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Abstract

Since the topic emerged several years ago, work on regular model checking has
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context of regular model checking based on the encoding of states by finite or infinite
words. It works out the exact constructions to be used in both cases, and solves the
problem resulting from the fact that infinite computations of unbounded configura-
tions might never contain the same configuration twice, thus making cycle detection
problematic. Several experiments showing the applicability of the approach were
successfully conducted.
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1 Introduction

Regular model-checking [14,3,9,5,6] is a general approach to analyzing infinite-
state systems in which states are represented by words, the transition re-
lation is represented by a finite-state transducer, and reachable states are
computed by iterating this transducer with the help of appropriate accelera-
tion techniques. Given the expressiveness of the framework these acceleration
techniques cannot be perfectly general and exact but, in many meaningful
cases, they are able to compute a regular representation (or approximation)
of the reachable states of infinite-state systems. However, computing reach-
able states is not quite model-checking. For safety properties model checking
can be reduced to a state reachability problem, but for properties that include
a liveness component, the best that can be done is to reduce the (linear-time)
model-checking problem to emptiness of a Büchi automaton [10], which means
checking for repeated reachability rather than reachability. As already shown
in [3,16], this is conceptually possible in the context of regular model checking
(when the considered transducers represent length-preserving transformations
of finite words), but the corresponding details and pragmatics have, so far, not
been adequately addressed. Doing so is one of the objectives of this paper.
Another objective of the paper is to provide a general specification framework
and generic analysis techniques covering the case of finite-word configurations
(which correspond to a variety of models such as pushdown systems, FIFO-
channel systems, parametric networks of identical processes, and even integer
counter systems) as well as the case of infinite-word configurations (which
allows for instance to reason about timed or hybrid systems manipulating
real-valued variables).

For an infinite-state system whose states are represented by finite (or even
infinite [6]) words, a computation is an infinite sequence of such words. To
define a property of such a computation, one has the choice between moving
within a configuration (horizontally) or between configurations (vertically).
One thus naturally thinks of a two-dimensional logic to describe properties
of such computations. However, rather than focusing on the fine points of
a logic for defining properties, we have chosen to concentrate on the com-
putational aspects of verification, and use finite (or infinite) word automata
as a basis for defining computation properties. On the computations we are
considering, word automata move either horizontally or vertically and clearly
both are needed to define meaningful properties. One could consider arbi-
trary alternation between both directions, but in practice, one alternation is
sufficient. Though generalization is possible, we thus limited our study to
horizontal properties defined in terms of vertical ones, which make sense for
parametric systems in which a vertical slice corresponds to the computation of
one component of the system; as well as to vertical properties defined in terms
of horizontal ones, which makes sense for systems where words are used to en-
code a queue content or the value of an integer [5,6]. For both of these cases,
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we fully worked out how to augment the transducer representing the system
transitions in order to obtain a transducer encoding the Büchi automaton
resulting from combining the system with the property.

Once the transition relation of the Büchi automaton has been obtained,
checking the automaton for nonemptiness is done by computing the iterative
closure of this relation, finding nontrivial cycles between configurations, and
finally checking for the reachability of configurations appearing in such cycles.
When dealing with systems whose configurations are finite words and whose
transition relation is length-preserving, an accepting computation of the Büchi
automaton will always contain the same configuration twice and hence an
identifiable cycle. However, when dealing with configurations whose length can
grow or that are infinite, there might very well be an accepting computation
of the Büchi automaton in which the same configuration never appears twice.

To cope with this, we look for configurations that are not necessarily iden-
tical, but such that one entails the other in the sense that any computation
possible from one is also possible from the other. The exact notion of entail-
ment we use is simulation. For that, we compute symbolically the greatest
simulation relation on the configurations of the system.

The nice twist is that the computation of the symbolic representation of
the simulation relation is, in fact, the computation of the limit of a sequence
of finite-state transducers, for which the acceleration techniques introduced in
the context of regular model-checking can also be used. However, in several
cases we have considered, this computation converges after a finite number
of steps, which has the added advantage of guaranteeing that the induced
simulation equivalence relation partitions the set of configurations in a finite
number of classes, and hence that existing accepting computations will neces-
sarily be found, which might not be the case when the number of simulation
equivalence classes is infinite.

