Definition 3.14. An irreducible component of a probabilistic two-components process
P = (Pα)α∈X0 is any subset X1 ⊂ X0 such that, for all α ∈ X1 :

(1) any β ∈ X1 is reachable from α; and
(2) if β ∈ X0 is reachable from α, then β ∈ X1 .

Point 2 in Definition 3.14 ensures that (Pα)α∈X1 is indeed a probabilistic process (Def-
inition 1.4). Therefore, if X1 is an irreducible component of M2CP P = (Pα)α∈X0 , then
the family (Pα)α∈X1 forms a subprocess of P, which is obviously an irreducible M2CP. It
follows from Proposition 3.13 that any element α of an irreducible component is recurrent.
Any two irreducible components are disjoint. Finally, if α is recurrent, then α belongs to
a unique irreducible component, namely the set X1 of those β which are reachable from α
(the fact that X1 is indeed an irreducible component follows from Proposition 3.11). Since
recurrent states exist by Proposition 3.11, this implies that any M2CP has at least one
irreducible component.

Proposition 3.15. If P = (Pα)α∈X0 is a M2CP, there exists a stopping time T : Ω → T
such that T is almost surely finite and γ(ωT ) belongs to some irreducible component of P.

Proof. We fix an initial state α ∈ X0 . Let (Rn)n≥1 denote the successive return times to
the square set X0 (cf. § 3.3.6). As already observed several times, Pα(Rn <∞) = 1 for all
n ≥ 1, and therefore, if we put B =

{
β ∈ X0 | Pα

(⋂
n≥1R

n
β < ∞}

)
> 0

}
, it follows from

Lemma 3.8 that:
Ω =

⋃
β∈B

⋂
n≥1

{Rnβ <∞} . (3.12)

Pick exactly one global state αi for each irreducible component. Let Ti be the first hitting
time of αi, and put:

∀ω ∈ Ω, ωT = inf
i
{ωTi}.

For each β ∈ B, let β̃ be the unique recurrent state αi of the same irreducible component.

Then β̃ is reachable from β, and therefore:

ω ∈
⋂
n≥1

{Rnβ <∞} ⇒ R
β̃
(ω) <∞ Pα-a.s. (3.13)

¿From Eqs. (3.12)(3.13) we deduce that ωT <∞ Pα-almost surely. Hence, on the one hand,
at least one Ti is finite Pα-almost surely. On the other hand, only one of them is finite,
since the αi have been chosen in different irreducible components. Therefore ωT = ωTi for
some Ti, and thus γ(ωT ) does belong to some irreducible component, as claimed.

3.7. Open and Closed Markov Two-Components Processes. Besides the classical
application of the Strong Markov Property to recurrence and transience, it also applies to
the notion of open and closed processes which is specific to the two-components framework.
Open and closed processes have been defined in Definition 1.5.

Proposition 3.16. Let P = (Pα)α∈X0 be a M2CP.

(1) Let α ∈ X0 be a recurrent state. Then a global trajectory ω synchronizes infinitely often
with Pα-probability 1 if at least some synchronization state is reachable from α, and
with Pα-probability 0 otherwise.

(2) If P is irreducible, then P is closed or open.
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Proof.

(1) Let RQ be first return time to the square set X0∩(Q×Q) (see § 3.3.6), and consider the
stopping time U = RQ+Rα ◦θRQ , corresponding to reaching α after having reached Q.
This is indeed a stopping time by virtue of Lemma 3.4. Let (Un)n≥1 be the iterated stop-
ping times associated with U as in Definition 3.5. If hn = 1{Un<∞}, the same technique
involving the Asynchronous Strong Markov property (Theorem 3.9) than in the proof
of Proposition 3.11, point 1, shows that: Eα(hn|FUn−1) = hn−1Eα(1{U<∞}). Therefore,
if a = Pα(U < ∞) one has Pα(Un < ∞) = an . Since α is recurrent, Proposition 3.11,
point 1 implies that Rα is Pα-almost surely finite, hence Pα(U <∞) = Pα(RQ <∞).
Since a trajectory ω synchronizes infinitely often if and only if Un < ∞ for all n ≥ 1,
Borel-Cantelli Lemma implies that ω has Pα-probability 1 of synchronizing infinitely
often if Pα(RQ <∞) = 1, and 0 otherwise.

