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Abstract In this paper, we study the advice complexity of the online bin
packing problem. In this well-studied setting, the online algorithm is supple-
mented with some additional information concerning the input. We improve
upon both known upper and lower bounds of online algorithms for this prob-
lem. On the positive side, we first provide a relatively simple algorithm that
achieves a competitive ratio arbitrarily close to 1.5, using constant-size ad-
vice. Our result implies that 16 bits of advice suffice to obtain a competitive
ratio better than any online algorithm without advice, thus improving the pre-
viously known bound of O(log(n)) bits required to attain this performance.
In addition, we introduce a more complex algorithm that still requires only
constant-size advice, and has a competitive ratio arbitrarily close to 1.47012.
This is the currently best performance of any online bin packing algorithm
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with sublinear advice. On the negative side, we extend a construction due to
Boyar et al. [13] so as to show that no online algorithm with sub-linear advice
can be 7/6-competitive, improving on the lower bound of 9/8 from Boyar et
al.

Keywords Online bin packing · Competitive analysis · Advice complexity

1 Introduction

Bin packing is a fundamental optimization problem that has played an im-
portant role in the development of approximation and online algorithms. An
instance of the problem is defined by a set of items of different sizes, and the
objective is to place these items into a minimum number of bins. For conve-
nience, it is often assumed that the bins have capacity 1 and items have sizes
in the range (0, 1]. In the online setting, the input set is revealed in a sequential
manner, and the online algorithm must make an irrevocable decision concern-
ing the placement of an item without any knowledge about the forthcoming
items. We follow the canonical framework of competitive analysis of online
algorithms [10], in which the performance of an algorithm A is determined by
its competitive ratio, namely the maximum ratio between the cost of A (i.e.,
the number of bins opened by A) and that of an optimal offline algorithm Opt
for the same sequence. For the bin packing problem in particular, as often in
the literature of the problem, we are interested in the asymptotic competitive
ratio which considers sequences for which the costs of A and Opt are arbi-
trarily large. For this reason, throughout this paper we refer to the asymptotic
competitive ratio of the bin packing problem as simply the competitive ratio.

The bin packing problem has provided some of the first-known explicit on-
line algorithms (e.g., [20,25,26]). NextFit is a simple algorithm that main-
tains at each step a single open bin. If an incoming item fits in the bin, it is
placed there; otherwise, that bin is closed and a new bin is opened to accom-
modate the item. FirstFit orders bins by their opening time and places an
incoming item into the first bin which has enough space (opening a new bin if
required). BestFit works similarly, except that it places the item into the bin
with minimum available capacity which still has enough space for the item. It
is known that NextFit is 2-competitive, whereas FirstFit and BestFit are
both 1.7-competitive [26]. The best known online algorithm has a competitive
ratio of 1.5815 [24]. No online algorithm can have a competitive ratio better
than 1.54037 [4], a result that holds for both deterministic and randomized
algorithms.

Competitive analysis, due to its inherent comparison to the offline op-
timum, often leads to a more pessimistic performance evaluation of online
algorithms than what observed in practice [10]. Different models have been
proposed in order to address this issue, and one such approach is to allow
the online algorithm additional power. For example, the algorithm may be
allowed to repack some items [18,19]. Alternatively, it may have access to
lookahead [22], and, finally, may know the length of the input sequence [3] or
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the value of Opt [17]. The advice model is a generalization of these approaches
in which any information can be passed to the algorithm in the form of ad-
vice. In this sense, we can think of the advice as generated by a benevolent
offline oracle with access to the entire input; the online algorithm can exploit
the advice so as to produce a better solution. In principle, there is a certain
correlation between the number of advice bits and the quality of the resulting
solution. For many problems, including bin packing, a large number of advice
bits is required in order to achieve optimal solutions; however, this does not
imply that one may not achieve efficient (albeit non-optimal) solutions with
significantly smaller number of bits.

In this paper, we study the impact of small-size advice (typically constant
size) in improving the competitive ratio of bin packing algorithms. While our
interest in studying the advice complexity stems from theoretical considera-
tions, we note that small-size advice can be beneficial in practical settings.
Consider for instance the setting in which the advice is transmitted through a
noisy channel; in this setting, even small errors in the advice string may have
a detrimental effect on the performance of the algorithm. Ensuring that the
advice is small (ideally, of constant size) implies that the online algorithm is
more resilient to such errors (eg.,in contrast to an algorithm that uses linear-
size advice). For instance, one may add redundancy in the advice string in
order to render it less prone to noise errors; therefore, if the advice string is
small, the communication overhead is negligible.

In our work we use the following well-established definition of the bin
packing problem under the advice setting.

Definition 1 In the online bin packing problem with advice, the input is a
sequence of items σ = 〈x1, . . . , xn〉, with 0 < xi ≤ 1. At time step t, an online
algorithm must pack item xt into a bin, and this decision is a function of
Φ, x1, . . . , xt−1, where Φ is the content of the advice tape. An algorithm has
advice complexity s(n) if it accesses at most s(n) bits of an advice tape Φ for
any input of length n.

1.1 Previous work and our contribution

The online advice model was first introduced by Emek et al. [16] and by
Böckenhauer et al. [9,8]. These models were inspired by the work of Dobrev
et al. [15], wherein the focus was on the advice required for optimality and
the model allowed the oracle to provide information without a cost by using
an empty string as the advice for a request. In the model of Emek et al. [16]
an online algorithm receives a fixed number of bits of advice with each in-
put item. Note that this model does not allow advice of sublinear size. In the
model of Böckenhauer et al. [9], the advice is written on a read-only tape prior
to the algorithm’s execution, and the algorithm can read advice bits from
that tape at will. The advice complexity has established itself as a prolific
sub-field of online computation, and many online problems have been stud-
ied under the setting of online computation with advice (e.g., metrical task
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systems [16], k-server problem [16,8,29,23], paging [14,9], list update prob-
lem [12], bin packing problem [13,30,2,27], knapsack problem [6], job shop
scheduling [9,28], reordering buffer management problem [1], and minimum
spanning tree problem [5]). For a comprehensive survey on recent advances in
online computation with advice, we refer the reader to the survey [11].

