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Abstract

The first part of the paper is an introduction to the theory of proba-
bilistic concurrent systems under a partial order semantics. Key defini-
tions and results are given and illustrated on examples.

The second part includes contributions. We introduce determinis-
tic concurrent systems as a subclass of concurrent systems. Determin-
istic concurrent system are “locally commutative” concurrent systems.
We prove that irreducible and deterministic concurrent systems have
a unique probabilistic dynamics, and we characterize these systems by
means of their combinatorial properties.

ACM CSS: G.2.1; F.1.1

1—Introduction
Trace monoids are well known models of concurrency, typically used when
one wishes to work on the logical order between actions rather than on their
chronological order. These models represent systems with actions, symbolized
by letters in a given alphabet, and with the feature that some actions may
occur concurrently. Let a1, . . . , aN be a bunch of pairwise concurrent actions
about to be played during an execution of the system. Then the system does
not distinguish between the N ! possible ways of interleaving them; nor could
an observer retrieve any information on their interleaving. When observing
the system history, the only remaining information about these N actions is
that they were performed concurrently; and actually it would be irrelevant to
think of a “hidden interleaving”.

Mathematically, a trace monoid M is a monoid generated by an alpha-
bet Σ, and with relations of the form ab = ba for some fixed pairs of letters
(a, b) ∈ Σ × Σ. The identity ab = ba in M renders the concurrency of the
two actions a and b. This identity is typical of the so-called partial order or
true-concurrent semantics for concurrency. It contrasts with the interleav-
ing semantics, which would instead keep track of the two possible sequences
a-then-b and b-then-a when facing the two concurrent actions a and b.

Despite their successful use as models of concurrency for databases for
instance [8, 9], trace monoids lack an essential feature present in most real-
life systems, namely they lack a notion of state. Indeed, any action can be
performed at any time when considering a trace monoid model; whereas, in
real-life systems, some actions may only be enabled when the system enters

1



some specified state, and then one expects the system to enter a new state,
determined by the former state and by the action performed.

A natural model combining both the “built-in” concurrency feature of trace
monoids and the notion of state arises when considering a right monoid action
of a trace monoidM on a finite set of states X, i.e., a mapping X ×M→ X
denoted by (α, x) 7→ α ·x. A sink state ⊥ is introduced in order to distinguish
the forbidden actions. Hence, if the system is in state α, performing the letter
a ∈ Σ brings the system into the new state α · a, with the convention that
a was actually not allowed if α · a = ⊥. This notion of concurrent system,
introduced in [1], encompasses in particular popular models of concurrency
such as bounded Petri nets [15, 14].

Whereas the interleaving semantics of systems provides a direct connection
with the classical theory of probabilistic systems (Markov chains in continuous
or in discrete time, mainly), adding a probabilistic layer on top of concurrency
models within the partial order semantics has been a challenge for some time.
Indeed, there is no obvious way to assign a probability to traces with a “natu-
ral” composition property. The random walk approach for instance, consisting
in adding one letter (or action) at a time with each letter being assigned a
fixed probability, can be shown to never fulfill the composition property that
we are looking for (see a more detailed discussion in Remark 2.7 in Sect. 2.1,
§ Probabilistic dynamics for trace monoids).

The approach of the author and his co-authors on this topic has been to
start again from the very beginning: trace monoids themselves [2]. Equipping
the “trajectories” of a trace monoid with a natural probabilistic dynamics
amounts to defining a memoryless probability measure on the space of “infi-
nite traces”. The memoryless property of measures is a natural composition
property which extends, in the framework of trace monoids, the well known
memoryless property typical of, say, coin tossing. The existence of such mea-
sures for trace monoids is not obvious. The construction of memoryless prob-
ability measures for trace monoids is based on existing tools found in the
literature on their combinatorics originally due to Cartier and Foata [6] and
later revisited by Viennot [17]. The construction puts into light, in the ele-
mentary framework of trace monoids, some essential concepts for the interplay
between probability and concurrency: the Möbius polynomial of the monoid
and the particular role played by its root of smallest modulus, and the process
of cliques visited by an infinite random trace. For the more complex case of
concurrent systems, defining a probabilistic dynamics consists then in a more
technical work on the very same concepts. New difficulties arise in this case,
yet a general theory of probabilistic concurrent systems may be built [1, 3].

The purpose of the present paper is twofold. Firstly, it intends to present
an introduction to the theory of probabilistic concurrent systems. We present
the key notions and state the main results which justify and guide the com-
putations to be done. Results are stated in a rigorous way, but we do not
provide proofs (references are given). The hope is to provide an elementary
introduction both to trace theory, from the systems theory point of view, and
to the probabilistic aspects of concurrent systems. This includes basic defini-
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tions of trace monoids, the Cartier-Foata normal form for traces, the Möbius
polynomial and the Möbius transform associated with a trace monoid and
the notion of irreducibility for trace monoids. A rigorous notion of infinite
trace is developed, and a characterization of memoryless probability measures
for trace monoids is given. The particular case of the uniform measure is
investigated. The realization result of memoryless measures as finite Markov
chains on cliques is also introduced. All these notions are then developed in
the more general context of concurrent systems, which yields us to introduce
the following notions attached to a concurrent system: its Möbius matrix, its
characteristic root, its digraph of states-and-cliques, its Markov measures, and
among them its uniform measure in the irreducible case. A key result of the
theory is the spectral property for irreducible concurrent systems, to be used
later in the paper. The computation of the probability distribution of the first
clique of a random infinite execution is illustrated on several examples, and
the notion of null node is introduced.

Secondly, and on the contribution part, we introduce and investigate the
special case of deterministic concurrent systems. Intuitively, a deterministic
concurrent system (DCS) is a concurrent system where no conflict between
different actions can ever arise. Deterministic concurrent systems can be re-
lated, for instance, to causal nets and to elementary event structures found
in 1980’s papers [14]. We prove in particular that deterministic concurrent
systems correspond to concurrent systems which are “locally commutative”.

Compared to general concurrent systems, deterministic concurrent systems
appear as limit cases. For instance, we prove that their space of infinite execu-
tions is at most countable—whereas it is uncountable in general. If the system
is moreover irreducible, we show that from any initial state, only one infinite
execution exists. In particular the only probabilistic dynamics is trivial in this
case—whereas there is a continuum of possible and non trivial probabilistic
dynamics in general. Yet, proving these properties is not obvious. The defi-
nition of DCS is formulated in elementary terms; their specific properties are
formulated in elementary terms; but the proof of these properties relies on
some subtle combinatorics of partially ordered sets.

We state general properties of deterministic concurrent systems, and our
main contribution is to give several equivalent characterizations of concurrent
systems which are both deterministic and irreducible: an algebraic character-
ization; a probabilistic characterization; a characterization from the analytic
combinatorics viewpoint; and a characterization through set-theoretic prop-
erties of the set of infinite executions.

Another contribution is a generalization of the well known fact that com-
mutative free monoids have a polynomial growth. The property that we obtain
in Corollary 2.21 is general enough to be of interest per se.

Organization of the paper. Section 2 is devoted to the background on
concurrent probabilistic systems, and is divided into three parts. Sections 2.1
surveys basic notions on trace monoids and their probabilistic counterpart,
while Section 2.2 reviews basic constructions related to concurrent systems,
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Figure 1: Coxeter graph of the independence pair (Σ, I) with Σ = {a0, . . . , a4} and
(ai, aj) ∈ I ⇐⇒ |i− j| ≥ 2. The arcs of the Coxeter graph correspond to the pairs
(ai, aj) with |i− j| = 1

including the probabilistic notions and their relationship with combinatorics.
Finally, Section 2.3 is devoted to an elementary, yet original result of trace
theory, that will be used later in the paper. Deterministic concurrent systems
are introduced in Section 3. Section 4 is devoted to the study of concurrent
systems which are both deterministic and irreducible.

2—Preliminaries

2.1 — Trace monoids and their combinatorics
The background material introduced in this section is standard, see for in-
stance [8, 9], excepted for the probabilistic notions which are borrowed from [2].

Independence and dependence pairs. An alphabet is a finite set, which
we usually denote by Σ, the elements of which are called letters. An inde-
pendence pair is a pair (Σ, I), where I is a binary symmetric and irreflexive
relation on Σ, called an independence relation. A dependence pair is a pair
(Σ, D), where D is a binary symmetric and reflexive relation on Σ, called
a dependence relation. With Σ fixed, dependence and independence relations
correspond bijectively to one another, through the association D = (Σ×Σ)\I.
The Coxeter graph of either pair (Σ, I) or (Σ, D) is the graph (Σ, D) with all
self-loops omitted [7].
Example 2.1. Figure 1 depicts the Coxeter graph of the independence pair
(Σ, I) with Σ = {a0, . . . , a4} and (ai, aj) ∈ I ⇐⇒ |i− j| ≥ 2.

With the alphabet Σ fixed, independence pairs are ordered by inclusion
and form a sub-lattice of P(Σ×Σ). The minimum is I0 = ∅ and the maximum
is I1 = (Σ× Σ) \∆, where ∆ is the diagonal relation ∆ = {(x, x)

∣∣ x ∈ Σ}.

Traces and trace monoids. The trace monoid M = M(Σ, I) is the
monoid with generators and relations with the following presentation:

M = 〈Σ
∣∣ ∀(a, b) ∈ I ab = ba〉.

By definition (see, for instance, [5, Chap. 7] for presentations of monoids),
M is the quotient monoid Σ∗/R, where R is the congruence on Σ∗ generated
by all pairs (ab, ba) for (a, b) ranging over I. Elements ofM are called traces.
Hence every trace is the congruence class of some word of Σ∗; and two words of
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Σ∗ are congruent whenever they can be obtained from one another by applying
arbitrary many times the following rewriting rule:

for (a, b) ∈ I and x, y ∈ Σ∗: xaby −→ xbay

The trace monoidM is non trivial if Σ 6= ∅, in which caseM is countably
infinite.

We denote by πI : Σ∗ → M the canonical morphism. The unit element
of M, image of the empty word, is called the empty trace and is denoted
by ε. The concatenation of x, y ∈ M is denoted by x · y. We identify letters
of the alphabet Σ with their images in M through the canonical mappings
Σ → Σ∗ πI−→ M. By construction, any two distinct letters a and b commute
inM if and only if (a, b) ∈ I.