It remains to show that Pα(RQ < ∞) = 1 if and only if some state of the form
(x, x) with x ∈ Q is reachable from α. Since RQ =

∧
x∈QR(x,x) , obviously if no (x, x)

is reachable from α then Pα(RQ < ∞) = 0. Conversely, assume that some (x, x) with
x ∈ Q is reachable from α. Then (x, x) is recurrent, by point 4 of Proposition 3.11,
and Lemma 3.10 implies that R(x,x) < ∞ Pα-almost surely. But RQ ≤ R(x,x), hence
Pα(RQ <∞) = 1, as claimed.

(2) If P is irreducible, then by Proposition 3.11, every α ∈ X0 is recurrent, therefore point 1
above applies to any α ∈ X0. Assume that the Pα-probability of synchronizing infinitely
often is 0 for some α ∈ X0 , and let β ∈ X0 . Consider a finite trajectory v such that
Pα(v) > 0 and γ(v) = β; such a v exists since any β is reachable from α. Then Pα-a.s.
every trajectory ω ∈↑ v has no synchronization. But the Pα probability measure on
↑ v coincides, up to the factor Pα(v) 6= 0, with Pβ on Ω. Hence Pβ-a.s. every ω ∈ Ω
has no synchronization, and since this is true for every β ∈ X0, the process P is open.
The same method applies to show that P is closed if the probability of synchronizing
infinitely often is 1 for some α ∈ X0. This concludes the proof.

4. The Local Independence Property

Having adapted Markovian concepts from Markov chain theory, we now focus on a topic
specific to the asynchronous framework, without equivalent in Markov chain theory: the
probabilistic correlation between private behaviors of local components. It is desirable to
have a kind of probabilistic independence between private parts of trajectories: otherwise,
hidden synchronization constraints would be encoded in the probabilistic structure, while
we expect synchronization to occur only on explicit synchronization states. Probabilistic
independence of random variables ω1 and ω2 however is too much to ask; their synchroniza-
tion is an obstacle to their mere probabilistic independence. This is easy to understand from
an information theoretic viewpoint: the knowledge of ω1 gives indeed information on ω2,
since it precisely determines the Q-sequence of ω2. The weaker notion of conditional inde-
pendence proves to be adapted to our purpose. The Local Independence Property that we
introduce informally states that the two local components have the maximal probabilistic
independence they can have, considering their natural synchronization constraints.

Recall that Y = (Yn)n≥0 has been defined in Definition 1.5 as the Q-sequence induced
by some trajectory ω ∈ Ω, to which we have added Y−1 = ∗ and Yn = ∗ for large n if the
Q-sequence is finite, for some fixed specified value ∗. We proceed in a similar way to define
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the sequence (σn)n≥0 of random elementary trajectories, referring to the decomposition of
a trajectory ω as a concatenation of elementary trajectories from Proposition 1.2. If σn is
defined only until some integer N (that is, in case 2b of Proposition 1.2) we define σN+1 as
the synchronization free trajectory such that ω = σ1 ·. . . σN ·σN+1 and σn = ∗ for n > N+1.

Then we observe the following property:

Proposition 4.1. Let P be the synchronization product of two Markov chains. Decomposing
σn as σn = (σ1

n, σ
2
n) we have: for all α ∈ X0 and for every integer n ≥ 0, σ1

n and σ2
n are

two random variables independent conditionally on the pair (Yn−1, Yn) with respect to Pα .

Proof. Since P satisfies the Markov property, the statement is equivalent to the independence
of σ1

n and σ2
n, conditionally on Yn, and with respect to PYn−1 . But this follows from the

construction of the law of σn = (σ1
n, σ

2
n) given in § 2.

In order to generalize the above property to processes which may not be closed, and at
the cost of a little more abstraction, we introduce the following definition.