In this paper, we study online bin packing under the advice-on-tape model.
In this setting, Boyar et al. [13] proved tight bounds on the size of advice
required to be optimal and showed that advice of super-linear size is necessary
in order to attain optimality. They also proved that with advice of linear size,
i.e., Θ(n) bits for a sequence of length n, one can achieve a competitive ratio
of 4/3 + ε. This result was improved by Renault et al. [30] who showed that a
competitive ratio arbitrary close to 1 can be achieved with Θ(n) bits. A related
question is how many bits of advice are sufficient in order to outperform all
online algorithms. For the bin packing problem, no online algorithm can have
a competitive ratio better than 1.54037 [4], and Boyar et al. [13] showed that
advice of size Θ(log n) is sufficient to achieve an algorithm with competitive
ratio of 1.5. They also proved that no algorithm is better than 9/8-competitive
with advice of sub-linear size.

In our work, we address the power of small-sized advice in online bin pack-
ing. This is motivated by settings in which one may have some very limited
information about the input, e.g., whether or not the input has many items
of size beyond a certain threshold or some related statistical information. On
the positive side, we prove that O(1) advice suffices to outperform all online
algorithms. More precisely, we first show that with only 16 bits of advice, we
can achieve a competitive ratio of 1.530 (Section 2). Following a more com-
plex approach, we show that constant-size advice suffices to go beyond the
barrier of 1.5-competitiveness; more precisely, we achieve a competitive ratio
arbitrarily close to 1.47012 (Section 3). This is, to date, the best upper bound
on the competitiveness of any online algorithm that uses advice of sublinear
size. We thus demonstrate the significant impact of small-size advice on the
performance of bin packing algorithms. It should be mentioned that the sim-
ple algorithm of Section 2 reaches 1.5 + ε (for any constant ε > 0) with fewer
advice bits than the complicated algorithm of Section 3. Last, we give a lower-
bound construction that builds on ideas of [13] and which shows that advice
of size Ω(n) is required to achieve a competitive ratio better than 7/6, thus
improving the previous lower bound of 9/8 (Section 4).

In terms of techniques, for the upper bound of Section 2, we use informa-
tion indirectly related to the ratio of “big” to “small” items; we show that
this limited amount of information suffices to bring us arbitrarily close to the
performance of algorithms that use logarithmic number of bits. For the more
complicated upper bound of Section 3, the proof is based on two components
which may be of independent interest. First, we introduce an algorithm for the
special case that all items are larger than 1/3. In this case, any bin can include
at most two items and the problem becomes a variant of the upright matching
problem [21]. Interestingly, even this relaxed version of bin packing is not com-
pletely understood under the advice model. Nevertheless, we show that with
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only one bit of advice we can achieve a competitive ratio of at most 1.3904. To
achieve this goal, we devise two matching algorithms that complement each
other; the single bit of advice indicates the better of the two algorithms for a
given sequence. The second ingredient of our proof considers optimal packings
in which each bin has an “empty space” of constant size ε. For sequences with
such optimal packings, we show that advice of constant size is sufficient to
achieve a competitive ratio of 1 + ε, using techniques based on grouping and
rounding. To complete the proof, we show how to create offline packings in
which items larger than 1/3 are packed separately from the rest; as a result,
the two algorithms mentioned above can be applied separately to reproduce
such packing in an online manner (with advice of constant size).

Concerning the lower bound (Section 4), we base our construction on that
of [13], using a reduction from the string guessing problem and a better amor-
tization (i.e., counting) scheme that leads to an improvement of the bound. We
note that following the conference version of this work [2], Mikkelsen [27] fur-
ther improved the lower bound to 4−2

√
2, using the same reduction and count-

ing approach as this work, but a more involved, weighted counting scheme.

1.2 Preliminaries

Throughout the paper, for a given algorithm A, we denote by PA(σ) its output
on sequence σ, namely a packing of the items in σ into bins. We also denote
by A(σ) = |PA(σ)| the cost of A on σ, i.e., the number of bins opened by A
on σ. We typically denote by rj the j-th request of σ, when the sequence is
clear from context.

Similar to previous works related to bin packing, we distinguish items based
on their sizes. An item is large if it is larger that 1/2 and an item is small if
it is in the range (0, 1/2].

These classes of items are further sub-divided: An large item is huge if it
is larger than 2/3, and is critical if it is in the range (1/2, 2/3]. A small item
is mini if it is in the range (1/3, 1/2], and tiny if it is in the range (0, 1/3].

The level of a bin signifies the total size of the items in the bin. We say
that a set of bins is dedicated to packing a class C of items if the set only
contains items of class C.

2 Constant-size advice outperforms all online algorithms

In this section, we present an online algorithm, called RedBlue, that achieves
a competitive ratio of 1.5 + ε and uses a constant number of bits of advice.
This algorithm is based on the ReserveCritical algorithm of [13] that uses
Θ(log n) bits of advice to indicate the number of critical items (items with
a size in the range (1/2, 2/3]) and has a competitive ratio of 1.5. The chal-
lenging part is to show that RedBlue is able to approximate the packing
of ReserveCritical using O(1) advice bits, and thus achieve a competitive
ratio arbitrarily close to 1.5.
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First, consider the online algorithm ReserveCritical [13] that works as
follows. Using Θ(log n) advice bits, the number of critical items in the request
sequence is encoded in binary. With this information, the algorithm initially
opens a bin for each critical item and reserves a space of size 2/3 for such an
item. These bins are called critical bins. Then ReserveCritical proceeds to
process the request sequence. The algorithm packs items based on their class
as follows.

Huge Item: The item is packed in a new bin.
Critical Item: The item is packed in the reserved space of a critical bin.

(Note that there will be one critical item per critical bin.)
Mini Item: The item is packed into a bin containing already a mini item.

Otherwise, it is packed in a new bin. (Note that, for each bin with a mini
item, there will be two mini items except possibly the last bin opened.)