Two extreme cases of trace monoids correspond to the extremal inde-
pendence relations introduced above : M(Σ, I0) is isomorphic to the free
monoid Σ∗, where no two distinct letters commute with each other;M(Σ, I1) is
isomorphic to the free commutative monoid, where all letters commute with
each other. In the general case, only some pairs of distinct letters commute
with each other, namely those not directly connected in the Coxeter graph;
hence the alternative name of free partially commutative monoids for trace
monoids in the literature.

Representation of traces. Heaps of pieces are combinatorial objects in-
troduced in [17] which provide an intuitive visual representation of traces (see
also [12]). Picture each letter as a piece falling to the ground, in such a way
that distinct letters which commute with each other fall along parallel and
disjoint lines; whereas non commutative letters fall in such a way that they
block each other. The heaps of pieces thus obtained are combinatorial objects
corresponding bijectively to the elements of the trace monoid, by reading the
letters labeling the pieces from bottom to top. Several readings are possible,
corresponding to the different words in the congruence class of the trace.
Example 2.2. Figure 2 (left) depicts the heap of pieces corresponding to a
trace of the monoidM(Σ, I) from Example 2.1.

If x is a trace, we denote by x̂ the corresponding heap. The identification
of traces with heaps is sound in the following sense. If x and y are two traces,
then the heap x̂ · y is obtained by piling up the two heaps x̂ and ŷ, and then
letting pieces from ŷ fall down to the ground or until they are blocked by
pieces from x̂, which produces a new arrangement of the resulting heap.

Length, occurrence of letters and divisibility order. By its very con-
struction as a quotient monoid,M comes equipped with a number of objects
for which we give some details now. Let x ∈ M be the congruence class of a
word u ∈ Σ∗. The length of x, denoted by |x|, is the length of u. The quantity
|u| is independent of the choice of u. The length is additive : |x ·y| = |x|+ |y|,
and satisfies |x| = 0 ⇐⇒ x = ε. Heaps point of view: |x| represents the
number of pieces in the heap x̂.
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Figure 2: In this example the commutation relations are those of Example 2.1, with
Coxeter graph depicted on Fig. 1. Left: representation as a heap of piece of the trace
y = a0 · a3 · a0 · a2 · a1 · a3 · a4. Middle and right: representations of two words in the
congruence class of y: a0-a3-a0-a2-a1-a3-a4 (middle) and a3-a2-a3-a0-a4-a0-a1 (right)

Furthermore, for each letter a ∈ Σ, we write a ∈ x whenever a has at least
one occurrence in u, and we write a /∈ x otherwise. Heaps point of view: a ∈ x
means that the heap x̂ contains a piece labeled by a.

Finally, the preorder (M,≤) inherited from the left divisibility in M is
defined by: x ≤ y ⇐⇒ (∃z ∈ M y = x · z). This preorder is actually a
partial order sinceM is equipped with the length function introduced above
(the antisymmetry of ≤ derives at once from the existence of the length func-
tion). Heaps point of view: x ≤ y whenever one can complete the heap x̂ by
letting additional letters fall from the top and obtain the heap ŷ. In this case
we say that x̂ is a sub-heap of ŷ.

The monoid M is left cancellative: for x, y, z ∈ M, if x · y = x · z then
y = z (the proof given in [6] is based on the existence of a normal form for
traces, see below).

As a consequence, if x, y ∈ M are such that x ≤ y, the element z ∈ M
such that y = x · z is unique. We denote this element by z = x\y. Heaps
point of view: the heap ẑ is obtained by removing from below in the heap ŷ
the pieces that form the heap x̂, sub-heap of ŷ.

Cliques. A clique ofM is a trace of the form x = a1 · . . . · ak, where all ais
are letters such that i 6= j =⇒ (ai, aj) ∈ I. Hence a clique represents a set
of mutually concurrent actions.

We denote by C the set of cliques, which is a finite set. Letters and the
empty trace are cliques of length 1 and 0 respectively. There exist cliques of
length at least 2 if and only ifM is not a free monoid, or equivalently, if the
independence relation is not empty. Heaps point of view: heaps corresponding
to cliques are the horizontal ones, with all pieces directly on the ground.

Since all ais commute with each other, we identify the clique x = a1 ·. . .·ak
with the subset {a1, . . . , ak} ∈ P(Σ). Through this identification, (C ,≤) is
isomorphic to a downward-closed subset of (P(Σ),⊆). It corresponds to the
full powerset (P(Σ),⊆) if and only ifM is the free commutative monoid on Σ.

A non empty clique is a clique x 6= ε. The set of non empty cliques ofM
is denoted by C. Minimal elements of (C,≤) correspond to the letters of Σ.
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Example 2.3. For the monoid from Example 2.1, the set of cliques is the
following:

C = { ε 1 clique of length 0
a0, a1, a2, a3, a4, 5 cliques of length 1
a0 · a2, a0 · a3, a0 · a4, a1 · a3, a1 · a4, a2 · a4, 6 cliques of length 2
a0 · a2 · a4 } 1 clique of length 3

Lower and upper bounds of traces. Any two traces x, y ∈ M have a
greatest lower bound (g.l.b.) in (M,≤), which we denote by x ∧ y. Heaps
point of view: the heap corresponding to x ∧ y is obtained as the maximal
common sub-heap of x̂ and of ŷ. In the case where both x and y are cliques,
then x ∧ y is the clique corresponding to the subset x ∩ y ∈ P(Σ).

Two traces x and y have a least upper bound (l.u.b.) in (M,≤), denoted
by x ∨ y if it exists, if and only if they have a common upper bound.

Normal sequences. Normal form and generalized normal form of
traces. Cartier and Foata have introduced in [6] a normal form for traces1,
which we describe now.

Let M = M(Σ, I) be a trace monoid with associated dependence rela-
tion D. A pair (x, y) ∈ C × C is a normal pair, which we denote by x → y,
if:

∀b ∈ y ∃a ∈ x (a, b) ∈ D. (2.1)

Heaps point of view: the pair (x, y) ∈ C × C is normal if and only if the
horizontal heap x̂ can support the horizontal heap ŷ, in the sense that ŷ can
be piled up upon x̂ without any of its pieces falling down.

In any trace monoid, two particular cases occur: x→ ε for all x ∈ C , and
ε→ x if and only if x = ε.
Example 2.4. Consider the clique x = a0 · a2 in the trace monoid from Ex-
ample 2.1. The non empty cliques y ∈ C such that x → y are the following:
a0, a1, a2, a3, a0 · a2, a0 · a3, a1 · a3.

A sequence (ci)i of cliques, the sequence being either finite or infinite, is a
normal sequence if (ci, ci+1) is a normal pair for all pairs of indices (i, i+ 1).

The interest of this notion lies in the following result [6]: for any non empty
trace x, there exists a unique integer k ≥ 1 and a unique normal sequence
(c1, . . . , ck) of non empty cliques such that x = c1 · . . . · ck. The sequence
(c1, . . . , ck) is the Cartier-Foata normal form of x, or the normal form of x
for short. The integer k is the height of x.

Heaps point of view: the cliques that appear in the normal form of a trace
x correspond to the horizontal layers one sees in the heap x̂. The height k is
the number of horizontal layers of x̂.

1See [10] for a general notion of normal form in a quotient monoid. See [7] for the
description of a normal form for a class of presented monoids including trace monoids.
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Example 2.5 (and warning). Let y be the trace depicted on Fig. 2. It has
the following normal form: (a0 · a3, a0 · a2, a1 · a3, a4). Its height is 4.

Observe that if x ≤ y, it does not imply that the normal form of x is a
prefix word of y’s. Indeed, consider for instance x = a0a0. Then x ≤ y since,
by the commutation relations in M, one has y = xz with z = a3a2a1a3a4.
Yet, the normal form of x is (a0, a0), which is not a prefix word of the normal
form of y.

Put differently, if x is a trace with normal form (c1, . . . , ck), adding a letter
a or more generally a trace z to x yields a new trace y = xz whose normal
form (d1, . . . , dk′) is not easily described from the normal forms of x and of z.
In particular, the initial clique d1 of y may differ from c1, even if z = a is a
single letter since this letter might “fall” all the way down to the ground.

Since the height of traces varies, it is convenient to complete the normal
form of traces as follows. For x a non empty trace of height k and with normal
form (c1, . . . , ck), we put ci = ε for all i > k. The now infinite sequence
(ci)i≥1 is still a normal sequence, called the generalized normal form of x. By
convention, the generalized normal form of ε is the normal sequence (ε, ε, . . .).

We observed above that the divisibility relation in a trace monoidM does
not correspond to the prefix order on normal forms. More precisely, if (ci)i≥1
is the generalized normal form of some trace x ∈ M, and if (di)i≥1 is the
generalized normal form of some trace y ∈M, then:

x ≤ y inM ⇐⇒
(
∀i = 1, 2 . . . ci ≤ di in C

)
(2.2)

Generalized traces and infinite traces. The generalized normal forms
of traces are constructed as infinite normal sequences of cliques. Conversely,
let ξ = (ci)i≥1 be an arbitrary infinite normal sequence of cliques. Then two
cases may occur:

1. If ci = ε for some integer i ≥ 1, then cj = ε for all integers j ≥ i. In
this case, ξ is the generalized normal form of some trace, namely of the
trace x = c1 · . . . · ci.

2. Otherwise, ci 6= ε for all integers i ≥ 1. Based on the heap of pieces
intuition, it is natural to define such objects as infinite traces, since they
correspond to infinite piles of layers.

This motivates the following definitions. A generalized trace is any infinite
normal sequence ξ = (ci)i≥1 of cliques. We denote byM the set of generalized
traces. If ci 6= ε for all integers i, then ξ is called an infinite trace.

The set of infinite traces is called the boundary at infinity of the monoidM,
and is denoted by ∂M. We observe that ∂M 6= ∅ as soon as Σ 6= ∅. Fur-
thermore, ∂M is infinite and uncountable if and only if M is not a free
commutative monoid.

Using the embedding described above of M into M (each trace x corre-
sponding to its generalized normal form), we identifyM with its image inM.
ThenM decomposes as the following disjoint union: M =M+ ∂M.
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Figure 3: Left: Coxeter graph ofM = 〈a, b, c, d
∣∣ ac = ca, bd = db〉. Right: digraph

of cliques forM. Arrows with a double tip stand for pairs of arrows

In view of (2.2), it is natural to extend the partial order onM to a partial
order onM by putting, for ξ = (ci)i≥1 and ζ = (di)i≥1 two generalized traces:

ξ ≤ ζ inM ⇐⇒ (∀i = 1, 2 . . . ci ≤ di in C ).