Definition 4.2. Let P = (Pα)α∈X0 be a M2CP, let Y be the associated random synchro-
nization sequence. Let ω1 and ω2 denote the local components of global trajectories, so
that ω = (ω1, ω2) for ω ∈ Ω. We say that P has the local independence property
(abbreviated LIP) if ω1 and ω2 are independent conditionally1 to Y with respect to Pα ,
for all α ∈ X0 .

The following theorem relates this definition with the previous property stated in Propo-
sition 4.1 for the synchronization of Markov chains.

Theorem 4.3. Let P = (Pα)α∈X0 be a M2CP. Then P satisfies the LIP if and only if
the random variables σ1

n and σ2
n are independent conditionally on the pair (Yn−1, Yn), with

respect to Pα for all n ≥ 0 and for all α ∈ X0 .

Proof. Let (a) be the property that ω1 and ω2 are independent conditionally on Y , and let
(b) be the property stated in the theorem.

Proof of (a)⇒ (b). Thanks to the Markov property, it is enough to consider n = 1. We
denote σ1

1 and σ2
1 by σ1 and σ2 , and we put: Z1 = Eα

(
1{σ1=z1} |Y

)
, Z2 = Eα

(
1{σ2=z2} |Y

)
,

and Z = Eα

(
1{σ1=z1, σ2=z2} |Y

)
. These three random variables are constant on {Y1 = b}

and, by (a), satisfy Z = Z1 · Z2, whence:

Pα(σ1 = z1, σ2 = z2|Y1 = b) = Z
∣∣
{Y1=b}

= Z1
∣∣
{Y1=b} · Z

2
∣∣
{Y1=b}

= Pα(σ1 = z1 |Y1 = b)×Pα(σ2 = z2|Y1 = b) ,

as expected.

1Recall that two random variables X1 and X2 are independent w.r.t. a σ-algebra G if E(ϕ1 · ϕ2|G) =
E(ϕ1|G) · E(ϕ2|G), for all non negative and bounded variables ϕ1 and ϕ2, measurable with respect to X1

and to X2 respectively. See e.g. [14, Chapter IV]. Here, the independence conditionally to Y means the
independence w.r.t. the σ-algebra 〈Y 〉 generated by Y .
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Proof of (b) ⇒ (a). From (b) used in conjunction with the Markov property and the
chain rule, we get for integers m ≥ n and with short notations:

Pα

(
σ1

1, . . . , σ
1
m, σ

2
1, . . . , σ

2
m

∣∣Y1, . . . , Yn
)

= Pα

(
σ1

1, . . . , σ
1
m

∣∣Y1, . . . , Yn
)
×

Pα

(
σ2

1, . . . , σ
2
m

∣∣Y1, . . . , Yn
)
.

The σ-algebra generated by the random trajectories (σik, k ≥ 1) for i = 1, 2 coincides with
the σ-algebra generated by ωi, since ωi is obtained as the concatenation of these—the
concatenation being finite or infinite. Hence, for any bounded non negative and measurable
functions h1 and h2:

Eα

(
h1(ω1) · h2(ω2)

∣∣Y1, . . . , Yn
)

= Eα

(
h1(ω1)

∣∣Y1, . . . , Yn
)
·Eα

(
h2(ω2)

∣∣Y1, . . . , Yn
)
.

The sequence of σ-algebras 〈Y1, . . . , Yn〉 is increasing, and converges to 〈Y 〉. Therefore by
the special case [7, Theorem 35.6 p.470] of the Martingale convergence theorem, we get by
taking the limit n→∞:

Eα

(
h1(ω1) · h2(ω2)

∣∣Y ) = Eα

(
h1(ω1)

∣∣Y ) ·Eα

(
h2(ω2)

∣∣Y ),
completing the proof.

Corollary 4.4. The synchronization product of Markov chains satisfies the LIP.

Having the specified value ∗ assigned to some Yk and σk described above has the fol-
lowing effect with regard to Theorem 4.3: the statement is trivial if both σk, Yk−1 and Yk
assume their constant values ∗; but it implies the probabilistic independence of σ1

N+1 and

σ2
N+1 with respect to PYN , where N is the last synchronization index. In other words, the

local trajectories are independent after their last synchronization.
It is useful to examine a degenerated case of Definition 4.2, where the conditional

independence reduces to probabilistic independence.