Tiny Item: Using FirstFit, the item is packed into the non-reserved space
of the critical bins. If the item does not fit in the non-reserved space of the
critical bins, the item is packed into bins dedicated to tiny items.

As shown in [13], ReserveCritical has a competitive ratio of 1.5. To famil-
iarize the reader with the salient ideas we will use later in this section, we first
provide a simpler proof than the one given in [13].

Lemma 1 Algorithm ReserveCritical has a competitive ratio of 1.5.

Proof We consider two cases for the final packing produced by ReserveCritical
for some request sequence σ. Initially, we consider the case that the packing
contains bins with only tiny items and, then, we consider the case that the
packing does not have any bin with only tiny items.

In the first case, we assume there is a bin dedicated to packing tiny items,
and we show that the level of all bins (except potentially a constant number
of them) is at least 2/3. The level of all bins with both huge and mini items
is no less than 2/3 (except possibly the last bin opened for small items which
may only contain a single small item). For each critical bin, there is a critical
item and the space filled by the tiny items is at least 1/6 (except possibly the
last critical bin). For the sake of contradiction, assume that the space filled by
the tiny items is less than 1/6 in at least two critical bins, bi and bj , i < j.
The tiny items in bj could have been packed in the non-reserved space of bi.
This contradicts the FirstFit packing of the tiny items. Therefore, the level
of all the critical bins is more than 1/2 + 1/6 = 2/3. Finally, the level of all
bins dedicated to packing the tiny items, except possibly the last one, is more
than 2/3 since all items in these bins have sizes 1/3 or smaller. To conclude,
all bins, with the exception of three bins (namely, one bin that contains only
small items, the last bin opened for tiny items, and the last bin with a critical
item), have a level of at least 2/3 which guarantees a competitive ratio of at
most 1.5.

In the second case, we assume there is no bin dedicated to packing tiny
items. Using a weighting argument, we show that the competitive ratio is at
most 1.5. We assign a weight to items based on their sizes. Huge and critical
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items have a weight of 1; small items have a weight of 1/2; and tiny items have
a weight of 0. The total weight of items in any given bin, except possibly one
bin (namely, the bin with a single small item) is at least 1. Hence, we have
that A(σ) ≤ W (σ), where W (σ) is the total weight of items in σ. Further,
the weight of any bin in an offline packing is at most 1.5, which occurs when
a critical and a small item are placed in the same bin. Therefore, we have
Opt(σ) > W (σ)/1.5 which completes the proof. ut

In what follows, we present an online algorithm, called the RedBlue al-
gorithm, that uses constant advice which is based on the final packing of
ReserveCritical for the given request sequence σ. First, we describe the
advice for RedBlue. The algorithm receives an integer i, 0 ≤ i < 2k en-
coded in binary, using k advice bits, where k is a constant independent of
the length of the sequence. The value of i is determined by the packing of
the ReserveCritical algorithm for σ. Let X and Y denote the number of
bins in the packing of ReserveCritical of σ that include a critical item,
and the number of bins opened for the tiny items, respectively. The advice for
RedBlue encodes an approximate value of X

X+Y , using k bits, by encoding
the value of i such that

β
def
=

i

2k
≤ X

X + Y
<
i+ 1

2k
= β +

1

2k
. (1)

Note that the above definition implies that β lies in the range [0, 1]. We now
describe the algorithm. RedBlue always places each huge item in a single bin,
and places mini items in dedicated bins, with two such items per dedicated
bin. Further, the algorithm maintains a (possibly empty) set of red bins and
a (possibly empty) set of blue bins. The red bins are dedicated to packing
tiny items and the blue bins have a reserved space of 2/3 for critical items.
To pack a critical item, RedBlue packs it in the reserved space of a blue bin
without a critical item. If such a bin does not exist, a new bin is opened and
declared as a blue bin. Next, we explain how RedBlue packs tiny items. Let
the i-th request, yi, be a tiny item. The algorithm applies FirstFit to place
yi in either the unreserved space of a blue bin, or in a red bin. If the algorithm
cannot place yi in one of the existing bins, it opens a new bin to pack yi. This
new bin is declared as either a red bin or a blue bin. To define the color of the
bin, we consider three (exhaustive) cases for β:

Case I: when β > 1 − 1/2k/2, the bin opened by a tiny item is always
declared to be blue. Intuitively, since ReserveCritical opens a small number
of bins with tiny items, we can afford to ignore red bins and declare all bins
to be blue. At the end, ‘a small’ fraction of these blue bins might not receive
a critical item and only include tiny items.

Case II: when β < 1/2k/2, any new bis opened by tiny items is declared
to be red. Intuitively, since there is a ‘small’ number of critical items, and we
can afford ‘not filling’ them with extra tiny items.

Case III: assume 1/2k/2 ≤ β ≤ 1 − 1/2k/2. Let Bi and Ri denote the
number of blue and red bins immediately after yi is packed, respectively, where
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R0 = B0 = 0. The algorithm will then declare the new bin as a blue bin if
Bi−1+1

Bi−1+Ri−1+1 ≤ β; otherwise, it will declare the new bin as red. Note that, from

the definition of the algorithm, RedBlue guarantees the invariant Bi

Bi+Ri
≤ β

holds for all i ≤ n. Further, it follows that the number of blue bins in the final
packing of RedBlue is equal to X, i.e, the number of critical items in the
sequence. In other words, for this case, since β is a lower bound on the ratio
X

X+Y , all the bins declared as blue eventually receive a critical item.
Next, we analyze the algorithm. For cases I and III, we show that the cost

of RedBlue is almost equal to that of ReserveCritical and apply Lemma 1
to prove an upper bound for competitive ratio of RedBlue. For case II, we
directly compare RedBlue with Opt by showing that the level of almost all
bins in RedBlue packing is at least 2/3. Let B and R respectively denote the
number of blue and red bins in the final packing of RedBlue. The following
three lemmas concern the three cases discussed above, respectively.

Lemma 2 When β > 1 − 1/2k/2, for the number of blue and red bins in
RedBlue packing we have B ≤ (1 + 5

2k/2 ) · (X + Y ) + 1 and R = 0.