Finally, we conducted a number of experiments to establish the feasibil-
ity of automatically verifying liveness properties of infinite-state systems in
the purely automata-theoretic framework of regular model-checking. Liveness
properties of parametric systems, of programs using integer variables, and of
hybrid systems were successfully checked.

Related works: There exists a variety of earlier work on the verification
of liveness properties for infinite-state systems. In [8,17,7], methods based on
combining abstraction techniques and finite-state model-checking are proposed
for the verification of liveness properties of parametric networks of identical
processes. In contrast with these methods, our approach is not limited to the
case of parametric networks.

Very recently, Abdulla et al. developed independently an approach similar
to ours based on a specification logic combining S1S and linear-time temporal
logic [1]. The techniques they propose are however different and are only
applicable in the case of parametric systems. In fact, the logic they develop can
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only express properties of parametric systems and cannot express for instance
global property of infinite-state systems such as counter systems (an example
of such properties is given in Example 4.2). Moreover, their techniques assume
length-preserving systems, and they did not address neither the case of non-
length preserving ones (such as push-down systems, FIFO-channel systems,
counter systems, etc) nor the case of ω-regular model checking, and therefore
they cannot deal for instance with timed or hybrid systems as we can do.

Other results in the literature are based on automatic techniques for the
synthesis of ranking functions. These results address mainly the problem of
checking termination of some classes of (infinite-state) programs / extended
automata. [12,11]. The proposed techniques exploit the specific nature of the
considered data domains, which are mainly numerical data domains such as
integer variables with linear tests and updates. While these methods can be
more efficient in particular cases, the aim of our work is to provide generic
techniques which are applicable regardless of the types of the variables and
data structures being used.

2 Preliminaries

In this section, we briefly recall the basic automata-theoretic definitions that
will be used in this paper.

A finite-state automaton on finite words is a tuple A = (Σ, Q, q0, δ, F ),
where Σ is a finite alphabet, Q is a set of states , q0 ∈ Q is an initial state,
δ : Q × Σ → 2Q is a transition function (δ : Q × Σ → Q if the automaton
is deterministic), and F ⊆ Q is a set of accepting states. A triple (s, a, s′)
such that s′ ∈ δ(s, a) is said to be a transition labeled by a. A finite sequence
(word) w = a1a2. . .ak of elements of Σ is accepted by the automaton A if
there exists a sequence of states s0. . .sk such that ∀1≤i≤k : si ∈ δ(si−1, ai)
(si = δ(si−1, ai) for a deterministic automaton), s0 = q0, and sk ∈ F . The set
of words accepted by A is called the language accepted by A, and is denoted
by L(A).

An infinite word (or ω-word) w over an alphabet Σ is a mapping from the
natural numbers to Σ. The set of infinite words over Σ is denoted Σω. A Büchi
automaton is syntactically identical to a finite-word automaton. A run π of a
Büchi automaton A = (Σ, Q, q0, δ, F ) on an ω-word w is a mapping π : N → Q
such that π(0) = q0, and for all i ≥ 0, π(i+1) ∈ δ(π(i), w(i)) (nondeterministic
automaton) or π(i + 1) = δ(π(i), w(i)) (deterministic automaton).

Let inf (π) denote the set of states that occur infinitely often in a run π.
A run π is said to be accepting if inf (π) ∩ F 6= ∅. An ω-word w is accepted
by a Büchi automaton if that automaton admits at least one accepting run
on w. The language Lω(A) accepted by a Büchi automaton A is the set of
ω-words it accepts. A language L ⊆ Σω is ω-regular if it can be accepted by
a Büchi automaton. Though the union and intersection of Büchi automata
can be computed efficiently, the complementation operation requires intricate
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algorithms that not only are worst-case exponential, but are also hard to
implement and optimize. We will thus restrict ourselves to weak automata [15].