Lemma 4.5. Let P = (Pα)α∈X0 be a M2CP. Let ω1 and ω2 denote the local components
of global trajectories. Assume that, with respect to Pα for some state α ∈ X0 , the two
components ω1 and ω2 are independent. Then ω1 and ω2 are the sample paths of two
independent Markov chains.

Proof. Fix α ∈ X0, and for each i = 1, 2 let P i denote the law of ωi, characterized by
P i(ωi ≥ si) = Pα(ωi ≥ si), with si ranging over the finite local trajectories on site i. We
show that the conditional law P i(si · •| ↑ si) only depends on the last state of si, which is
enough to obtain that ωi follows the law of a homogeneous Markov chain. Consider i = 1,
the case i = 2 is identical. Consider s1 a finite sequence in S1 such that P 1(ω1 ≥ s1) > 0.
It implies that there exists some sequence in S2, say s2, such that Pα

(
↑ (s1, s2)

)
> 0. Put

s = (s1, s2) and let (x1, x2) = γ(s). For any finite sequence σ in S1, we have:

P 1(ω1 ≥ s1 · σ|ω1 ≥ s1) =
Pα(ω1 ≥ s1 · σ)

Pα(ω1 ≥ s1)

=
Pα(ω1 ≥ s1 · σ, ω2 ≥ s2)

Pα(ω1 ≥ s1, ω2 ≥ s2)
by independence

= P(x1,x2)

(
ω1 ≥ σ

)
. (4.1)

Obviously, the expression P 1(ω1 ≥ s1 · σ|ω1 ≥ s1) does not depend on x2, since x2 is the
last state of the arbitrary chosen sequence s2. Therefore, the right member of (4.1) does
not depend on x2 neither, hence it only depends on x1 and σ, which was to be proved.
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Proposition 4.6. Let P = (Pα)α∈X0 be a M2CP with the LIP. Let ω1 and ω2 denote the
local components of global trajectories.

(1) If Q = ∅, then ω1 and ω2 are two independent Markov chains, with respect to Pα for
any α ∈ X0.

(2) If Q is a singleton, and if α is a recurrent state, then ω1 and ω2 are two independent
Markov chains, with respect to Pα.

Proof.

(1) Since Q = ∅, the synchronization sequence Y is constant, Y = (∗, ∗, ∗, . . .). The condi-
tional independence in the definition of the LIP reduces to probabilistic independence.
The result follows then by Lemma 4.5.

(2) Let Q = {β}. By Proposition 3.16, point 1, ω synchronizes infinitely often with Pα-
probability either 0 or 1. If it is with probability 0, then Y = (∗, ∗, ∗, . . .) Pα-a.s., and
the same method than in point 1 above applies. If it is with probability 1, then Y is
still constant, now Y = (∗, β, β, β, . . .). The same method applies again.

Corollary 4.7. An open M2CP with the LIP identifies with two independent homogeneous
Markov chains.

5. Characterization of Markov Two-Components Processes with the LIP

The topic of this section is to characterize a M2CP with the LIP by means of a finite family
of real numbers, very much as the transition matrix of a Markov chain does. It turns out
that the law of a M2CP with the LIP is entirely specified by a finite family of transition
matrices. We will also investigate, conversely, if such a family of transition matrices always
induces a M2CP with the LIP, providing a more general way of constructing M2CPs than
the synchronization product of Markov chains. We show through a numerical example at
the end of the section that not any M2CP can be obtained as the synchronization product
of two Markov chains.

5.1. Technical Preliminaries. We begin with two lemmas.

Lemma 5.1. Let P = (Pα)α∈X0 be a closed M2CP, and let Y denote the associated syn-
chronization sequence. Then for any α ∈ X0, Y is a homogeneous Markov chain with respect
to Pα.

Proof. The formulation of Definition 1.7 applies to Y as follows: for any two finite sequences
s and u in Q, the conditional probability Pα(Y ≥ s · u|Y ≥ s) only depends on u and on
the last state of s. This shows that Y is a homogeneous Markov chain.