Proof Since β > 1 − 1/2k/2, bins opened by tiny items are always blue and
there is no red bin, i.e., R = 0. Moreover, from (1), we have

Y

X + Y
≤ 1− β < 1

2k/2
⇒ Y <

1

2k/2
· (X + Y ) . (2)

The first X bins in B match precisely the first X bins in the packing of
ReserveCritical, i.e., they include X critical items plus the same tiny items.
Let B′ denote the last |B| −X bins of B and let Y ′ = |B′|. Then, the bins of
B′ only include tiny items (i.e., the reserved space is not occupied by a critical
item), and the level of the bins of B′, except possibly the last one, is at least
1/6. For the sake of contradiction, assume that there are two bins, bi and bj ,
i < j, in B′ with a level less than 1/6. The tiny items of bj could have been
packed in the non-reserved space of bi which contradicts the FirstFit packing
of the tiny items. Since the tiny items placed in the B′ are the same items as
those placed in the Y bins dedicated to packing tiny items in the packing of
ReserveCritical, we have Y ′ ≤ 6Y + 1 (because the level of bins of B′ is at
least 1/6). We can write: B = X+Y ′ ≤ X+6Y +1 <

(
1 + 5

2k/2

)
· (X+Y )+1,

where the last inequality comes from (2). ut

Lemma 3 When β < 1/2k/2, the average level of all red and blue bins (ex-
cluding at most two red bins) is at least 3

4

(
1− 1

2k−1

)
.

Proof Since β < 1/2k/2, by (1) we have

X

X + Y
< β +

1

2k
<

1

2k/2
+

1

2k
<

1

2k−1
. (3)

All red bins, except possibly two bins, have level more than 3/4. To see
this, consider the first bin that has level below 3/4 in the final packing. Since
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we use First-Fit strategy to pack these items, any item that was packed in
any later bin has size more than 1/4, and at most 1/3, guaranteeing a level
of more than 3/4, apart from possibly the very last bin. Moreover, each blue
bin has level more than 1/2 since it includes exactly one critical item. Hence,
the average level of red and blue bins is more than 3

4
R

B+R + 1
2

B
B+R ≥

3
4

R
B+R .

The number of blue bins is equal to the number of critical items, i.e., B = X.
The number of bins opened by tiny items in the packing of RedBlue is no
less than that of ReserveCritical, i.e, R ≥ Y (otherwise, the number of
bins in RedBlue will be less than ReserveCritical and hence the average
level bins in RedBlue will be at least equal to the average level of bins in
ReserveCritical which is 2/3; see Lemma 1). Sine B = X and R ≥ Y ,
we have R

B+R ≥
Y

X+Y . So, the average level of blue and red is more than
3
4

Y
X+Y = 3

4 (1 − X
X+Y ) > 3

4

(
1− 1

2k−1

)
, where the last inequality follows from

(3). ut

Lemma 4 When 1/2k/2 ≤ β ≤ 1 − 1/2k/2, for the number of blue and red

bins in RedBlue packing we have B +R < (X + Y )
(

1 + 2
2k/2−2

)
+ 2k/2.

Proof From (1) we have X
X+Y < β + 1/2k which implies X < β+1/2k

1−β−1/2k Y . In

the given range for β, we have β(1− β)2k − β > 2k/2−1 − 1. Hence,

1− β
β

X <

(
1 +

1

β(1− β)2k − β

)
Y <

(
1 +

1

2k/2−1 − 1

)
Y (4)

Let yj be a tiny item for which RedBlue opens the very last red bin in

its packing. From the definition of the algorithm, we have
Bj+1
Bj+Rj

> β. This

implies that Rj <
(1−β)Bj+1

β . Recall that R and B are the number of red
and blue bins in the final packing of the algorithm. We have R = Rj and
Bj ≤ B = X. For the given range of β, in the final packing, all blue bins

receive a critical item. Hence, R ≤ 1−β
β X + 1/β. From the above inequality,

we obtain

B +R ≤ X + Y +

(
2

2k/2 − 2

)
Y + 2k/2 < (X + Y )

(
1 +

2

2k/2 − 2

)
+ 2k/2

Theorem 1 For any k ≥ 4, there is an online algorithm for the bin packing
problem with k bits of advice that has competitive ratio 1.5 + 15

2k/2+1 .

Proof We show RedBlue with k bits of advice achieves the claimed compet-
itive ratio. When β < 1

2k/2 (case II), by Lemma 3, the average level of all red

and blue bins (excluding the last red bin) is at least 3
4

(
1− 1

2k−1

)
. Meanwhile,

the level of all bins opened by huge items and mini items (except possibly the
last bin with mini items) is 2/3. Thus, on average, all bins in the packing of
RedBlue (excluding two bins) have a level strictly more than 2

3

(
1− 1

2k−1

)
.

We conclude that, in this case, the competitive ratio of the algorithm is less
than 1

2/3·(1−1/2k−1)
< 3/2 + 3

2k−2 .
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When β > 1−1/2k/2 (case I), by Lemma 2, we have B+R ≤ r1 ·(X+Y )+c1
for r1 = (1 + 5

2k/2 ) and some constant c1. Similarly, when 1 − 1/2k/2 ≤ β ≤
1/2k/2 (case III), by Lemma 4, we have B + R ≤ r2 · (X + Y ) + c2 where
r2 = (1+ 2

2k/2−2 ) and c2 is a constant. In both cases, the number of bins opened
by RedBlue for huge and mini items is the same as ReserveCritical. Note
that if H and M denote the number of huge and mini items, then the cost of
ReserveCritical can be described as H + dM/2e+X + Y . For the cost of
RedBlue, we have

RedBlue(σ) = H + dM/2e+B +R ≤ H + dM/2e+ max{r1, r2}(X + Y ) + c

< max{r1, r2} (H + dM/2e+X + Y ) + c

= max{r1, r2}ReserveCritical(σ) + c

≤ 1.5 max{r1, r2}Opt(σ) + c′.