For a Büchi automaton A = (Σ, Q, q0, δ, F ) to be weak, there has to be
partition of its state set Q into disjoint subsets Q1, . . . , Qm such that for each
of the Qi, either Qi ⊆ F , or Qi ∩ F = ∅, and there is a partial order ≤ on the
sets Q1, . . . , Qm such that for every q ∈ Qi and q′ ∈ Qj for which, for some
a ∈ Σ, q′ ∈ δ(q, a) (q′ = δ(q, a) in the deterministic case), Qj ≤ Qi. A weak
automaton is thus a Büchi automaton such that each of the strongly connected
components of its graph contains either only accepting or only non-accepting
states.

Not all omega-regular languages can be accepted by weak deterministic
Büchi automata, nor even by weak nondeterministic automata, but they are
sufficient for handling many applications. In particular they are as expressive
as the first-order linear arithmetics of integers and reals [4], which allows to
deal for instance with models such as timed automata, linear hybrid automata,
as well as their extensions with integer counters [6]. Furthermore, there are
algorithmic advantages to working with weak automata: weak deterministic
automata can be directly complemented by inverting their accepting and non-
accepting states; and there exists a simple determinization procedure for weak
automata, which produces Büchi automata that are deterministic, but gener-
ally not weak. Nevertheless, if the represented language can be accepted by
a weak deterministic automaton, the result of the determinization procedure
can easily transformed into a weak automaton [4].

3 Systems models, Regular and ω-Regular Model Check-
ing

In this section, we present the automata based encoding of systems used in this
paper. We adopt the concepts of regular model checking ([3]), representing
system configurations by finite or infinite (see [6]) words. Precisely, a system
is defined to be a triple M = (Σ, φI , R) where

• Σ is a finite alphabet, over which the system configurations are encoded as
finite (infinite) words;

• φI is a set of initial configurations represented by a finite (ω-)automaton
over Σ;

• R is a transition relation represented by a finite-state (ω-)automaton over
Σ×Σ, which will be referred to as a transducer over Σ. Note that with this
definition of a transducer, the configurations of an execution of a system all
have the same length. The transducers are thus said to be length-preserving.
This is less restrictive that might appear since initial configurations can
always be arbitrarily padded (this is needed to cover non length-preserving
systems).
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In the finite-word case, an execution of the system is an infinite sequence of
same-length finite words over Σ. This model has often been used to represent
parametric systems [3] or systems with integer variables ([5]).

Example 3.1 Let us consider a simple example of parametric network of
identical processes implementing a token passing algorithm. Each process can
be in one of the two states T (has the token) or N (does not have the token),
and an action of passing the token from left to right can be encoded using the
regular relation ((T, T ) + (N, N))∗(T,N)(N, T )((T, T ) + (N, N))∗.

In the infinite-word case (ω-regular model checking[6]), an execution of
the system is an infinite sequence of infinite words over Σ. This model can be
used for systems involving integer and real variables, such as hybrid systems.
When dealing with infinite word configurations, we will restrict transducers
to be weak deterministic Büchi automata as is done in [6].

So far, work on (ω−)regular model checking has focused on two problems:
computing the transitive closure R∗ of the relation R, and computing the
image R∗(φ) of a given initial set of states φ. Here, we will assume that we
have a technique for computing both R∗ and R∗(φ) (see [5,6,3,9] for examples
of such techniques) and we will show how the verification of liveness properties
can be reduced to these problems.

4 System Properties

In this section, we consider the definition of properties we want to verify.
We consider two classes of properties. The first class examines computation
of the global system. This class of properties can be used for expressing
properties on the configurations of systems such as pushdown systems, FIFO-
channel systems, counter systems, hybrid systems, etc. The second class is
oriented towards parametric systems and examines first the computations of
the individual processes of the system. Boolean combinations of properties in
the two classes of properties can also be considered. These combinations are
typically useful in expressing liveness properties under fairness conditions.

4.1 Global System Properties

If configurations are looked at as a whole — which is the only reasonable
possibility when they represent for instance numbers (integer or reals), stack
or queue contents, etc— it makes sense to define properties of executions in
terms of properties of configurations.