Lemma 5.2. Let P = (Pα)α∈X0 be a M2CP with the LIP, let Y denote the associated
synchronization sequence, and let (σn)n≥0 denote the sequence of elementary trajectories
that decompose global trajectories (see § 4).

Then for every n ≥ 0 and for i = 1, 2, the sequence of states that appear in σin is a
stopped Markov chain with respect to the conditional probability Pα( · |Yn−1, Yn).



MARKOV TWO-COMPONENTS PROCESSES 29

Proof. By the Markov property, there is no loss of generality in assuming that n = 0. Using
the notation σi = σi0 for short, we thus have to prove that σi is a stopped Markov chain
with respect to Pα( · |Y0 = y), for any value y ∈ Q. We consider i = 1 only, the case i = 2 is
similar. Let (X1, . . . , Xτ ) be the sequence of states in σ1, and let Q denote the conditional
probability Q = Pα( · |Y0 = y). Let x1, . . . , xn be values in S1 \ Q, let xn+1 ∈ Q ∪ {y},
and put δ = Q(Xn+1 = xn+1|X1 = x1, . . . , Xn = xn). We claim that δ only depends on xn
and xn+1. Put α = (x, z). We calculate:

δ =
Q(X1 = x1, . . . , Xn+1 = xn+1)

Q(X1 = x1, . . . , Xn = xn)

=
Pα(X1 = x1, . . . , Xn+1 = xn+1, Xτ = y)

Pα(X1 = x1, . . . , Xn = xn, Xτ = y)
.

We can rephrase {X1 = x1, . . . , Xn+1 = xn+1} in the two-components framework as
{ω1 ≥ (x1 · . . . · xn+1)} =↑ (x1 · . . . · xn+1, ε), observing that (x1 · . . . · xn+1, ε) is indeed a
trajectory. The same applies to {X1 = x1, . . . , Xn = xn} =↑ (x1 · . . . · xn, ε). Therefore the
calculation continues as follows:

δ =
Pα

(
ω1 ≥ (x1 · . . . · xn+1), Xτ = y

)
Pα

(
↑ (x1 · . . . · xn, ε), Xτ = y

)
=

Pα

(
ω1 ≥ (x1 · . . . · xn+1), Xτ = y

∣∣ ↑ (x1 · . . . · xn, ε)
)

Pα

(
↑ (x1 · . . . · xn, ε), Xτ = y

∣∣ ↑ (x1, · . . . · xn, ε)
)

=
P(xn,z)(ω

1 ≥ xn+1, Xτ = y)

P(xn,z)(Xτ = y)
= P(xn,z)(ω

1 ≥ xn+1

∣∣Xτ = y).

On the last expression, it is clear that δ only depends on xn and xn+1, and not on x1, . . . , xn,
showing our claim. This is enough to imply that X1, . . . , Xτ are the terms of a homogeneous
Markov chain.

5.2. Adapted Family of Transition Matrices. The two above lemmas suggest the fol-
lowing construction for M2CP with the LIP. First consider a Markov chain Y on the set
of shared states; then for any two consecutive values yn−1 and yn of Y , consider two in-
dependent stopped Markov chains σ1

n and σ2
n, with σin taking values in {yn} ∪ (Si \ Q),

that reaches yn with probability one and which is stopped at the first hitting time of yn.
This description is formalized in Theorem 5.4 below. It is first convenient to introduce the
following definition.

Definition 5.3. An adapted family of transition matrices is given by two families
(Riy)y∈Q0 , one for each i = 1, 2 and with Q0 some subset of Q, such that:

(1) For each y ∈ Q0 and i = 1, 2, Riy is a stochastic matrix on {y} ∪ (Si \Q);

(2) With respect to the transition matrix Riy , the state y is reachable from any state in

Si \Q.

Using this definition, the existence and uniqueness result concerning M2CP with the LIP
states as follows. We focus on closed processes only, as suggested by Proposition 3.15,
Proposition 3.16 and Corollary 4.7.