The last inequality follows from Lemma 1, and c and c′ are constants. To con-

clude, the competitive ratio of RedBlue is at most max
{

1.5 + 3
2k−2 , 1.5r1, 1.5r2

}
= 1.5 + max

{
3

2k−2 ,
15

2k/2+1 ,
3

2k/2−2

}
which is 1.5 + 15

2k/2+1 when k ≥ 4. ut

In particular, for k = 16 bits of advice, we achieve a competitive ratio
smaller than 1.530, which is strictly better than any online algorithm without
advice.

3 Beyond 1.5-competitiveness with O(1) advice bits

In this section, we present an online algorithm, called DR+ that achieves a
competitive ratio that is arbitrarily close to 1.47012 while using only a constant
number of advice bits. This algorithm outperforms any randomized online
algorithm, since no online algorithm (deterministic or randomized) can achieve
a competitive ratio better than 1.54037 [4]. Moreover, DR+ is a significant
improvement over the previously best-known algorithm with sublinear advice
which achieved a competitive ratio of 1.5, using, however, logarithmic advice
[13].

We begin with a high-level description of DR+. The algorithm is defined
so as to produce one of two possible packings, P1 and P2, of the input. A
single bit of advice indicates to DR+ which of the two packings is the better
approximation of the optimal packing. We show that, for any sequence, one
of the two packings achieves the desired competitive ratio. To produce either
packing, DR+ relies on a rounding scheme, that defines a constant number
of item types, for all (P1) or for a subset (P2) of the items, and describes an
approximate description of their offline packing. Provided in the advice string
is either the exact or an approximate number of bins of each possible bin
pattern in the offline packing, where a bin pattern describes the items types
in the bin of the offline packing. For some inputs, the packing P1 that applies
the rounding scheme to all the items does not achieve the desired competitive
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ratio. In such a situation, we must deal with the items of size more than 1/3
differently, and this is the packing P2, where only the items of size at most
1/3 are packed using this rounding scheme.

First, we introduce an algorithm AlmostBestFit (Abf), that is defined
for sequences in which all items are relatively large, namely larger than 1/3.
Then we define an algorithm DesirableRounding (DR) that can approx-
imate in an online fashion a class of particular offline packings, that we call
desirable, using the rounding scheme. The algorithms Abf and DR are used
as subroutines in the algorithm DR+ that is defined to handle arbitrary se-
quences. Specifically, DR is used to produce P1 and both DR and Abf are
used to produce P2.

3.1 Sequences with items larger than 1/3

For this section, we will assume that σ is such that all its items are larger than
1/3. This implies that in every solution, each bin contains at most two items.
We will present an algorithm, which we call AlmostBestFit (Abf) which
uses only 1 bit of advice, and for which we will show that it has a competitive
ratio that will be sufficient for our purposes, when moving to general sequences.
In particular, we will show that Abf is 1.3904-competitive (Theorem 2).

Algorithm Abf is defined using the following two online algorithms which
are variants of BestFit, namely SmallBestFit (Sbf) and LargeBestFit
(Lbf). Before serving the sequence σ, Abf reads a single bit of advice that
indicates which of Sbf or Lbf produces the best solution for σ.

Sbf: All small items (< 1/2) are packed according to BestFit, and each large
item (≥ 1/2) is placed in a new bin.

Lbf: All large items are packed according to BestFit, and each small item
is placed in a new bin.

In order to show the upper bound on the competitive ratio of Abf, we require
some notations that are defined based on a fixed optimal packing of σ, POpt(σ).
Let S be the set of small items, L be the set of large items packed in a bin
with a small item in POpt(σ) and H be the set of large items packed in a bin
without a small item in POpt(σ). Moreover, we can assume that all the large
items in H are no smaller that the large items in L. Hence, the optimal cost
is at least Opt(σ) ≥ |H|+ |L|/2 + |S|/2. Let Opt2(σ) = |L|/2 + |S|/2.

In order to prove the competitive ratio of Abf, we use two parameters
α and β such that 0 ≤ α ≤ 1 and 1 ≤ β < 2. The exact values of these
parameters will be determined subsequently. In the optimal packing POpt(σ),
|L| large items are matched with small items. We denote the pair of large and
small items packed in a single bin as partners. Thus, the partner of a large
item (respectively a small item) x is a small (respectively large) item which is
placed in the same bin as x in POpt(σ). Let X ⊆ L be the set of large items
which have their partners among the forthcoming items at the time they are
packed (see Figure 1).

We consider the following three exhaustive cases:
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(a) A Fixed Optimal packing
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(b) Packing of SBF
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(c) Packing of LBF

Fig. 1 Packings of Opt, Lbf, Abf for σ = 〈0.45, 0.60, 0.75, 0.34, 0.40, 0.56, 0.35, 0.55, 0.50〉.
We have H = {0.75}, L = {0.65, 0.56, 0.55}, and S = {0.40, 0.35, 0.34, 0.50, 0.45}. The set
of large items which have their partners among forthcoming items is X = {0.60, 0.56}. For
Lbf, the mapping of items in X to their partners change from {(0.60, 0.40), (0.56, 0.35)} to
{(0.60, 0.34), (0.56, 0.35)} after placing 0.34. For Abf, the mapping changes from {(55, 34)}
to {(0.55, 0.45)} after placing 0.55.

– Case I: |L| ≤ β−1
2−β |S|;

– Case II: |L| > β−1
2−β |S| and |X| ≥ α|L|; and

– Case III: |L| > β−1
2−β |S| and |X| < α|L|.

The observation that, in the final packing of Sbf, all small items (except
potentially one of them) are placed with another item allows us to prove the
following for Case I:

Lemma 5 If |L| ≤ β−1
2−β |S|, Sbf opens at most |H|+ β ·Opt2(σ) + 1 bins.

Proof In the final packing of Sbf, all small items (except potentially one of
them) are placed with another item. The worst case happens when all large
items are single and all small items are placed together (two per bin). The

cost of Sbf in this case is |H|+ |L|+ |S|/2 + 1. Note that the ratio |L|+|S|/2
|L|/2+|S|/2

is maximized when L = β−1
2−βS, from which we obtain that |L|+|S|/2

|L|/2+|S|/2 ≤ β.