Recall that C denotes the set of non empty cliques of the trace monoidM.
For each integer i ≥ 1, we define a mapping Ci : ∂M→ C by putting Ci(ω) =
ci whenever ω = (ci)i≥1 . Heaps point of view: Ci(ω) is the ith layer of the
infinite heap ω.

Digraph of cliques. The digraph (C,→) is called the digraph of cliques of
the monoid. Infinite paths in this digraph correspond bijectively to infinite
traces in the monoid. If one follows an infinite path in (C,→), the infinite
trace ω it corresponds to satisfies that Ci(ω) is the ith node visited along the
path.
Example 2.6. We depict on Fig. 3 the digraph (C,→) for the trace monoid
M = 〈a, b, c, d

∣∣ ac = ca, bd = db〉.

Probabilistic dynamics for trace monoids. Valuations and visual
cylinders. Textbooks on probability often start from the first non trivial
probabilistic experience, namely the “infinite sequence of tosses of a coin” [4].
Implicitly, an “infinitely repeated probabilistic experience” involves an infinite
sequence of independent and identically distributed random variables. Math-
ematically, all the information is encoded into a probability measure on the
space of infinite words2, with the key feature of being memoryless. This will
guide us when looking for a generalization that would apply to trace monoids
instead of word monoids.

LetM be a non trivial trace monoid. The boundary at infinity ∂M is a
subset of the product set CZ≥1 and as such, comes equipped with a topology

2Recall that a σ-algebra F on a set Ω is a family of subsets of Ω containing Ω and closed
under complement, countable union and countable intersection. A probability measure on
(Ω,F) is then a set function ν : F → [0, 1] such that ν(Ω) = 1 and countably additive on
sequences of pairwise disjoint subsets: (i 6= j =⇒ Ai ∩ Aj = ∅) =⇒ ν

(⋃
i≥1 Ai

)
=∑

i≥1 ν(Ai).
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which in turn induces a Borel σ-algebra, which is always understood. Assume
given a probability measure ν on ∂M. Then basic results from measure theory
show that ν is entirely determined by the countable collection of values ν( ↑ x),
for x ranging overM, where ↑ x is the visual cylinder3 of base x, defined by:

↑ x = {ω ∈ ∂M : x ≤ ω}. (2.3)

Heaps point of view: ω ∈↑ xmeans that the infinite heap ω̂ can be obtained
from x̂ by adding infinitely many pieces from the top (again, note that the
initial layers of x̂ and of ω̂ may differ).

We say that ν is memoryless if it satisfies the following property:

∀x, y ∈M ν
(
↑ (x · y)

)
= ν( ↑ x)ν( ↑ y). (2.4)

Remark 2.7 (other probabilistic dynamics). In order to equip a trace monoid
with a probabilistic dynamics, one might think first of the random walk ap-
proach. Consider an infinite sequence X1, X2, . . . of random letters, each letter
Xi being picked at random and uniformly in Σ; then form the infinite trace
obtained by piling up all this letters and consider the probability law of the
infinite trace thus obtained. By construction, this law is indeed a probabil-
ity measure on ∂M. Intuitively, the more a trace has internal commuting
elements, the more it will be favored by this law; it is thus not a “uniform”
way of choosing traces, and neither is it memoryless. Actually, the associated
probability measure never satisfies the property (2.4), as soon asM is not a
free monoid nor a free commutative monoid—hence, in all cases of interest.
This random walk measure is of course of deep mathematical interest on its
own; yet we are looking for other probabilistic dynamics of interest.

Another way of selecting traces at random is the following. For each inte-
ger n, consider the finite set of traces of length n, and then choose randomly
one trace among them. This yields a probability distribution νn for each in-
teger n. This procedure can be refined by attributing multiplicative weights
to letters instead of the same weight to all letters. In all cases, this procedure
has three drawbacks: 1) the probability distributions νn are defined on M
and not on ∂M—and it would be rather unnatural to stop the process at
some fixed length n; 2) the sequence (νn)n≥0 is not a “consistent sequence”—
hence Kolmogorov’s extension theorem does not apply to define a completion
“at infinity”; and 3) for each fixed n, the probability distribution νn is not
memoryless—if one would care to define any sort of memoryless property for
probability distributions on finite traces rather than on infinite ones. Despite
all these restrictions, the sequence (νn)n≥0 is of much interest since after all,
it is the most natural way to pick a trace at random. It can be shown in a
precise way that the sequence of probabilities (νn)n≥0 converges to a probabil-
ity measure on ∂M which is indeed memoryless. Intuitively, the memoryless
probability measures that we are seeking correspond to this procedure, but
obtained with “n =∞”.

3The terminology visual cylinder is derived from the “visual measure” introduced in
geometric group theory.
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As observed above, the mere existence of at least a memoryless probability
measure for a trace monoid is not obvious. But assuming for the moment the
existence of such a probability measure ν, consider the function f :M→ R≥0
defined by:

∀x ∈M f(x) = ν( ↑ x). (2.5)

Then, by (2.4), f satisfies:

f(ε) = 1 and ∀x, y ∈M f(x · y) = f(x)f(y) (2.6)

We define a function f :M→ R≥0 to be a valuation whenever it satisfies
the two properties in (2.6). Clearly, a valuation f is entirely determined by
the finite collection of its values on the letters of Σ. And conversely, given any
family (λa)a∈Σ of non negative numbers, there is a unique valuation f such
that f(a) = λa for all a ∈ Σ. The central question is now the following.

(Q) Let (λa)a∈Σ be a collection of non negative real numbers, and
let f be the corresponding valuation. What computable conditions
on (λ)a∈Σ are necessary and sufficient for the existence of a prob-
ability measure ν on ∂M such that ν( ↑ x) = f(x) for all x ∈M?

The probability measure ν thus constructed shall necessarily be memory-
less. Hence answering the above question amounts to having an operational
description of memoryless probability measures on ∂M.

Möbius transform and probabilistic valuations. Our answer to the
above question (Q) is based on the notion of Möbius transform, a notion
attached to a large class of partial orders and popularized by G.-C. Rota [16].
The partial order we shall focus on is the finite partial order (C ,≤). Let
f : C → A be any function, where A is a commutative group—we shall
always take A = R. The Möbius transform of f is the function h : C → A
defined by:

∀c ∈ C h(c) =
∑

c′∈C : c≤c′
(−1)|c′|−|c|f(c′). (2.7)

The function f can be retrieved from h thanks to the Möbius inversion
formula, which is a kind of generalized inclusion-exclusion formula:

∀c ∈ C f(c) =
∑

c′∈C : c≤c′
h(c′). (2.8)

In particular, one has:

f(ε) =
∑
c∈C

h(c). (2.9)

Let h : C → R be the Möbius transform of a valuation f , restricted to C .
Then we define f to be a probabilistic valuation whenever:(

h(ε) = 0
)

and
(
∀c ∈ C h(c) ≥ 0

)
. (2.10)
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In this case, the vector
(
h(c)

)
c∈C is a probability vector. Indeed, it is non

negative and it sums up to 1 thanks to (2.9), since f(ε) = 1 and h(ε) = 0.
The following statement provides an answer to Question (Q): the exis-

tence of a memoryless measure ν associated with the valuation f through
f(x) = ν( ↑ x) for x ranging over M, is equivalent to f being a probabilis-
tic valuation.

A particular case is when f is uniform, in the sense that f(a) = t is
constant for a ranging over Σ, and thus f(x) = t|x| for x ∈ M. A result is:
there exists a unique uniform probabilistic valuation. It implies the existence
of at least one memoryless measure for every trace monoid.
Example 2.8. Let M = 〈a, b, c, d

∣∣ ac = ca, bd = db〉 with C = {a, b, c, d, a ·
c, b·d}, and whose Coxeter graph is depicted on Fig. 3. Let us simply denote by
a, b, etc, the values of f(a), f(b), etc, for some valuation f . The normalization
conditions (2.10) for f to be a probabilistic valuation are:

1− a− b− c− d+ ac+ bd = 0
a− ac ≥ 0, b− bd ≥ 0, c− ac ≥ 0, d− db ≥ 0, ac ≥ 0, bd ≥ 0.

A solution is to put a = b = 1/3 and c = d = 1/4. Another solution is to look
for the uniform valuation, hence to put a = b = c = d = 1−

√
2/2. The later

value is the root of smallest modulus of the polynomial 1 − 4p + 2p2, which
we encounter below as the Möbius polynomial of the monoid.

Markov chain of cliques. Let ν be a memoryless probability measure
on ∂M. Intuitively, the measure ν encodes a way of choosing at random
an infinite trace ω ∈ ∂M. Since ω has the form ω = (ci)i≥1, it is natural to
investigate the nature of the random sequence ci = Ci(ω). It is random indeed
since it depends on the random outcome ω of the probabilistic experience.

It turns out that: with respect to the memoryless probability measure ν,
the random sequence (Ci)i≥1 is a homogeneous Markov chain on C. Its initial
distribution is given by: ∀c ∈ C ν(C1 = c) = h(c), where h is the Möbius
transform of f , probabilistic valuation attached to ν as in (2.5). The transition
matrix of the Markov chain can also be described, but we shall not need it in
the sequel. We simply mention that it also involves the Möbius transform h
(see the details in [2]).
Remark 2.9. Observe the different probabilistic interpretations of the two
functions f and h. If c is some non empty clique, then f(c) = ν( ↑ c) is the
probability that the initial clique C1 contains c; whereas h(c) is the probability
that C1 equals c. The h(c)s sum up to 1 over C, whereas:

∑
c∈C f(c) > 1 unless

M is a free monoid.

Irreducibility of trace monoids. Given two trace monoidsMi =M(Σi, Ii),
i = 1, 2, their direct productM1⊕M2 is isomorphic to another trace monoid.
Indeed, take the disjoint union Σ = Σ1 + Σ2, and for dependence relation the
disjoint union D = D1 + D2, with D1 and D2 now seen as binary relations
on Σ. Take finally the independence pair I = (Σ×Σ) \D. ThenM1⊕M2 is
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isomorphic toM(Σ, I). In this construction, letters from a common alphabet
keep their dependence relations, and letters from distinct alphabets are set to
be independent, i.e., commutative.