30 S. ABBES

Theorem 5.4. Any closed M2CP P with the LIP induces the following elements, that
entirely characterize P:

(1) A transition matrix R on the set Q of shared states, defined as the transition matrix of
the synchronization sequence Y from Definition 1.5;

(2) An adapted family of transition matrices (Riy)y∈Q0, for i = 1, 2, where Q0 is the essential

set of values of Y . For each i = 1, 2, and for y ∈ Q0 , Riy is the transition matrix of the

Markov chain σin with respect to the conditional probability Pα( · |Yn−1, Yn = y), which
is independent of the integer n and of α ∈ X0, provided it is defined for these values.

Conversely, given a set of global states

X0 ⊂
{

(x, z) ∈ S1 × S2 | (x ∈ Q) ∧ (z ∈ Q)⇒ x = z
}
,

such that the set
Q0 = {y ∈ Q | (y, y) ∈ X0}.

is nonempty; and considering:

(1) a transition matrix R on the set Q0; and
(2) an adapted family of transition matrices (Riy)y∈Q0 ,

then there exists a unique M2CP with the LIP, defined on X0 and inducing R and (Riy)y∈Q0 .
This M2CP is closed.

Proof. The first part of the theorem follows from Lemmas 5.1 and 5.2. For the second part,
assume that the considered data are given. The construction of the process P is essentially
the same as the construction of the synchronization product of Markov chains, therefore
we omit the routine arguments showing the existence and uniqueness of P. What we need
to show is that the two-components process obtained is indeed a M2CP with the LIP. The
LIP is obvious from the construction of P combined with Theorem 4.3, hence we focus on
the Markov property. Since the process is closed by construction, we rely on Lemma 1.8 for
this. Hence, let α ∈ X0, let t be any elementary trajectory and let s be any finite trajectory.
The proof then follows the same steps than the proof of Theorem 2.2:

(1) Step 1: s synchronization free. Then s ·t is an elementary trajectory. Put α = (x0, z0),
γ(s) = (x1, z1) and γ(t) = (y, y). We have: ↑ (s · t) = {σ1

1 = s1 · t1, σ2
1 = s2 · t2}. Let

Qi
b denote the probability associated with the Markov chain starting from b and with

transition matrix Riy, for i = 1, 2 and b ∈ Q. We compute using the independence
conditionally on Y1:(

Pα

)
s

(
↑ t
)

=
(
Pα

)
s

(
↑ t ∧ Y1 = y

)
=

Pα

(
↑ (s · t)

∣∣Y1 = y
)

Pα

(
↑ s
∣∣Y1 = y

)
=

Q1
x0

(
↑ (s1 · t1)

)
Q1
x0

(
↑ s1

) ·
Q2
z0

(
↑ (s2 · t2)

)
Q2
z0

(
↑ s2

)
= Q1

x1(↑ t1) ·Q2
z1(↑ t2).

The last quantity only depends on (x1, z1) = γ(s) and t. In particular, as expected, we
have

(
Pα

)
s

(
↑ t
)

= Pγ(s)(↑ t).
(2) Step 2: s is any finite trajectory. Using Step 1, as in the proof of Theorem 2.2.



MARKOV TWO-COMPONENTS PROCESSES 31

5.3. A Numerical Example. In this subsection, we show on an example how the syn-
chronization product of Markov chains is to be interprated in terms of an adapted family of
transition matrices. We show that not any M2CP can be obtained from the synchronization
of two Markov chains.

Let S1 = {a, b, c,d} and S2 = {c,d, e, f}, and let two transition matrices M1 and M2

on S1 and S2 respectively. Take for instance:

M1 =

a

b

c

d


1
3

1
3

1
3 0

1
2

1
8

1
8

1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

 M2 = M1 =

e

f

c

d


1
3

1
3

1
3 0

1
2

1
8

1
8

1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

 .

The matrices contain 0 in some places, but that will not harm.