Hence |L|+ |S|/2 ≤ β ·Opt2(σ), and the lemma follows. ut

Next, we consider Case II.

Lemma 6 If |L| > β−1
2−β |S| and |X| ≥ α|L|, Sbf opens at most |H| + (3/2 −

α/2) ·Opt2(σ) + 1 bins.

Proof We claim that, in the packing produced by Sbf for σ, at least |X| small
items are packed with large items. If this is true, then the lemma follows.
More precisely, the number of bins opened by Sbf is at most |H|+ |L|+(|S|−
|X|)/2 + 1 ≤ |H|+ |L|+ (|S| − α|L|)/2 + 1 = |H|+ (2− α)|L|/2 + |S|/2 + 1.

Note that the ratio (2−α)|L|/2+|S|/2
|L|/2+|S|/2 is maximized when |L| as large as possible,

namely when |L| = |S|. It follows that (2−α)|L|/2+|S|/2
|L|/2+|S|/2 ≤ 3−α

2 , from which

we obtain that (2 − α)|L|/2 + |S|/2 ≤ 3−α
2 Opt2(σ). We thus conclude that

Sbf(σ) ≤ |H|+ (3/2− α/2)Opt2(σ) + 1.
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It remains to prove the claim that at least |X| small items are packed with
large items in the packing of Sbf. To this end, we define a mapping of large
items to small items that is of size |X|. We use m(y) to denote the mapped item
of an item y. A pair (x,m(x)) is called valid if it has the following properties:

(i) x is larger than 1/2;
(ii) x+m(x) ≤ 1; and
(iii) x appears earlier than m(x) in the request sequence.

The mapping is said to be valid if all pairs in the mapping are valid.
Initially, the mapping is of the large items in X to their partner in POpt(σ).

Note that this is a valid mapping. We will show how to update this mapping,
upon the arrival and packing of each item in σ by Sbf, in such a way that,
after packing all the items of σ, all |X| pairs of mapped items are in the same
bin in the packing produced by Sbf.

Let y be the current item to pack. If y is larger than 1/2, Sbf opens a new
bin for y and the mapping does not change.

Suppose that y is small and that the pair (z, y) is in the current mapping,
for some large item z. If y is placed in the same bin as z, then the mapping
does not change. If y is placed with another large item z′, from the definition
of POpt(σ) and the fact that y is packed according to BestFit, we can assume
that z′ is no smaller than z. If, for any small item q, (z′, q) is not in the map-
ping, we replace (z, y) with (z′, y) in the mapping. Otherwise, (z′,m(z′)) is in
that mapping, and we replace (z, y) and (z′,m(z′)) with (z′, y) and (z,m(z′)),
respectively. Note that z +m(z′) ≤ z′ +m(z′) ≤ 1. In each case, the result is
still a valid mapping.

Finally, suppose that y is small and it is not in the mapping. The mapping
is not changed unless y is packed with a large item z such that (z, q) is in the
mapping for some small item q. In this case, we replace the pair (z, q) with
(z, y); this maintains a valid mapping. Note that at the time that y is packed,
it cannot be packed with a small item q, where (z, q) is in the mapping for
some large item z. Assume for the sake of contradiction that y is packed with
q and that (z, q) is in the mapping. This requires q being placed alone in a
bin at the time y appears. However, since (z, q) is in the mapping, when q is
packed, z is alone in a bin (otherwise, the packing would have been updated
to include (z,m(z) 6= q). So, q cannot be alone in a bin at the time y is packed,
contradicting z being placed with q.

ut

Finally, it remains to consider Case III. The proof of the following lemma
uses techniques similar to the proof of Lemma 6.

Lemma 7 Suppose |L| > β−1
2−β |S| and |X| < α|L| then the number of bins

opened by Lbf is at most |H|+ (4− 2(α+ β) + 2αβ) ·Opt2(σ) + 1.

Proof Let Y = L \ X be the set of large items packed in a bin such that,
for each y ∈ Y , the partner item of y occurs before y in σ. Note that |Y | =
|L| − |X|. We claim that, in the packing produced by Lbf for σ, at least
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|L| − |X| ≥ (1 − α)|L| small items are packed with large items. If this is
true, then the lemma follows. More precisely, the number of bins opened by
Lbf is at most |H| + |L| + |S| − (1 − α)|L| + 1 = |H| + α|L| + |S| + 1. Note

that α|L|+|S|
|L|/2+|S|/2 is maximized for |L| approaching β−1

2−β |S| since α|L|+|S|
|L|/2+|S|/2 is

decreasing in L. It follows that α|L|+|S|
|L|/2+|S|/2 ≤ 4− 2(α+ β) + 2αβ. This implies

that α|L|+ |S| ≤ (4− 2(α+ β) + 2αβ) ·Opt2(σ).
It remains to prove the claim that at least |L|−|X| ≥ (1−α)|L| small items

are packed with large items in the packing of Lbf. This part is symmetric to
the proof of Lemma 6 except that we consider the large items of Y instead of
X. To this end, we once again define a mapping of large items to small items
that is of size |Y |. We use m(y) to denote the mapped item of an item y. A
pair (x,m(x)) is called valid if it has the following properties:

(i) x is larger than 1/2;
(ii) x+m(x) ≤ 1; and
(iii) x appears later than m(x) in the request sequence.

Note that this definition is the same as in Lemma 6 except for Property (iii).
The mapping is said to be valid if all pairs in the mapping are valid.

Initially, the mapping is of the large items in Y to their partners in POpt(σ).
We will show how to update this mapping, upon the arrival and packing of
each item in σ by Lbf, in such a way, that after packing all the items of σ, all
|Y | pairs of mapped items are placed in the same bin by Lbf.

Let y be the current item to pack. If y is smaller than 1/2, Lbf opens a
new bin for y and the mapping does not change.