Definition 4.1 Let M = (Σ, φI , R) be a system, a configuration property is a
set cop ⊆ Σ∗ (resp. cop ⊆ Σω when considering infinite-words) . Given a set
of configuration properties COP = {cop1, . . . , copk}, a global system property
is a set gsp ⊆ (2COP )ω, i.e. a set of infinite sequences of subsets of COP . An
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execution σ = w0, w1, w2, w3 . . . satisfies a global system property gsp, σ |=
gsp, if cop(w0)cop(w1) . . . ∈ gsp, where cop(w) = {copi ∈ COP | w |= copi}.

We will consider global system properties that are defined by Büchi au-
tomata and configuration properties expressed by finite-word automata. This
model captures all the properties that are expressible in linear-time temporal
logic, using configuration properties as propositions.

Example 4.2 Consider a system that manipulate two integer variables: x
and y. The following property 2[(x > 0)⇒♦(y = 5)] is a global system
property.

4.2 Local-oriented System Properties

Those kind of properties can only be checked on parametric systems, they are
used in order to express liveness properties of individual processes of those
systems. In our model, a computation of a parametric system is represented
by an infinite sequence of identical length finite words. Each position in these
words corresponds to a process and the infinite sequences of identically posi-
tioned letters in an execution represents a process execution. We thus use the
following notation and definitions.

Definition 4.3 Consider an execution σ = w0, w1, w2, w3 . . . of a system M =
(Σ, φI , R). The jth local projection Πj(σ) is the infinite word w0(j)w1(j)w2(j) . . ..

Definition 4.4 A local execution property is a set `ep ⊆ Σω. A local execution
property `ep is satisfied by an execution σ at position j, Πj(σ) |= `ep, if
Πj(σ) ∈ `ep.

Local execution properties can naturally be defined by using a linear-
temporal logic, but we will assume that logic-expressed properties have been
translated to automata [10,?].

Definition 4.5 Given a set of local execution properties LEP = {`ep1, . . . `epk},
a local-oriented system property is a set `osp ⊆ (2LEP )∗, i.e. a set of finite se-
quences of subsets of LEP . An execution σ satisfies a local-oriented system
property `osp if lep(Π1(σ))lep(Π2(σ)) . . . lep(Πn(σ)) ∈ `osp, where n is the
common length of the words in σ, and lep(Πi(σ)) = {`epi ∈ LEP | Πi(σ) |=
`epi}.

Example 4.6 Consider the parametric system defined in Example 3.1. The
fact that whenever a process is in state N , it will eventually move to state T
(2(N⇒♦T ) in linear-time temporal logic) is a local execution property. That
this property holds for each process is then a local-oriented system property.
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4.3 Boolean Combinations of Local-Oriented System and Global System Prop-
erties

Liveness properties of systems need sometimes be expressed as Boolean com-
binations of local-oriented/global system properties. Typically, in parametric
systems, this is the case for properties corresponding to the pattern: under
some fairness conditions some liveness requirement must hold. In the case of
other types of system, such as systems manipulating sequential data struc-
tures (pushdown systems, FIFO-channel systems, programs with linked lists,
arrays, etc) or numerical variables (integer counters, real-valued clocks, stop-
watches, etc), both fairness conditions and liveness requirements are global
system properties since local-oriented properties are not meaningful in these
cases.

5 Checking Properties of length-preserving systems

In this section, we will describe how we verify global and local-oriented sys-
tem properties on length-preserving systems. Due to space limitation, the
verification of boolean combination is provided in the full version of the paper
[13].

5.1 Checking Global System Properties

To check that a length-preserving system M = (Σ, I, R) satisfies a global
system property gsp defined over a set of configuration properties COP =
{cop1, . . . copk}, we check for the absence of executions of M that do not
satisfy gsp. This is done by augmenting the transition system M in such a
way that its executions are only those that are runs of the automaton defining
A¬gsp. The augmented transition system is defined as Ma = (Σa, Ia, Ra). Ma

is obtained by taking a “special” product between the initial system M and
the automaton A¬gsp. There are a lot of technical points in this construction,
and due to space limitation, we have deferred them to the full version ([13]).