For instance, the free commutative monoid on N generators is obtained as
the direct product of N copies of the free monoid on 1 generator.

Conversely, given a trace monoidM =M(Σ, I), it is well known thatM
is not isomorphic to the product of two non trivial trace monoids if and only
if the Coxeter graph (Σ, D) is connected. In this case, the trace monoidM is
said to be irreducible.

For example, the free monoid M(Σ, I1) is irreducible, and the free com-
mutative monoid M(Σ, I0) is irreducible if and only if |Σ| ≤ 1. All other
examples of trace monoids that we encountered previously are irreducible.

Combinatorics and probability for trace monoids: growth series and
Möbius polynomials. The growth series G(z) and the Möbius polynomial
µ(z) of a trace monoidM are defined as follows:

G(z) =
∑
x∈M

z|x|, µ(z) =
∑
c∈C

(−1)|c|z|c|. (2.11)

The series G(z) is rational, and it is the formal inverse of the Möbius
polynomial: G(z)µ(z) = 1 (see [6] for a combinatorial proof, see [17] for a
bijective proof).

If Σ 6= ∅, the Möbius polynomial has a unique root of smallest modulus
(see [13, 11]). This root, say r, is real and lies in (0, 1]. If Σ = ∅, we put
r =∞. In all cases, the radius of convergence of G(z) is r.

We note that: r ≥ 1 if and only if M is free commutative—an ele-
mentary result to be generalized when dealing with deterministic concurrent
systems in Sections 3 and 4. Indeed, the coefficients of the growth series
G(z) =

∑
n≥0 λnz

n are given by λn = #{x ∈ M : |x| = n}. If M is not
free commutative, then M contains the free monoid on two generators as a
submonoid. Hence λn ≥ 2n and thus r ≤ 1/2. Whereas, ifM is free commu-
tative and Σ has N ≥ 0 elements, then4 µ(z) = (1− z)N and therefore r = 1
or r =∞. In this case, one recovers from the formula G(z) = 1/(1− z)N the
standard elementary result that free commutative monoids have a polynomial
growth.

Returning to the case of a general trace monoidM, let fz be the uniform
valuation onM defined by fz(a) = z for all a ∈ Σ, and let hz be the Möbius
transform of fz. Then, comparing (2.11) with (2.7), one sees that µ(z) = hz(ε).
Therefore, for the uniform valuation fz to be probabilistic, it is necessary that
z is a root of the Möbius polynomial µ(z). Actually, the following result
holds if Σ 6= ∅, making more precise the statement introduced before: the
only value for the uniform valuation fz to be probabilistic is z = r, the root of
smallest modulus of the Möbius polynomial µ(z). In other words, among the
roots of the Möbius polynomial, only for the root r of smallest modulus does

4This is a particular case of the easily observed identity on Möbius polynomials:
µM1⊕M2 (z) = µM1 (z)µM2 (z).
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the required condition (∀c ∈ C hr(c) ≥ 0) from (2.10) hold. The associated
probability measure on ∂M is the uniform measure. Intuitively, the uniform
measure gives equal weight to all infinite traces.

Null nodes for trace monoids. Consider the uniform measure ν on the
boundary at infinity ∂M of a trace monoidM, the associated valuation f and
its Möbius transform h. Say that a node c in the digraph of cliques (C,→) is
a null node if h(c) = 0.

Consider also the Markov chain of cliques (Ci)i≥1 associated with a infinite
trace ω, drawn at random according to ν. Recall that the initial distribution
of the chain, hence the probability distribution of the clique C1, is given by
the probability vector (h(c))c∈C. In particular, if c is a null node, it has zero
probability of being visited by the first clique of ω. Actually, it then has zero
probability of being ever visited by any of the cliques Ci, i ≥ 1 (this follows
from the form of the transition matrix of the chain). It is thus interesting to
determine the null nodes, whenever they exist.
Example 2.10. Consider the non irreducible trace monoidM = 〈a, b, c

∣∣ ac =
ca, bc = cb〉, with cliques C = {ε, a, b, c, a · c, b · c}. Let f(x) = r|x| be a
uniform valuation. The Möbius transform of f is given by:

h(ε) = (1− 2r)(1− r) h(a) = r(1− r) h(b) = r(1− r)
h(c) = r(1− 2r) h(a · c) = r2 h(b · c) = r2

Hence the value of r corresponding to the uniform measure is r = 1
2 ,

inducing the null node c since then h(c) = 0.
The previous example involved a non irreducible trace monoid. By con-

trast, the following result holds: If M is a non trivial and irreducible trace
monoid, there is no null node in (C,→). As a consequence, one can prove
that, if M is irreducible and non trivial, an infinite trace drawn at random
has probability 1 to visit infinitely often any clique.
Remark 2.11. Null nodes, which only occur for non irreducible trace monoids,
are closely related to the combinatorics of the trace monoid. A null node is
a clique that has exactly zero probability to appear as the first clique of an
infinite trace. When considering large traces rather than infinite traces, it can
be reformulated as follows: if c is a null node, then among traces of size n, very
few have their first clique equals to c, compared to others; and the larger n,
the smaller this ratio. At the limit, the ratio equals zero.

2.2 — Concurrent systems and their combinatorics
A natural way to generalize the notion of trace monoid is to add a notion of
state. This yields the notion of concurrent system, introduced below. The
background material presented in this section is borrowed from [1, 3].

Concurrent systems and executions. A concurrent system is a triple
X = (M, X,⊥) as follows: M is a trace monoid; X is a finite set of states;
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⊥ is a special symbol not in X; furthermore, we put X ′ = X ∪ {⊥} and there
is mapping X ′ ×M→ X ′, denoted by (α, x) 7→ α · x and satisfying the three
following properties:

∀α ∈ X ′ α · ε = α (2.12)
∀α ∈ X ′ ∀(x, y) ∈M×M α · (x · y) = (α · x) · y (2.13)

∀x ∈M ⊥ · x = ⊥ (2.14)

The properties (2.12) and (2.13) are the axioms of a right monoid action
of M on X ∪ {⊥}. As witnessed by (2.14), the symbol ⊥ represents a sink
state, intended to materialize a forbidden state. So we are interested, for every
α, β ∈ X, in the following subsets ofM:

Mα,β = {x ∈M : α · x = β}, Mα = {x ∈M : α · x 6= ⊥}.

Traces ofMα are called executions starting from α, or executions for short.
Note thatMα is always downward closed in (M,≤), thanks to (2.14).

The concurrent system X is trivial if α · a = ⊥ for all α ∈ X and for all
a ∈ Σ. It is non trivial otherwise.

Borrowing the terminology from the theory of group actions, we say that
the concurrent system is homogeneous if Mα,β 6= ∅ for all pairs (α, β) ∈
X ×X (the state space has only one connected component). Borrowing the
terminology from Petri nets theory, we say that the system is alive if for every
state α ∈ X and for every letter a ∈ Σ, there exists an execution x ∈ Mα

such that a ∈ x.
Finally we say that the concurrent system X = (M, X,⊥) is irreducible if it

is non trivial, homogeneous and alive, and ifM is an irreducible trace monoid.
The interest of this notion of irreducibility lies in the spectral property that
is stated later.

Representation of concurrent systems and of executions. To repre-
sent a concurrent system X = (M, X,⊥), we first use the Coxeter graph ofM
already introduced for trace monoids. We also depict the labeled multigraph
of states, or graph of states for short, whose vertices are the elements of X,
and with an edge from α to β labeled by the letter a ∈ Σ if α · a = β.
Remark 2.12. Any multigraph V with edges labeled by elements from a set
Σ represents a “next state function”, and thus extends to an action of the free
monoid (V ∪ {⊥}) × Σ∗ → (V ∪ {⊥}), provided that for any node v ∈ V ,
there are no two edges starting from v and labeled with the same letter. It
requires an additional verification to check that it also represents an action
of a trace monoidM =M(Σ, I) on V ∪ {⊥}; namely, one has to check that
α · (ab) = α · (ba) for any pair (a, b) ∈ I and for every vertex α ∈ V . In other
words, each commuting pair in Σ must correspond to a diamond shape for
every vertex in the graph of states.
Example 2.13. Let four slots numbered 0, 1, 2 and 3 be put in circle. Each
slot stores the value 0 or 1, with 0 as initial value. If two neighboring slots store
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Figure 4: Graph of states for a concurrent system with 6 states and associated with
the trace monoid 〈a, b, c, d

∣∣ ac = ca, bd = bd〉 (see the Coxeter graph of this monoid
on Fig. 3)

the same value, then a piece can be played: piece a for slots 0 and 1, piece b for
slots 1 and 2, piece c for slots 2 and 3, piece d for slots 3 and 0. In case the piece
is played, the common value of the two neighboring slots is changed to its op-
posite. This small game corresponds to the concurrent system X = (M, X,⊥)
with M = 〈a, b, c, d

∣∣ ac = ca, bd = db〉 (see the Coxeter graph depicted on
Fig. 3), and with the set of all possible reachable configurations for the four
slots as set of states. Hence, X = {0000, 1100, 0110, 0011, 1001, 1111}.
Note that each action is reversible: α · x · x = α for all α ∈ X and all x ∈ Σ.
The graph of states is depicted on Fig. 4.
Example 2.14. Consider the 1-safe Petri net depicted in Fig. 5, (a). The
set of states is the set of reachable markings. The underlying trace monoid
is generated by the transitions of the net, with commutative transitions t
and t′ whenever •t• ∩ •t′• = ∅, thusM = 〈a, b, c, d | ad = da, db = db〉. The
corresponding Coxeter graph is depicted on Fig. 5, (b), and the graph of states
is depicted on Fig. 5, (c). If not familiar with the model of Petri nets, the
reader can ignore the picture of Fig. 5, (a), and simply focus on the Coxeter
graph and the graph of states.

Notations, generalized and infinite executions. Given a concurrent
system X = (M, X,⊥), we introduce the following notations, for α, β ∈ X:

Σα = Σ ∩Mα Cα = C ∩Mα Cα = C ∩Mα Cα,β = C ∩Mα,β

A generalized execution from α is a generalized trace ξ ∈M such that:

∀x ∈M x ≤ ξ =⇒ x ∈Mα.

Their set is denoted Mα, and we also put ∂Mα = Mα ∩ ∂M. Elements
of ∂Mα represent infinite executions of the system starting from the initial
state α. Note that, even for a non trivial concurrent system, some sets or
even all sets ∂Mα might be empty, which contrasts with the situation for
trace monoids.