Suppose that y is large and that the pair (y, z) is in the current mapping, for
some small item z. If y is placed in the same bin as z, then the mapping does not
change. If y is placed with another small item z′, from the definition of Y and
the fact that y is packed according to BestFit, we can assume that z′ is not
smaller than z. If, for any large item q, (q, z′) is not in the mapping, we replace
(y, z) with (y, z′) in the mapping. Otherwise, (m(z′), z′) is in the mapping, and
we replace (y, z) and (m(z′), z′) with (y, z′) and (m(z′), z), respectively. Note
that z+m(z′) ≤ z′+m(z′) ≤ 1. In each case, the result is still a valid mapping.

Finally, suppose that y is large and it is not in the mapping. The mapping
is not changed after placing y unless y is packed with a small item z such that
(q, z) is in the mapping for some large item q. In this case, we replace (m(z), z)
with (y, z); this maintains a valid mapping. ut

The following theorem concludes the analysis of the Abf algorithm. The
theorem will be used later in the proof of Lemma 14, in the context of general
request sequences. Recall that α and β are parameter used for classifying the
three exhaustive cases for which we proved Lemmas 5, 6, and 7. Assume we
have α = (5−

√
17)/4 and β = (7 +

√
17)/8. For this selection of α and β we

can state the following:

Theorem 2 For a request sequence σ in which all items are strictly larger
than 1/3, Abf opens at most |H|+ 1.3904 ·Opt2(σ) + 1 bins and uses one bit
of advice.
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Proof From Lemmas 5, 6, and 7, Sbf and Lbf opens at most |H|+max{β, 3/2−
α/2, 4− 2(α+ β) + 2αβ} ·Opt2(σ) + 1 bins, where 0 ≤ α ≤ 1 and 1 ≤ β < 2.
The optimal choice for max{β, 3/2−α/2, 4− 2(α+β) + 2αβ} are the selected
values of α = (5−

√
17)/4 and β = (7 +

√
17)/8 which gives a maximum value

of at most β < 1.3904. ut

The following corollary follows directly from Theorem 2, by observing that
Opt(σ) = H + Opt2(σ).

Corollary 1 For a request sequence σ in which all items are strictly larger
than 1/3, Abf has a competitive ratio 1.3904 and uses one bit of advice.

3.2 Arbitrary sequences

In this subsection, we define the algorithm DR+ and show that advice of con-
stant size suffices to achieve a competitive ratio of 1.47012+ε for any sequence
and any arbitrarily small constant ε, 0 < ε < 1/7. The algorithm and its anal-
ysis build heavily on the ideas of grouping and rounding (discretization). We
begin by defining the concepts of ε-desirable solutions and classes of ε-desirable
bins.

Definition 2 A bin is ε-desirable and belongs to class 0 if there is an empty
space of size more than ε in the bin.

A bin is ε-desirable and belongs to class i (i ∈ {1, 2, 3}) if its empty space
is at most ε and if it contains exactly i items in the range (1/i− ε, 1/i].

An ε-desirable packing of a sequence σ is a packing formed by a set of
ε-desirable bins.

We begin with an outline of our approach. Given ε ∈ (0, 1/7) and an opti-
mal offline packing of a sequence σ, POpt(σ), we will define two new packings
P1 and P2. To create P1 and P2, we remove some items from bins and repack
them together into new bins. P1 and P2 have the appealing properties that
at least one of them provides a good approximation of the optimal packing
and that both packings can be approximated in an online manner with con-
stant advice. More precisely, P1 is an ε-desirable packing of σ. The packing
P2 is comprised of two packings, P2a and P2b, of a partitioning of the items
of σ. P2a is a packing of the items with size at least 1/3, and P2b is an ε-
desirable packing of the items with size no more than 1/3. To approximate P1,
we use an algorithm DesirableRounding (DR), which will be presented in
Section 3.2.1. To approximate P2, we use Abf (defined in Section 3.1) so as
to approximate P2a and DR so as to approximate P2b. One additional bit of
advice can thus determine the best among the two online approximations of
P1 and P2.
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3.2.1 Algorithm DesirableRounding

In this subsection, we will show that, for any packing P that consists of X ε-
desirable bins, there is an online algorithm DesirableRounding (DR) which
can pack the items of P , using (1 + ε)X bins and requiring advice of size f(ε),
where f is a function of ε. This is formalized in the statement of Lemma 8. The
algorithm DR will be used as a subroutine in the complete algorithm defined
in Section 3.2.2.

Lemma 8 For a positive ε < 1, let P (σ) be an ε-desirable packing. Algorithm
DR packs σ using at most (1 + ε)|P (σ)| bins and an advice of size at most

(2 dlog2(3/ε+ 1)e+ 1) · (6d1/2ε2e+ 1)e2π
√
d1/2ε2e.

First, we give an outline of the proof of Lemma 8. Given an ε-desirable
packing P (σ), the item sizes are rounded up so that there are m different item
sizes or item types, where m is defined to be inversely proportional to ε2. By
applying this rounding scheme, there will be a constant (inversely proportional
to ε2) number of possible bin patterns, where the pattern of a bin is based
on the number and types of the rounded items packed within. The advice
provides for each bin pattern either the exact number of those bins in P (σ),
or an approximation of the fraction of those bins in P (σ). Each of these values
are encoded in 2k+ 1 bits, where k is function of ε. Provided with this advice,
DR opens bins of each pattern either with the same number as in P (σ) or
approximates this number by opening repeatedly bins in batches, maintaining
proportions as given in the advice.

In what follows, we formalize the above intuition and provide a proof of
Lemma 8. Let m be a positive integer that is a multiple of 6. A bin pattern is
defined by a sequence of m+1 non-negative integers (a1, . . . , am, c), specifying
that it contains ai slots of size i/m and one additional slot of size c/m, where
0 ≤ c ≤ m −

∑m
i=1 iai. The last slot of size c/m is called the tiny slot if

c > 0. The other slots are called normal slots. The following lemma bounds
the number of bin patterns.

Lemma 9 There are at most (m+ 1)eπ
√

2m/3 bin patterns.