After constructing Ma, the next step is to check whether there is a run of
the transition system Ma that is accepting for the automaton A¬gsp. This is
done by checking the condition whether there is an accepting configuration
(i.e. a configuration in where the automaton A¬gsp is in an accepting state),
nontrivially reachable from itself, and reachable from an initial configuration.
This condition is indeed necessary and sufficient because the system is length-
preserving, which means that one cannot find an infinite path that never visits
the same state twice.

The computation checking the condition above can be organized as fol-
low. Let accept be the set of accepting configurations (i.e configurations of the
augmented system in where A¬gsp is in an accepting state), let R+

a be the non-
reflexive transitive closure of Ra and Id the identity relation. Then augmented
configurations from which there exists a nontrivial loop are those in the do-
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main of R+
a ∩ Id (with R+ = R∗◦R). Such reachable accepting configurations

are thus those in

R∗
a(Ia) ∩ accept ∩ domain(R+

a ∩ Id),

and the property is satisfied iff this set if empty.

We can summarize this section by the following result.

Theorem 5.1 Let M = (Σ, I, R) be a length-preserving system, and gsp a
global system property. M has no infinite path which does not satisfy gsp iff
R∗

a(Ia) ∩ accept ∩ domain(R+
a ∩ Id) = ∅ holds.

5.2 Checking Local-oriented System Properties

Checking that a system M = (Σ, I, R) satisfies a local-oriented system prop-
erty `osp defined over a set of local execution properties LEP = {`ep1, . . . `epk},
is done by searching for an execution of the system that does satisfies the nega-
tion ¬`osp of the property. We proceed by augmenting the system M into a
system Ma = (Σa, Ia, Ra).

Let TR = (Σ × Σ, SR, s0R, δR, FR) be the finite automaton defining the
transition relation R of M , A¬`osp = (2LEP , S¬`osp, s0¬`osp, δ¬`osp, F¬`osp) be the
finite-word automaton accepting the finite sequences that do not satisfy `osp,
A`epi

= (Σ, S`epi
, s0`epi

, δ`epi
, F`epi

) for 1 ≤ i ≤ k be the complete (but not
necessary deterministic) Büchi infinite-word automata defining the local ex-
ecution properties, and A¬`epi

= (Σ, S¬`epi
, s0¬`epi

, δ¬`epi
, F¬`epi

) automata for
the negation of these properties. The latter are needed since, the automata
A`epi

being nondeterministic, the fact that they have a nonaccepting compu-
tation does not indicate that the corresponding property does not hold.

Since, a priori, we do not know which local execution property will be sat-
isfied at which position of the configuration, each of the automata A`epi

and
A¬`epi

has to be run at each position. So, we need to extend our alphabet in
such a way that each position in the configuration is also labeled by a state of
each of the A`epi

and A¬`epi
. Furthermore, for each position in configurations,

each property `epi ∈ LEP might be satisfied (A`epi
has an accepting run),

or might not be satisfied (A¬`epi
has an accepting run). We make a note of

these facts by also labeling each position by an element of 2LEP correspond-
ing exactly to the properties `epi that are satisfied. This labeling will remain
unchanged from configuration to configuration and will enable us to run the
automaton A¬`osp. The next step is to check whether there is a run of the
transition system Ma that is accepting for suitable automata A`epi

and A¬`epi
.

Precisely, at a given position j in the configuration, the run of the automaton
A`epi

has to be accepting if `epi ∈ lepj and the run of A¬`epi
has to be accept-

ing if `epi 6∈ lepj, where lepj is the element of 2LEP labeling that position.
We are thus faced with the problem of checking not one, but several Büchi
conditions, i.e. a generalized Büchi condition. To do this, we use the fact that
a generalized Büchi automaton has an accepting run exactly when it has an
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accepting run that goes sequentially through each of the accepting sets. We
now define MRa

The augmented alphabet is

Σa = Σ×
∏

1≤i≤k

S`epi
×

∏
1≤i≤k

S¬`epi
× 2LEP × 2LEP × {reset, noreset}.

We thus have two subsets of LEP , the second being used to remember if suit-
able automata checking for properties `epi (or ¬`epi) have seen an accepting
state; the last component of the labeling indicates whether the second of these
subsets has just been reset of not. The augmented transducer, TRa , can then
be defined as follows.