Every trace monoid M can be seen as a concurrent system with a single
state by considering X = (M, X,⊥) with X = {∗}, and ∗·x = ∗ and ⊥·x = ⊥
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Figure 5: (a)—A safe Petri net with its initial marking α0 = {A,C} depicted. The
two reachable markings are α0 and α1 = {B,C}. (b)—The Coxeter graph of the
associated trace monoid. (c)—Graph of markings of the net

for every x ∈ M. It is then irreducible as a concurrent system if and only if
M is non trivial and irreducible as a trace monoid.

Digraph of states-and-cliques. Infinite executions of a concurrent system
X = (M, X,⊥) are, in particular, infinite traces of M. As seen in Sect. 2.1,
infinite traces correspond to paths in the digraph of cliques (C,→). Not all
infinite paths of (C,→) however correspond, in general, to infinite executions
of X . In order to take into account the constraints induced by the monoid
action, we introduce the digraph of states-and-cliques (D,→), the vertices of
which are pairs (α, c) with α ranging over X and c ranging over Cα. There
is an arrow (α, c) → (β, d) in D if β = α · c and if (c, d) is a normal pair of
cliques.

To every infinite execution ω = (ci)i≥1 from α, is associated the infinite
path (αi−1, ci)i≥1 in D, where αi is defined by α0 = α and αi = α · (c1 · . . . · ci)
for i ≥ 1. We put Yi(ω) = (αi−1, ci) for every integer i ≥ 1. This is the
ith “state-and-clique” of the system, when the infinite execution ω is scanned
according to its normal form. Conversely, every infinite path in D corresponds
to a unique infinite execution.
Example 2.15. For the Petri net of Fig. 5, the digraph of states-and-cliques
D is depicted on Fig. 6. Here is how to obtain it “by hand”. For every state α,
compute first the sub-alphabet Σα = {a ∈ Σ : α · a 6= ⊥}. Here, Σα0 =
{a, b, d} and Σα1 = {c, d}. Comparing with the Coxeter graph of the monoid,
keep note of all the cliques that can be formed using only letters from Σα, and
retain from these only the non empty cliques γ such that α · γ 6= ⊥. Their set
is Cα. Here, Cα0 = {a, b, d, a · d, b · d} and Cα1 = {c, d}. Then for every state
α and for every γ ∈ Cα, compute β = α · γ on the one hand, and all δ ∈ Cβ
such that γ → δ holds on the other hand. The pairs (β, δ) thus obtained are
the successors of (α, γ) in D.
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Figure 6: Digraph of states-and-cliques for the concurrent system corresponding to
the Petri net depicted on Fig. 5

Valuations and probabilistic valuations. Markov concurrent mea-
sures. In this section we extend to concurrent systems the notions of valu-
ations and of probabilistic valuations introduced earlier for trace monoids.

A valuation on a concurrent system X = (M, X,⊥) is a family f =
(fα)α∈X of mappings fα : M → R≥0 satisfying the three following proper-
ties:

∀α ∈ X ∀x ∈M α · x = ⊥ =⇒ fα(x) = 0 (2.15)
∀α ∈ X ∀x ∈Mα ∀y ∈Mα·x fα(x · y) = fα(x)fα·x(y) (2.16)

∀α ∈ X fα(ε) = 1 (2.17)

Let f = (fα)α∈X be a valuation and for each α ∈ X, let hα : C → R be
the Möbius transform of the restriction fα

∣∣
C

: C → R≥0. Note that hα(x) = 0
if x /∈Mα. We say that f is a probabilistic valuation if, for every state α ∈ X:

hα(ε) = 0 and
(
∀c ∈ Cα hα(c) ≥ 0

)
(2.18)

In this case, there exists a unique family ν = (να)α∈X , where να is a
probability measure on ∂Mα, such that να( ↑ x) = fα(x) for all α ∈ X
and for all x ∈ Mα. Of course the existence of a probabilistic valuation
implies in particular that ∂Mα 6= ∅ for all α ∈ X. Such a family (να)α∈X is
called a Markov concurrent measure, because of the chain rule (2.16) which
is reminiscent of the classical property of Markov chains. For the Markov
measure (να)α∈X , the chain rule reads as follows:

∀α ∈ X ∀x ∈Mα ∀y ∈Mα·x να
(
↑ (x · y)

)
= να( ↑ x)να·x( ↑ y) (2.19)

The chain rule (2.19) extends to concurrent systems the memoryless prop-
erty (2.4) for trace monoids.

Markov chain of states-and-cliques. If ν = (να)α∈X is associated as
above with a probabilistic valuation f = (fα)α∈X , then for each state α ∈ X,
and with respect to the probability measure να , the family of mappings Yi :
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state α hα(ε) hα(a) hα(b) hα(c) hα(d) hα(a · d) hα(b · d)
α0 1− p− q −

s+ ps+ qs
p− ps q − qs 0 s−ps−qs ps qs

α1 1− t− s 0 0 t s 0 0

Table 1: Möbius transform of a generic valuation for the Petri net example depicted
in Fig. 5, with parameters p = fα0(a), q = fα0(b), s = fα0(d) = fα1(d) and t = fα1(c)

∂Mα → D defined earlier is a homogeneous Markov chain, called the Markov
chain of states-and-cliques. Its initial distribution is given by 1α⊗hα, meaning:

∀α ∈ X ∀c ∈ Cα να(C1 = c) = hα(c). (2.20)

In other words, even though the “user” may choose the initial state α ∈ X
of the system, this “user” does not have control on the initial clique of a ran-
dom infinite execution of the system starting from α. Indeed, the probability
distribution of the first clique is precisely given by (2.20).

Example and null nodes. Let us determine the probabilistic valuations
for the Petri net example of Fig. 5, which is an irreducible concurrent system.
Any probabilistic valuation f = (fα)α∈X is entirely determined by the finite
family of values fα(u) for (α, u) ranging over {α0, α1}×Σ, since then the other
values fα(x) are obtained by the chain rule fα(x · y) = fα(x)fα·x(y).

Since fα0(c) = fα1(a) = fα1(b) = 0, the remaining parameters for f are
p = fα0(a), q = fα0(b), s = fα0(d), t = fα1(c), u = fα1(d). The parameters
are not independent; for coherence with the commutativity relations induced
by the trace monoid, one must have fα0(a)fα0·a(d) = fα0(d)fα0·d(a), since
a · d = d · a, and fα0(b)fα0·b(d) = fα0(d)fα0·d(b) since b · d = d · b; yielding
simply qu = qs here.

To simplify the exposition, we eliminate the border cases and restrict our
attention to the case where all parameters stay within the open interval (0, 1).
Then we obtain u = s from the previous equality qu = qs.

The Möbius transform of fα0 evaluated for instance at b is hα0(b) =
fα0(b) − fα0(bd) = fα0(b) − fα0(b)fα1(d) = q − qs. Other computations are
done similarly, and we gather the results in Table 1. According to (2.18),
the normalization constraints on the parameters for the valuation f to be
probabilistic are thus:

hα0(ε) = 0 : 1− p− q − s+ ps+ qs = 0 (2.21)
hα1(ε) = 0 : 1− t− s = 0, (2.22)

plus all inequalities hα0(a) ≥ 0, etc, which in this case do not bring any
additional constraints.

Here, the equation in (2.21) rewrites as (1 − p − q)(1 − s) = 0. It follows
that 1−p−q = 0 and, in view of Table 1, it implies hα0(d) = 0. This illustrates
the notion of null node for concurrent systems.

We define a node (α, c) of D to be a null node, with respect to some
probabilistic valuation f = (fα)α∈X , if hα(c) = 0, where hα is the Möbius
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transform of fα. As for trace monoids, null nodes are never reached by the
Markov chain of states-and-cliques. But, contrasting with the case of trace
monoids, null nodes may exist even for irreducible concurrent systems, as the
previous example shows.

Characteristic root of a concurrent system. Consider the Möbius ma-
trix µ(z) = (µα,β(z))(α,β)∈X×X , the polynomial θ(z) with integer coefficients,
and the growth matrix G(z) = (Gα,β(z))(α,β)∈X×X defined by:

µα,β(z) =
∑

c∈Cα,β

(−1)|c|z|c| θ(z) = detµ(z) Gα,β(z) =
∑

x∈Mα,β

z|x|

Then G(z) is a matrix of rational series, and it is the inverse of the Möbius
matrix: G(z)µ(z) = Id. One of the roots of smallest modulus of the polyno-
mial θ(z) is real and lies in (0, 1] ∪ {∞}, with the convention that it is ∞
if θ(z) is a non zero constant. By definition, this non negative real or ∞ is
the characteristic root of the concurrent system X . The characteristic root
r coincides with the minimum of all convergence radii of the generating se-
ries Gα,β(z), for (α, β) ranging over X ×X. Intuitively, the smaller is r, the
“bigger” is X , in the sense of a large set of executions.
Example 2.16. For the Petri net example from Fig. 5, the Möbius matrix is
given by:

µ(z) = α0
α1

(
1− 2z + z2 −z + z2

−z 1− z

)

with determinant θ(z) = (1− z)2(1− 2z). The characteristic root is r = 1/2.
Example 2.17. For the concurrent system from Example 2.13, whose graph
of states is depicted in Fig. 4, the Möbius matrix is the following.

M(z) =

0000
1100
0011
0110
1001
1111



1 −z −z −z −z 2z2

−z 1 z2 0 0 −z
−z z2 1 0 0 −z
−z 0 0 1 z2 −z
−z 0 0 z2 1 −z
2z2 −z −z −z −z 1


The spectral property for irreducible concurrent systems. Consider
a concurrent system X = (M, X,⊥), withM =M(Σ, I). If Σ′ is any subset
of Σ, and ifM′ = 〈Σ′〉 is the submonoid ofM generated by Σ′, which is indeed
a trace monoid, then the restriction of the action (X ∪{⊥})×M′ → X ∪{⊥}
defines a new concurrent system X ′ = (M′, X,⊥), said to be induced by
restriction. In particular, let X a denote the concurrent system induced by
restriction with Σ′ = Σ \ {a}, and let ra be the characteristic root of X a.