Computation of the adapted family of transition matrices. We need to compute the ma-
trices R1

c = R2
c and R1

d = R2
d . Matrix R1

c is a stochastic matrix on {a, b, c}, and drives
the subsystem on site 1, conditionally on “next synchronization is c”. Referring to the
construction detailed in § 2, R1

c is simply obtained as follows: starting from matrix M1,
suppress all lines and columns attached to states in Q different from c, here, this is only
state d. Finally, renormalize each line to obtain a stochastic matrix. The same process is
applied to obtain R1

d :

R1
c =

a

b

c


1
3

1
3

1
3

2
3

1
6

1
6

2
3 0 1

3

 R1
d =

a

b

d


1
2

1
2 0

4
7

1
7

2
7

0 2
3

1
3


This construction implies that the lines obtained from matrices R1

c and R1
d by deleting

the lines and columns relative to shared states are proportional :
(

1
3

1
3

)
is proportional to(

1
2

1
2

)
, and

(
2
3

1
6

)
is proportional to

(
4
7

1
7

)
. Indeed, the lines of R1

c and R1
d are obtained

by renormalization after extraction from the same transition matrix M1 . We deduce from
this observation a way to construct a M2CP with the LIP not obtained as a synchronization
product of Markov chains. Replace for example the b line of R1

c by
(
0 0 1

)
and leave R1

d
unchanged. This corresponds to some closed M2CP with LIP according to Theorem 5.4,
which cannot be a synchronization product of Markov chains.

We have obtained: not every M2CP with the LIP can be obtained as the synchronization
product of two Markov chains.

Computation of the matrix of the synchronization chain. It remains to compute the transi-
tion matrix of the chain Y = (Yn)n≥1 , which involves the law of X1

τ1 and X2
τ2 , where τ i are

the first hitting times to Q of chains X1 and X2 respectively, which we do here “by hand”.
For a general theory, see for instance [9, Ch. XII §§58–59 Entrance and exit laws, p.262ff ].

Denoting by M1
x the law of chain X1 starting from x, one has: M1

x(X1
τ1 = c) =∑

wM
1
x(w) , where w ranges over words of the form w = v · c, and v is any word on {a, b}.

Therefore, if qk(x) denotes, for any integer k ≥ 0:

qk(x) =
∑

l1,...,lk∈{a,b}

M1
x(l1 · . . . · lk · c) ,
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one has M1
x(X1

τ1 = c) =
∑

k≥0 qk(x). Decomposing over the two possible values of l1 yields:

qk(x) = M1(x, a)qk−1(a) +M1(x, b)qk−1(b) .

Therefore the vector
(
qk(a) qk(b)

)
satisfies the following recurrence relation:(

qk(a)

qk(b)

)
= N

(
qk−1(a)

qk−1(b)

)
, with N =

(
M1(a, a) M1(a, b)

M1(b, a) M1(b, b)

)
.

We observe that

(
q0(a)
q0(b)

)
=

(
M1(a, c)
M1(b, c)

)
and therefore:(

M1
a (X1

τ1 = c)

M1
b (X1

τ1 = c)

)
= (I −N)−1

(
M1(a, c)

M1(b, c)

)
.

We find in a similar fashion:(
M1
a (X1

τ1 = d)

M1
b (X1

τ1 = d)

)
= (I −N)−1

(
M1(a,d)

M1(b,d)

)
,

with same matrix N . Finally we have:

M1
c (X1

τ1 = c) = M1(c, c) +M1(c, a)M1
a (X1

τ1 = c) +M1(c, b)M1
b (X1

τ1 = c)

M1
c (X1

τ1 = d) = M1(c,d) +M1(c, a)M1
a (X1

τ1 = d) +M1(c, b)M1
b (X1

τ1 = d) .
(5.1)

And in a similar fashion:

M1
d(X1

τ1 = c) = M1(d, c) +M1(d, a)M1
a (X1

τ1 = c) +M1(d, b)M1
b (X1

τ1 = c)

M1
d(X1

τ1 = d) = M1(d,d) +M1(d, a)M1
a (X1

τ1 = d) +M1(d, b)M1
b (X1

τ1 = d) .
(5.2)

Applying these calculations to our numerical example, we find:

N =

(
1
3

1
3

1
2

1
8

)
(I −N)−1 =

12

5

(
7
8

1
3

1
2

2
3

)
(
M1
a (X1

τ1 = c)

M1
b (X1

τ1 = c)

)
=

12

5

(
1
3
1
4

) (
M1
a (X1

τ1 = d)

M1
b (X1

τ1 = d)

)
=

1

5

(
1

2

)
.