• Its alphabet is Σa×Σa

• Its set of states and accepting states are respectively SRa = SR and FRa =
FR, its initial state is s0Ra

= s0R.

• The transition relation is defined by (assuming nondeterministic automata)

s′Ra ∈ δ(sRa , ( (a1, s`ep11, . . . , s`epk1, s¬`ep11, . . . , s¬`epk1, lep1, lepF 1, ρ1),

(a2, s`ep12, . . . , s`epk2, s¬`ep12, . . . , s¬`epk2, lep2, lepF 2, ρ2)))

iff
· s′Ra ∈ δR(sRa , (a1, a2)) and s`epi2 ∈ δ`epi

(s`epi1, a1), s¬`epi2 ∈ δ¬`epi
(s¬`epi1, a1),

for 1 ≤ i ≤ k,
· lep1 = lep2,
· if lepF 1 = LEP , then lepF 2 = ∅ and ρ2 = reset, or lepF 2 = lepF 1

and ρ2 = noreset, otherwise, lepF 2 = lepF 1 ∪ {`epi ∈ lep1 | s`epi1 ∈
F`epi

} ∪ {`epi 6∈ lep1 | s¬`epi1 ∈ F¬`epi
} and ρ2 = noreset.

Note that at a given position, when all required accepting conditions have
been satisfied, the choice to reset or not is nondeterministic 5 .

• The set of accepting states is FR.

The set of initial configurations of Ma are those of the form

(a1, s0`ep1, . . . , s0`epk, s0¬`ep1, . . . , s0¬`epk, lep1, ∅, noreset)

(a2, s0`ep1, . . . , s0`epk, s0¬`ep1, . . . , s0¬`epk, lep2, ∅, noreset)

. . .

(an, s0`ep1, . . . , s0`epk, s0¬`ep1, . . . , s0¬`epk, lepn, ∅, noreset),

where w = a1a2a3. . .an is a word in I, and lep1lep2 . . . lepn |= ¬`osp.

If we define accepting configurations to be those in which for every position
the last part ρ of the label is reset 6 , checking for the existence of an accepting

5 This makes it possible to wait until the required acceptance conditions have been satisfied
at each position and then to reset everywhere simultaneously
6 which implies that all relevant automata have seen an accepting state since the last “reset”
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execution can be done by checking if

R∗
a(Ia) ∩ accept ∩ domain(R+

a ∩ Id),

is empty. In this case, the property is satisfied, else it is not.

We can summarize this section by the following results.

Theorem 5.2 Let M = (Σ, I, R) be a length-preserving system, and `osp a
local-oriented system property. M has no infinite path which does not satisfy
`osp iff R∗

a(Ia) ∩ accept ∩ domain(R+
a ∩ Id) = ∅ holds.

6 Checking Properties of Not Length-Preserving Sys-
tems and Infinite-Words

In this section, we consider the problem of checking global system properties
for finite-word systems which are not length-preserving and for infinite-word
systems. Let us first remark that, for the purpose of computing reachable con-
figurations, non length-preserving systems can be handled as length-preserving
ones by the use of padding. We can thus still use the constructions of Sec-
tion 5.1 for obtaining an augmented system Ma that checks for a global system
property. For infinite words, the construction stays basically the same, though
we have to deal with some additional technical difficulties due to the fact that
configurations are infinite. Details are given in the full version ([13]).

However, as opposed to the case of length-preserving system, we cannot
reduce the problem of deciding if Ma has an infinite accepting computation
to the problem of finding reachable accepting loops. Indeed, in the present
case, infinite computations might never visit the same configuration twice.
Therefore, our approach is to search for reachable configurations c from which
it is possible to nontrivially reach some configuration c′ such that (1) the path
from c to c′ visits a repeating state of A¬gsp, and (2) c′ has at least the same
computation paths as c. To check the condition (2), we actually check for a
stronger condition which is the fact that c′ must simulates c. In the rest of this
section, we will consider that system configurations are encoded as infinite-
words, (but the result stay also for the case of finite-words by replacing Σω by
Σ∗ in the formulas).