A key property, that we shall use later, is the spectral property [3] which
states: if X is irreducible, then ra > r for every a ∈ Σ. The point here is
the strict inequality, which derives from the irreducibility of X ; indeed, the
inequality ra ≥ r is always valid without restriction on X .
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Uniform measure for concurrent systems. We have seen in Sect. 2.1
the existence of a particular probability measure on the boundary at infinity
of every trace monoidM(Σ, I), namely the uniform measure, associated with
the unique uniform and probabilistic valuation. The uniform valuation was
defined by f(x) = r|x|, where r is the root of smallest modulus of the Möbius
polynomial of (Σ, I).

For concurrent systems, an analogous notion exists in most cases, and in
particular if the system is irreducible. Say that a mapping Γ : X × X →
R>0 is a cocycle whenever it satisfies Γ(α, γ) = Γ(α, β)Γ(β, γ) for all triples
(α, β, γ) ∈ X3. The following result holds: If X = (M, X,⊥) is an irreducible
concurrent system, there exists a unique probabilistic valuation of the form
fα(x) = t|x|Γ(α, α ·x), for x ∈Mα, where t is a positive real and Γ : X×X →
R>0 is a cocycle. The real t is the characteristic root of X , and the cocycle Γ is
called the Parry cocycle. The associated concurrent Markov measure (να)α∈X
is the uniform measure of X .

The Parry cocycle has a combinatorial interpretation on which additional
details are given in [1]. It can be determined as follows. Let µ(r) be the Möbius
matrix of the system evaluated at r, characteristic root of X . Then, by defini-
tion of r, µ(r) has a non trivial kernel. It actually holds that dim kerµ(r) = 1.
Hence, let (vα)α∈X be a non zero element of kerµ(r). Then Γ(·, ·) is given by
Γ(α, β) = vβ/vα, and it holds indeed that (vα)α∈X has all its coordinates non
zero.
Example 2.18. Let us determine the uniform measure for the Petri net exam-
ple of Fig. 5. According to the computation already done in Example 2.16, the
Möbius matrix evaluated at the characteristic root r = 1

2 is µ(1
2) =

(
1
4 − 1

4
− 1

2
1
2

)
.

A non zero vector of its kernel is ( 1
1 ), hence the Parry cocycle is constant

equal to 1. The uniform probabilistic valuation is thus fα(x) =
(1

2
)|x|. For

a double check, we can verify that the two conditions stated earlier in (2.21)
and (2.22) for this example are satisfied by this valuation (the corresponding
values are p = q = s = t = 1

2). The probability law of the first clique when
starting from a state α is given by the Möbius transform hα of fα. So for
instance the probability law of the first clique when starting from α0 is given
by:

να0(C1 = a) = 1
4 να0(C1 = b) = 1

4
να0(C1 = a · d) = 1

4 να0(C1 = b · d) = 1
4 να0(C1 = d) = 0

As already observed, the node (α0, d) is a null node. The first clique of a
random infinite execution starting from α0 has probability 0 to be d; although
it was not impossible a priori, as seen on Fig. 6.
Example 2.19. For the concurrent system from Example 2.13, whose graph
of states is depicted in Fig. 4, the above technique seems heavy to derive
the probabilistic parameters of the uniform measure. Instead, we rely on
the special form fα(x) = r|x|Γ(α, α · x) for the uniform measure, with r the
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characteristic root of the system, unknown for now, and with Γ the Parry
cocycle, also unknown.

Put λ = Γ(0000, 1100). For symmetry reasons, it is clear that λ =
Γ(0000, X) for every state X in the middle column of the graph of states
depicted on Fig. 4. Also for symmetry reasons, one also has λ = Γ(1111, X)
for every state in the middle column. All other values of the Parry cocycle
can be determined using the cocycle identity, since in particular Γ(α, α) = 1
for every state α. For instance Γ(1100, 0000) = Γ(1100, 1111) = λ−1 and
Γ(0000, 1111) = 1.

Taking into account the symmetry of the system, the Möbius identities
hα(ε) = 0 at states α = 0000 and α = 1100 write as follows:

1− 4f0000(a) + 2f0000(a · c) = 0 1− 2f1100(a) + f1100(a · c) = 0

Using the form of the valuation fα(x) = r|x|Γ(α, α ·x) and using the unknown
parameter λ, we obtain:

1− 4rλ+ 2r2 = 0 1− 2 r
λ

+ r2 = 0

Putting u = rλ and v = r
λ , and after some computations, we obtain the

following equations in u and v: u = v − 1
4 and 4v2 − 9v + 4 = 0, whence

v = 9±
√

17
8 and u = 7±

√
17

8 . The value v = 9+
√

17
8 is seen to lead to a value

r > 1, which is impossible, hence:
u = 7−

√
17

8

v = 9−
√

17
8

yielding


r = 1

2

√
5−
√

17 ≈ 0.468

λ =

√
23−

√
17

4
√

2
≈ 0.768

(2.23)

Putting α0 = 0000, and to compute say hα0(a), we write hα0(a) = fα0(a)−
fα0(a · c) = rλ − r2 ≈ 0.140. Other computations are done in a similar way.
We obtain thus the following approximate values for the probability law of
the first clique, when the initial state of the system is 0000:

a b c d a · c b · d
0.140 0.140 .140 .140 .219 .219

Contrasting with the previous example, this system has no null node.

2.3 — A comparison result
In this subsection, we state an elementary lemma and its corollary, both be-
longing to trace theory, and given in a form slightly more general than precisely
needed in the sequel.

Consider an alphabet Σ and two independence relations I and J on Σ
such that I ⊆ J , and consider the two trace monoids M = M(Σ, I) and
N = M(Σ, J). Then the morphism πJ : Σ∗ → M(Σ, J) satisfies πJ(ab) =
πJ(ba) for all letters a and b such that (a, b) ∈ I. The universal property of
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M(Σ, I) as a quotient monoid yields the existence of a surjective morphism
πI,J :M(Σ, I)→M(Σ, J) such that πJ = πI,J ◦ πI .

It seems to have been unnoticed so far that, when restricted to the set of
sub-traces of a given trace ofM, or even ofM, then πI,J becomes injective.
This is the topic of the following lemma.

The lemma generalizes the following elementary fact. Let M = Σ∗ be a
free monoid and let u ∈ Σ∗. Then any prefix word x ≤ u is entirely determined
by the collection (na)a∈Σ where na is the number of occurrences of the letter
a in x. Hence x is entirely determined by its image in the free commutative
monoid generated by Σ.

• Lemma 2.20—Let I ⊆ J be two independence relations on an alphabet Σ,
let M = M(Σ, I) and N = M(Σ, J), and let π : M → N be the natural
surjection. Then π extends naturally to a surjection on generalized traces, as
a mapping still denoted by π : M → N . Let ω ∈ M, and define: M≤ω =
{x ∈M : x ≤ ω}. Then the restriction of π toM≤ω is injective.

Proof. The extension of π to a mappingM→N follows from the definitions,
hence we focus on proving that the restriction of π toM≤ω is injective. Let
x ∈M≤ω and let y = π(x). Let c1 be the first clique in the normal form of x,
and let d1 be the first clique in the normal form of y. Let also C1 be the first
clique in the normal form of ω. We assume with loss of generality that x 6= ε
since π−1({ε}) = {ε}.

We claim that c1 = d1 ∩ C1. The inclusion c1 ⊆ d1 ∩ C1 is clear since
both inclusions c1 ⊆ d1 and c1 ⊆ C1 are obvious. For proving the converse
inclusion, seeking a contradiction, we assume that there is a letter a ∈ d1∩C1
such that a /∈ c1. Then, since y = π(x), the letter a belongs to some higher
clique in the normal form of x. But, since x ≤ ω, and since a ∈ C1, that
entails that a ∈ c1, contradicting the assumption a /∈ c1. Hence c1 = d1 ∩ C1,
as claimed.

Repeating inductively the same reasoning, with x′ = c1\x and with y′ =
π(x′) = c1\y and ω′ = c1\ω in place of x and of y and of ω respectively5, we
see that all the cliques (ci)i≥1 of the generalized trace x can be reconstructed
from y. This entails that π is injective.

• Corollary 2.21—Let M be a trace monoid, and let ω ∈ ∂M be an infinite
trace. For each integer n ≥ 0, consider:

M≤ω(n) = {x ∈M : x ≤ ω ∧ |x| = n}, pn = #M≤ω(n).

Then there is a polynomial P ∈ Z[X] such that pn ≤ P (n) for all integers n.
Furthermore, the set ∂M≤ω = {ξ ∈ ∂M : ξ ≤ ω} is at most countable. The
polynomial P only depends onM, and not on ω.

Proof. LetM = M(Σ, I) and let N be the free commutative monoid gener-
ated by Σ, i.e., N =M(Σ, J) with J = (Σ×Σ)\∆ and ∆ = {(x, x) : x ∈ Σ}.

5Recall that, if c ≤ u with c, u ∈ M, we denote by c\u the left cancellation of u by c,
which is the unique trace v ∈M such that c · v = u.
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For each integer n, let qn = #N (n). Then it is well known that qn = P (n)
for some polynomial P ∈ Z[X] (a short proof based on the Möbius inversion
formula was given in Sect. 2.1). Since I ⊆ J , it follows from Lemma 2.20 that
p(n) ≤ q(n).

Furthermore, N itself is at most countable since N identifies with:

N ∼
{
(xi)i∈Σ

∣∣ xi ∈ Z≥0 ∪ {∞}, ∃i ∈ Σ xi =∞
}
.

Hence, the fact that ∂M≤ω is at most countable also follows from Lemma 2.20.

Remark 2.22. Of course, the direct argument:

∂M≤ω ⊆
{
ξ ∈ CZ≥1 : ∀i ≥ 1 Ci(ξ) ⊆ Ci(ω)

}
would not allow to conclude as in Corollary 2.21 that ∂M≤ω is at most count-
able.

3—Deterministic concurrent systems
• Definition 3.1—A deterministic concurrent system (DCS) is a concurrent
system X = (M, X,⊥) such that for every state α ∈ X, the partial order
(Mα,≤) is a lattice.
Remark 3.2. According to the background on l.u.b. and g.l.b. on trace monoids
recalled in Section 2.1 on the one hand, and sinceMα is a downward closed
subset of M on the other hand, we have for any two executions x, y ∈ Mα:
1) x and y have a g.l.b. in Mα, which coincides with their g.l.b. in M; and
2) x and y have a l.u.b. inMα if and only they have a common upper bound
in Mα, in which case their l.u.b. in Mα coincides with their l.u.b. in M.
Note however that the existence of x ∨ y in M is not enough to insure that
x ∨ y ∈Mα.