We obtain thus, using Eqs. (5.1)(5.2):

M1
c (X1

τ1 = c) =
13

20
M1

c (X1
τ1 = d) =

7

20

M1
d(X1

τ1 = c) =
11

20
M1

d(X1
τ1 = d) =

9

20

Since we have taken M2 = M1, we obtain the same laws depending on the initial state c
or d for X2

τ2 . The 2 × 2 transition matrix of Y is now obtained by conditioning the free

product (X1
τ1 , X

2
τ2) on X1

τ1 = X2
τ2 , which yields the following transition matrix:

c

d

(
169
218

49
218

121
202

81
202

)
.
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Conclusion

Summary of results. Following the idea that, in a network, the knowledge a node has
about time is related to its local clock, and to its local clock only, we have introduced a
probabilistic model based on a simple trace model, that allows private changes of states
and synchronizations between two sites. We have focused on a Markov model where local
components are independent up to the synchronization constraints, which brought us to the
formulation of a Markov property without reference to any time index on the one hand, and
to the Local Independence Property on the other hand. Triples (Ω,F,P) where (Ω,F) is the
space of trajectories and P is a probability measure satisfying both properties have been
constructed and entirely characterized by a finite family of transition matrices, extending
the familiar transition matrix from discrete time Markov chain theory.

A singular feature of the model is the absence of constant times; instead, only random
times may be considered, and among them stopping times play a distinguished role. Note
that despite the absence of a totally ordered time index, we can conduct probabilistic
reasoning about our two-components models at the level of stopping times.

Potential applications. Open research fields involving asynchronous systems are numer-
ous. In some cases, trace models have proved to be more relevant than interleaving models:
distributed observation, supervision and diagnosis of concurrent systems, distributed opti-
mization and planning [6] provide examples. In the formal verification community, people
have considered interleaving models for composing probabilistic systems (cf. the discussion
in the Introduction). Although product of Probabilistic Automata for instance has shown
to be efficient for developing proving techniques based on bisimulation relations, it is worth
trying other ways for modeling network system where asynchrony plays an important role.

One can therefore expect new advances in the theory of networked systems through the
development of a probabilistic layer for trace models. In this respect, asymptotic analysis
of probabilistic trace models may have applications in network dimensioning.

Limitations and extensions. Although the model of Markov concurrent process adopted
in this paper is limited to two components only, it is important to notice that it has a
straightforward generalization to an arbitrary number n ≥ 2 of components. In this gener-
alized framework, the notion of stopping time, the Asynchronous Strong Markov Property
and all the results developed in § 3 carry over without additional difficulty. The LIP may
also be expressed for n ≥ 2 components in a similar way than we did for two components
only. However, the mere existence of Markov processes with n ≥ 2 components is not trivial
to prove. This relies on the additional combinatorial complexity that appears when at least
four components are involved, since then different synchronization events can occur concur-
rently. Therefore the simple structure of trajectories given by Proposition 1.2 is no longer
valid, making in turn the constructions of this paper found in Sections 2 and 5 ineffective.

Nevertheless, the task of proving the existence of Markov processes with the LIP has
been tackled in [1], generalizing the synchronization product of Markov chains. However,
this construction is not very natural, and its main advantage is to encourage further study
in this direction, since at least it ensures that the object of study is not empty.

Regarding a general theory of Markov multi-components processes, one may retain the
following elements from the present paper: firstly, stopping times and the Asynchronous
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Strong Markov Property have a straightforward extension to n ≥ 2 components. These
are basic tools that remain unchanged. Secondly, the generalized LIP allows to focus on
the synchronization process only, since it implies a conditional decorrelation between the
synchronization process on the one hand, and the private parts of each component on the
other hand. The core of the remaining challenge is thus the construction and characteriza-
tion of the synchronization process—we have shown above that, for two components, the
synchronization process identifies with a homogeneous Markov chain, a drastic simplifica-
tion compared to the general case of an arbitrary number of components. Recent work by
G. Winskel [20] on probabilistic event structures has shown to be promising in this respect.
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