Definition 6.1 The greatest simulation relation over Ma which is compatible
with the configuration properties in COP is the relation S defined as the limit
of the decreasing sequence of relations:

S0 = {(w1, w2) ∈ Σω
a × Σω

a | cop(w1|Σ) = cop(w2|Σ)}
Sk+1 = {(w1, w2) ∈ Sk : ∀w′

1.((w1, w
′
1) ∈ Ra ⇒ ∃w′

2.(w2, w
′
2) ∈ Ra ∧ (w′

1, w
′
2) ∈ Sk)}

where w|Σ denotes the projection of the word w ∈ Σa over the alphabet Σ.

The greatest simulation equivalence over Ma which is compatible with
COP is the relation S̃ = S ∩ S−1.
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First, we have the following result:

Proposition 6.2 Let accept be the set of all augmented configurations where
the automaton A¬gsp is in some repeating state. Then, it can be seen that Ma

has an accepting infinite computation if the following condition holds:

R∗
a(Ia) ∩ domain[((R∗

a ∩ (Σω
a × accept)) ◦R+

a ) ∩ S] 6= ∅(1)

The problem now is to compute the relation S. Observe that S0 can
be defined straightforwardly as a regular relation and that Sk+1, for every
k ≥ 0, is defined in terms of the relations Ra and Sk using boolean operations
and projection (corresponding to existential quantification). Therefore, given
transducers representing Ra and Sk, it is possible to compute effectively a
transducer representing Sk+1. The main issue is whether the iterative compu-
tation of S terminates.

If the computation terminate then S has a finite-index simulation, i.e., a
finite number of equivalence classes. This means that each infinite path of the
system must visit infinitely often some of the equivalence classes. Therefore,
we have the following result (which is detailed in the full version [13])).

Theorem 6.3 Assume that the system Ma has a finite-index simulation. Then,
Ma has an accepting infinite computation if and only if the condition (1) holds.

In case Ma does not have a finite-index simulation, we can use approxima-
tions of S. Let us consider first the case of upper-approximations.

Proposition 6.4 If there exists some k ≥ 0, such that

R∗
a(Ia) ∩ domain[((R∗ ∩ (Σω

a × accept)) ◦R+
a ) ∩ Sk] = ∅

then the system Ma has no infinite accepting computation, which means that
Ma satisfies the property gsp.

Lower-approximations can also be useful to decide if the system does not
satisfy a property.

Proposition 6.5 Let L ⊆ S. Checking that

R∗
a(Ia) ∩ domain[((R∗ ∩ (Σω

a × accept)) ◦R+
a ) ∩ L] 6= ∅

allows us to deduce that the system Ma has an infinite accepting computation,
which means that Ma does not satisfy the property gsp.

To compute a lower-approximation of S, we proceed as follows: Instead
of computing the decreasing sequence of relations (Si)i≥0, we compute the
increasing sequence of their negations (¬Si)i≥0. The advantage of doing that
is that we can apply at each step of the iterative computation widening tech-
niques such as those defined in [6] which allows us to speed up the fixpoint
computation and, in many cases, to make it terminate. Then, the computed
sequence of relations is actually an increasing sequence of ω-regular relations
(Ui)i≥0 such that for every i ≥ 0, Ui ⊇ ¬Si, and therefore, the limit of this
sequence U is in general an ω-regular upperapproximation of ¬S. This means
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that the set ¬U is a lower-approximation of S. Notice that [5,6] provide (suf-
ficient) conditions which allows us to check that the computed set is precise.

7 Experimental Results

The techniques and algorithms presented in this paper have been tested on
several examples covering different classes of systems and properties. Details
about the considered models and the corresponding experiments are reported
in the full version ([13]). We give hereafter a brief synopsis of these results.

First, we considered several examples of parametric networks correspond-
ing to mutual exclusion protocols including the Bakery algorithm and the
token ring protocol. For these systems, we have been able to check automati-
cally livelock freedom properties.

Next, we have been able to check termination or non-termination of (multi-
loop) programs manipulating integer variables.

Finally, we addressed the problem of verifying a liveness property of a
system manipulating counters as well as (continuous time) clocks. One of the
examples we considered is a simplified model of the IEEE 1394 root contention
protocol.
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