Henceforth, a concurrent system (M, X,⊥) is a DCS if and only if, for
every state α, any two executions x, y ∈ Mα have a common upper bound
inMα.

The following result says that DCS correspond to “locally commutative”
concurrent systems.

• Proposition 3.3—Let X = (M, X,⊥) be a concurrent system. Then the fol-
lowing properties are equivalent:
(i) X is deterministic.
(ii) For every α ∈ X, the partial order (Cα,≤) is a lattice, isomorphic to

(P(Σα),⊆).

Proof. The implication (i) =⇒ (ii) is obvious. The interesting point is the
implication (ii) =⇒ (i).

Assume that (Cα,≤) is a lattice for every α ∈ X, which is then necessarily
isomorphic to (P(Σα),⊆). Fix α ∈ X and let x, y ∈ Mα. Assume first that
x∧ y = ε. Let (c1, . . . , ck) and (d1, . . . , dm) be the normal forms of x and of y.

24



Maybe by adding the empty trace at the tail of one or the other normal form,
we assume that k = m, at the cost of tolerating that some of the elements
may be the empty trace.

On the one hand, since c1 · c2 is an execution starting from α, one has
c2 ∈ Cα·c1 . On the other hand, both c1 and d1 belong to Cα, which is a lattice
by assumption. Hence c1∨d1 ∈ Cα. And since c1∧d1 = ε by assumption, one
has c1 ∨ d1 = c1 · d1 = d1 · c1. Therefore: d1 ∈ Cα·c1 . Since both cliques c2 and
d1 belong to Cα·c1 , which is a lattice, it follows that c2 ∨ d1 ∈ Cα·c1 .

Now we claim that c2∧d1 = ε. Otherwise, there exists a letter a occurring
in both c2 and d1. Since (c1, c2) is a normal pair of cliques, there exists b ∈ c1
such that (a, b) ∈ D, the dependence pair of the monoid. Because of the
assumption c1 ∧ d1 = ε, the identity a = b is impossible. But both a and b
belong to Σα, and since a 6= b, the fact that (a, b) ∈ D contradicts that Cα is
a lattice; our claim is proved.

We have obtained that c2 ∨ d1 exists in Cα·c1 and that c2 ∧ d1 = ε. Hence
c2 ∨ d1 = c2 · d1 = d1 · c2. It implies that c2 ∈ Cα·(c1∨d1). Symmetrically,
we obtain that d2 ∈ Cα·(c1∨d1). Since Cα·(c1∨d1) is a lattice, it follows that
d2 ∨ c2 ∈ Cα·(c1∨d1). But again, d2 ∧ c2 = ε hence d2 ∨ c2 = d2 · c2 = c2 · d2.
Therefore we obtain that the following trace belongs toMα:

(c1 ∨ d1) · (c2 ∨ d2) = (c1 · c2) · (d1 · d2) = (d1 · d2) · (c1 · c2).

Repeating inductively the same reasoning, we finally obtain that x ·y = y ·x ∈
Mα, thus providing a common upper bound of x and of y inMα. This proves
the existence of x ∨ y inMα in the case where x ∧ y = ε.

The general case follows by considering x′ = (x ∧ y)\x and y′ = (x ∧ y)\y
instead of x and y.

Remark 3.4. In a DCS, for each state α ∈ X, the partially ordered set of
cliques (Cα,≤) identifies with the powerset (P(Σα),⊆). In particular Cα has
a maximum cα = max(Cα) =

∨
Σα, given by: cα = Σα. We keep this

notation in the statement of the following lemma.

• Lemma 3.5—Let X = (M, X,⊥) be a deterministic concurrent system, and
let α ∈ X. Let Tα = (ci)i≥1 be the sequence of cliques defined by c1 = cα, and
inductively by ci+1 = cαi where αi = α · (c1 · . . . · ci). Then Tα is a generalized
execution which is the maximum of (Mα,≤).

Proof. We first observe that, for cα the maximum of Cα, then cα → y holds6

for every clique y ∈ Cα·cα . Here in particular, ci → ci+1 holds for all i ≥ 1,
hence Tα is indeed a generalized execution.

Let x ∈Mα, with x = (di)i≥1. We prove that x ≤ Tα. Assume first that x
is a finite trace, of height k. Put y = c1 · . . . · ck. Then x and y belong toMα.
Hence z = x∨ y exists inMα. Let (e1, . . . , ek) be the normal form of z (since
x and y have the same height k, z also has height k). Then cj ≤ ej and thus

6This actually holds for any concurrent system, not necessarily deterministic, if cα is
taken to be any maximal element in Cα.
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cj = ej for all j by maximality of cj . Hence dj ≤ cj for all j, which was to be
proved.

If x = (ci)i≥1 is now a generalized trace, we obtain the same result by
applying the previous case to all the sub-traces (ci)1≤i≤k, for k ranging over
the positive integers.

Let us introduce a name for a valuation that will play a special role.

• Definition 3.6—Let X = (M, X,⊥) be a concurrent system. The valuation
f = (fα)α∈X defined by:

∀α ∈ X ∀x ∈M fα(x) =
{

1, if x ∈Mα

0, otherwise

is called the dominant valuation of X .
The family f = (fα)α∈X given in Def. 3.6 is indeed a valuation. Indeed,

using the axioms of the monoid action and the additional assumption ⊥·z = ⊥
for all z ∈M, one sees that the following equivalence is true for every α ∈ X
and for every traces x, y ∈M:

α · (x · y) 6= ⊥ ⇐⇒ (α · x 6= ⊥ ∧ (α · x) · y 6= ⊥),

which translates at once as the identity fα(x · y) = fα(x)fα·x(y).

• Theorem 3.7—Let X = (M, X,⊥) be a non trivial concurrent system.

1. If Σα 6= ∅ for all α ∈ X, then the two following statements are equiva-
lent:
(i) X is deterministic.
(ii) The dominant valuation of X is probabilistic.

2. If X is deterministic, then all sets ∂Mα, for α ∈ X, are at most count-
able and the characteristic root of X is r = 1 or r =∞.

Proof. Point 1. To prove the stated equivalence, assume (i), and let f =
(fα)α∈X be the dominant valuation. Let α ∈ X, and let c ∈ Cα. Since Cα
identifies with P(Σα), the Möbius transform of fα evaluated at c is given by:

hα(c) =
∑

c′∈Cα : c′≥c
(−1)|c′|−|c| =

{
1, if c = cα (the maximum of Cα)
0, otherwise.

Since ε 6= cα for all α ∈ X, this shows that f is a probabilistic valuation.
Conversely, assume as in (ii) that f is probabilistic. Let α ∈ X be a state,

and let cα be a maximal element of (Cα,≤). Then, on the one hand, and
since cα is a maximal clique, one has hα(cα) = fα(cα) = 1. But on the other
hand, hα is nonnegative on Cα and sums up to 1 on Cα. Hence hα vanishes
on all other cliques of Cα. Since this is true for every maximal element of Cα,
it entails that Cα has actually a unique maximal element, which is thus its
maximum Σα. Hence (Cα,≤) is a lattice for every α ∈ X, which proves (i)
according to Proposition 3.3.
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Point 2. We assume that X is a DCS. According to Lemma 3.5, the partial
order (Mα,≤) has a maximum Tα for every α ∈ X, hence Mα ⊆ M≤Tα . It
follows at once from Corollary 2.21 that ∂Mα is at most countable, and that
#Mα(n) ≤ P (n) for all integers n and for some polynomial P . All generating
series Gα,β(z) are rational with non zero coefficients at least 1, and they have
their coefficients dominated by some polynomial. They have therefore a radius
of convergence either 1 or ∞. Hence r ∈ {1,∞}.

Remark 3.8. In general, there might exist other probabilistic valuations than
the dominant valuation, even for a DCS. See Example 4.8 at the end of next
section.

Since the dominant valuation f is probabilistic, it corresponds to a Markov
measure as described in Sect. 2.2. The behavior of the resulting Markov chain
of states-and-cliques is trivial, as shown by the following result.

• Proposition 3.9—Let X = (M, X,⊥) be a non trivial DCS such that Σα 6= ∅
for all α ∈ X, and let ν = (να)α∈X be the Markov measure associated with
the dominant valuation. Then for each initial state α ∈ X, the probability
measure να is the Dirac distribution δ{Tα}, where Tα = maxMα.

Furthermore, with respect to the dominant valuation, every node of the
digraph of states-and-cliques is null except for those of the form (α, cα), with
cα =

∨
Cα = Σα.

Proof. Assuming that X is a DCS, we keep using the notation cα = max Cα =
Σα for all α ∈ X.

A direct proof is as follows. Fix α ∈ X, and let (αi, zi)i≥0 be defined
inductively by α0 = α, z0 = ε and zi+1 = zi · cαi , αi+1 = α · zi. On the
one hand, we have

∨
i≥0 zi = Tα by the construction used in the proof of

Lemma 3.5. But on the other hand, the characterization of the probability
measure να yields να( ↑ zi) = f(zi) = 1 for all i ≥ 0. Since ↑ zi+1 ⊆↑ zi for
all i ≥ 0, we have thus:

να(ω ≥ Tα) = να
( ⋂
i≥0
↑ zi

)
= lim

i→∞
να( ↑ zi) = 1.

Since Tα = maxMα, it implies να(ω = Tα) = 1.
An alternative proof is as follows. Let (Yi)i≥1 be the Markov chain of

states-and-cliques associated to the dominant valuation, and let α ∈ X. One
has να(C1 = c) = hα(c) for all c ∈ Cα, by (2.20). The values of hα computed in
the proof of Th. 3.7 show that the initial distribution of the chain is δ{(α,cα)}.
It is shown in [1] that the (α, c)-row of the transition matrix of the chain is
proportional to hα·c(·). Hence all entries of the (α, c)-row are 0, except for the(
(α, c), (β, cβ)

)
entry with β = α · c, where the entry is 1. Hence the execution

Tα is given να-probability 1.
Finally we prove the statement about null nodes. The formula (2.7) defin-

ing the Möbius transform shows that hα(cα) = 1 (for this we use the fact that
Σα 6= ∅). Since

(
hα(c)

)
c∈Cα is a probability vector, it entails that all other

cliques c ∈ Cα satisfy hα(c) = 0, hence (α, c) is a null node if c 6= cα.
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4—Irreducible deterministic concurrent systems
Before stating the main result of this section, we prove two lemmas.

• Lemma 4.1—Let X = (M, X,⊥) be a DCS. Let α ∈ X and let c ∈ Cα be a
clique such that a /∈ c for some letter a ∈ Σα. Then:

∀x ∈Mα C1(x) = c =⇒ a /∈ x.

Proof. Let α, a and c be as in the statement. Clearly, the implication stated
in the lemma is true if we prove it to be true for x ranging overMα instead
of Mα. Hence, let x ∈ Mα be such that C1(x) = c. Let (ci)i≥1 be the
generalized normal form of x, and define by induction x0 = ε, xi+1 = xi · ci+1
for all i ≥ 0 and αi = α ·xi for all i ≥ 0. We prove by induction on i ≥ 1 that:
1) a ∈ Σαi−1 ; and 2) a /∈ ci.

For i = 1, both properties derive from the assumptions of the lemma.
Assume that both properties hold for some i ≥ 1. By construction, ci ∈
Cαi−1 , and a ∈ Σαi−1 by the induction hypothesis. Since the concurrent
system is deterministic, it follows that a ∨ ci ∈ Cαi−1 . Since a /∈ ci by the
assumption hypothesis, this l.u.b. is given by ci · a ∈ Cαi−1 . This entails first
that a ∈ Cαi−1·ci , but αi−1 · ci = αi hence a ∈ Σαi . But it also entails that
a /∈ ci+1 , completing the induction step. The result of the lemma follows.

• Lemma 4.2—Let X = (M, X,⊥) be a concurrent system. Let α ∈ X, and let
rα be the radius of convergence of the generating series Gα(z) =

∑
x∈Mα

z|x|.
Then the following properties are equivalent: (i) Mα is finite; (ii) ∂Mα = ∅;
(iii) rα =∞.

Proof. The implications (i) =⇒ (ii) and (i) =⇒ (iii) are clear.
Assume thatMα is infinite. Then there exist executions inMα of length

arbitrary large. Therefore there exist x ∈ Mα and y 6= ε such that α · x =
α · (x ·y). Then all traces xn = x ·yn belong toMα for n ≥ 0. This proves two
things. First, if k = |y|, the coefficient of z|x|+kn in the series Gα(z) is ≥ 1 for
all integers n, hence rα <∞. Second, the execution ξ =

∨
n≥0 xn is an element

of ∂Mα, showing that ∂Mα 6= ∅. Hence we have proved both (ii) =⇒ (i)
and (iii) =⇒ (i) by contraposition, completing the proof.

• Theorem 4.3—Let X = (M, X,⊥) be an irreducible concurrent system, of
characteristic root r, and let f be the dominant valuation of X . Then the
following statements are equivalent:
(i) X is deterministic.
(ii) f is a probabilistic valuation.
(iii) f is the only probabilistic valuation of X .
(iv) r = 1.
(v) One set ∂Mα is at most countable.
(vi) Every set ∂Mα is at most countable.
(vii) One set ∂Mα is a singleton.
(viii) Every set ∂Mα is a singleton.
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Proof. Since X is irreducible, it satisfies in particular Σα 6= ∅ for all α ∈ X.
Hence the equivalence (i) ⇐⇒ (ii) and the implications (i) =⇒ (iv) and
(i) =⇒ (vi) derive already from Theorem 3.7. The implications (iii) =⇒ (ii),
(vi) =⇒ (v) and (viii) =⇒ (vii) =⇒ (v) are trivial.

(i) =⇒ (iii). Let f = (fα)α∈X be a probabilistic valuation, and let
f̃ = (f̃α)α∈X be the dominant valuation. Let α ∈ X and let c ∈ Cα with
c 6= cα, where cα = Σα is the maximum of Cα. There is thus a letter a ∈ Σα

such that a /∈ c. Let Ma be the submonoid of M generated by Σ \ {a}. It
follows from Lemma 4.1 that {ω ∈ ∂Mα : C1(ω) = c} ⊆ ∂Ma

α.
According to the spectral property recalled in Section 2.2, the character-

istic root ra of X a = (Ma, X,⊥) satisfies ra > r since X is assumed to be
irreducible. But r = 1 since X is deterministic, and therefore ra =∞, which
implies that ∂Ma

α = ∅ according to Lemma 4.2. Let ν = (να)α∈X be the
family of probability measures associated with the probabilistic valuation f ,
as explained in Sect. 2.2. Then να(∂Ma

α) = 0 and thus να(C1 = c) = 0. But
one also has hα(c) = να(C1 = c) according to (2.20), where hα is the Möbius
transform of fα. Hence hα(c) = 0. We have proved that hα vanishes on all
cliques c ∈ Cα such that c 6= cα. Since (hα(c))c∈Cα is a probability vector, it
entails that hα(cα) = 1. Thus hα coincides with the Möbius transform of f̃α,
and f = f̃ .

(iv) =⇒ (i) and (v) =⇒ (i). By contraposition, assume that X is not
deterministic. Prop. 3.3 implies the existence of a state α and of two distinct
letters a, b ∈ Σα such that a · b 6= b · a. Since X is assumed to be irreducible,
there exist x ∈ Mα·a,α and y ∈ Mα·b,α. Put xa = a · x and xb = b · y, and we
can also assume without loss of generality that |xa| = |xb|. ThenMα contains
the submonoid generated by {xa, xb}, which is free. This implies two things:
first, the generating series Gα(z) =

∑
x∈Mα

z|x| has radius of convergence
smaller than 1, and thus r < 1; second, ∂Mα is uncountable.

(i) =⇒ (viii). Seeking a contradiction, assume that X is irreducible and
that for some state α ∈ X, the set ∂Mα has two distinct elements. Since
Tα = max ∂Mα is already an element of ∂Mα, there is thus ω ∈ ∂Mα with
ω 6= Tα. Let ω = (ci)i≥1 and let c1, . . . , ck be the longest initial sequence of
cliques that the two infinite traces ω and Tα have in common. Put x = c1·. . .·ck
and β = α · x, and ξ = (ci)i>k. Then ξ ∈ ∂Mβ, and by construction there is
a letter a ∈ Σβ such that a /∈ ck+1. It follows from Lemma 4.1 that a /∈ ci for
all i > k.

Consider the restricted concurrent system X ′ = X a. Then, since X is
irreducible, it follows from the spectral property that ra > 1, hence ra = ∞.
According to Lemma 4.2, it implies that ∂Ma

α = ∅ for every α ∈ X. Yet, the
infinite trace ξ ∈ ∂Mβ found earlier satisfies ξ ∈ ∂Ma

β, a contradiction.
The proof is complete.

For an irreducible DCS equipped with its dominant valuation, Prop. 3.9 ap-
plies. Hence the Markov chain of states-and-cliques associated to this unique
probabilistic valuation follows the trivial dynamics described by Prop. 3.9. In
particular, the null nodes are easy to detect: all nodes of D of the form (α, c)
with α 6= cα. Consequently:
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Figure 7: Example of an irreducible and deterministic concurrent system X =
(M, X,⊥) with Σ = {a0, . . . , a3}, X = {0, 1, . . . , 8}. Left: Coxeter graph of the
monoidM. Right: multigraph of states of X . The two framed labels 0 are identi-
fied and correspond to the same state

• Corollary 4.4—The Markov chain of states-and-cliques of an irreducible DCS
stays within a subgraph of D of size #X. And there is no cycle in D connecting
null nodes.

Proof. According to Prop. 3.9, to each state α ∈ X is associated a unique non
null node, namely (α, cα). The Markov chain of states-and-cliques visits only
non null nodes, whence the result.

To prove the second statement, assume the existence of a cycle in D con-
necting null nodes only. It yields the existence of an infinite executing, starting
from some state α, which stays within null nodes in D. According to Th. 4.3,
there is a unique infinite execution starting from α, which is Tα. Hence Tα
stays within null nodes of D, a contradiction.

Remark 4.5. The first statement in the above corollary does not mean that
the graph of non null nodes inD is itself strongly connected. The next example
illustrates this fact.
Remark 4.6. In general, if a concurrent system is not deterministic, null
nodes of D may be connected by a cycle. This is the case for the Petri
net from Example 2.14, whose digraph of states-and-cliques is depicted in
Fig. 6, with the cycle

(
(α0, d), (α0, d)

)
. It may also happen for a deterministic

concurrent system if it is not irreducible. The reader may check it for the free
commutative monoid on two generators seen as a DCS.

The following example illustrates the dynamics of an irreducible DCS.
Example 4.7. Figure 7 depicts an example of irreducible DCS. The digraph
of states-and-cliques of the system is depicted on Fig. 8. Compare with the
situation depicted on next example for a DCS which is not irreducible.

Without the irreducibility assumption, the equivalence stated in Th. 4.3
may fail. We give below an example of a deterministic concurrent systems not
irreducible, and not satisfying point (iii).
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Figure 8: Digraph of states-and-cliques for the DCS depicted on Fig. 7. Nodes with
solid frames are nodes of the form (α, cα) with cα = max Cα. Nodes with a dashed
frame are null nodes. The probability for the Markov chain of states-and-cliques to
jump from a solid frame node to a dashed frame node is 0; the probability of starting
in a dashed node is 0

Example 4.8. Let X = (M, X,⊥) be the DCS depicted in Fig. 9. The sys-
tem is not irreducible for several reasons: none of the three conditions for
irreducibility is met. The probabilistic valuations of X are all of the following
form, for some real p ∈ [0, 1]:

fα0(a) = 1 fα0(c) = p fα1(b) = 1 fα1(c) = p fβ0(a) = 1 fβ1(b) = 1

Hence the dominant valuation is not the unique probabilistic valuation,
contrary to irreducible systems as stated by point (iii) of Th. 4.3. The param-
eter p is to be interpreted as the “probability of playing c” in the course of the
execution. But this decision—playing c or not—is made once, hence allowing
all values between 0 or 1 for the probability. Whereas, in a sequential model
of concurrency, that would typically be a decision repeated infinitely often,
hence yielding the only two possible values 0 or 1 for this probability. The
formula να(C1 = γ) = hα(γ) for γ ∈ Cα yields the following initial distribution
of the Markov chain of states-and-cliques if, for instance, the initial state of
the system is α0: να0(C1 = a) = 1− p, να0(C1 = c) = 0, να0(C1 = ac) = p.
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