Proof A bin pattern can be viewed as a partition of the integer m, i.e., a way of
obtaining m as a sum of integers, augmented with a possible mark for the tiny

slot. It is known that the number of partitions is upper bounded by eπ
√

2m/3

(cf. [31]). The claim follows by multiplying the number of partitions by m+ 1
to account for the number of possible marks. ut

Recall that ε-desirable bins of class i ∈ {1, 2, 3} include i items in the range
(1/i− ε, 1/i]. We say an item is ε-normal if its size is no less than ε and ε-tiny
otherwise.

With respect to the parameters m and ε, we define the notion of nice bins
and nice packings. See Figure 2 for an illustration of this definition.
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Definition 3 A bin b is said to be (m, ε)-nice for ε ≥ 1/m, if there exists a
bin pattern and a mapping of the items of b to slots in the bin pattern with
the following properties:

1. Every ε-normal item of size s is mapped to a normal slot of size dmse/m
(which is s rounded up to the next multiple of 1/m);

2. All ε-tiny items are mapped to a single tiny slot, which is big enough to
contain them.

A packing is (m, ε)-nice if all the bins in the packing are (m, ε)-nice.

0.145

0.331

0.128

0.233

40/120

28/120

18/120

16/120

0.144 18/120

tiny items

normal 

items

a special 

item

normal 

slot

tiny  

slot

Fig. 2 An example of a (m, ε)-nice bin with m = 120 (left). If we increase item sizes to the
closest value in U = {1/120, 2/120, . . . , 120/120}, the total sizes of the resulting slots is not
more than 1 (right).

We are now ready to define the algorithm DR. Let POff(σ) be an arbitrary
(m, ε)-nice packing of σ by some (potentially offline) algorithm Off. Based
on POff(σ), we will first define the advice used by the algorithm and then its
actions. At an intuitive level, the advice is used to encode, for each possible
bin pattern, the number of bins in the packing of Off. For a specific pattern, if
the total number of bins can be encoded in O(1) bits, then the exact number is
encoded in the advice, otherwise an approximation of the ratio of the number
of bins with the pattern over the total number of bins is encoded.

Advice definition for DR. Let T (m) be the number of different bin patterns.
For a bin pattern i (1 ≤ i ≤ T (m)), let ηi denote the number of bins with

pattern i in POff(σ). It follows that
T (m)∑
i=1

ηi = Off(σ).

For each bin pattern i, define the bit

αi =

{
1 if ηi > 22k − 1

0 otherwise,

and let βi :=
⌈

ηi
Off(σ) · (2

k − 1)
⌉
, where k is a positive integer whose value will

be defined later. The value βi/(2
k−1) approximates the fraction of bin pattern
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in POff(σ). Hence, βi ∈ {0, . . . , 2k − 1} and the value of βi can be encoded in
k bits, whereas the value of ηi (when αi = 0) can be encoded in 2k bits.

For each bin pattern i, the advice for DR is the bit αi followed by ηi if
αi = 0, or βi if αi = 1. The total size of advice is exactly T (m) · (1 + 2k).

Definition of DR. Algorithm DR maintains two sets of bins, denoted LDR and
Ltiny. The set LDR is a set of bins with bin patterns described by the advice.
The set Ltiny is a set of bins dedicated to packing ε-tiny items that overflow
from LDR. That is, the bins of Ltiny consist of a single tiny slot of size 1.
Initially, for each bin pattern i where αi = 0, DR opens ηi bins and, for each
bin pattern i where αi = 1, DR opens βi bins. We designate an arbitrary tiny
slot as active, assuming it exists. For each item rj ∈ σ, DR packs it depending
on its classification as an ε-normal, or ε-tiny item as follows.

Item rj is ε-normal. Algorithm DR places rj in a slot of size dmrje/m.
If there is no empty slot of this size, then, for each bin pattern i where
αi = 1, DR opens βi new bins and packs rj in a newly opened bin. The
newly opened bins are added to LDR.

Item rj is ε-tiny. Algorithm DR places rj in the active tiny slot. If there is
no active tiny slot, Algorithm DR considers the cardinality of Ltiny.
– If |Ltiny| < 2ε · |LDR|, then a new bin with a tiny slot of size 1 is added

to Ltiny.
– Otherwise (i.e., |Ltiny| ≥ 2ε · |LDR|), for each bin pattern where αi = 1,

DR opens βi new bins and packs rj in a newly opened bin. The newly
opened bins are added to LDR.

An arbitrary tiny slot among the newly opened is declared active. If the
empty space in the active tiny slot drops below ε after placing rj , the slot
is closed, and, then an arbitrary non-closed tiny slot, if it exists, becomes
the active tiny slot.

The following lemma shows that DR opens a number of bins no more that
(1 + 3ε) the number of bins produced by any (m, ε) nice packing.

Lemma 10 Let ε = 1/(2k − 1) and consider a (m, ε)-nice packing of a se-
quence σ, denoted by POff(σ) produced by some algorithm Off. The algo-
rithm DesirableRounding (DR) opens at most (1 + 3ε)Off(σ) bins and

uses (2 dlog2(1/ε+ 1)e+ 1) · (m+ 1)eπ
√

2m/3 bits of advice.

Proof Denote by L0
DR the initial set LDR and by LjDR the set LDR immediately

after packing rj . L
j
tiny is similarly defined.

From the definition of DR, the algorithm eventually opens |LnDR|+ |Lntiny|
bins. We begin by bounding from above the number of bins in Lntiny and, then,
LnDR.

First, from the definition of the algorithm, the number of Lntiny bins is at
most 2ε · |LnDR|. An important observation is that LnDR ⊇ POff(σ). Further,
DR only opens a bin in Ltiny if all the tiny slots of LDR have unused space
less than ε. Since LnDR ⊇ POff(σ), we have that the volume of ε-tiny items
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not packed in LnDR is at most εPOff(σ). For ε < 1/2, these items will be
packed into less than (ε/(1 − ε)) ·Off(σ) < 2εOff(σ) dedicated bins. Since
2εOff(σ) < 2ε|LnDR|, we note that DR will open at most βi + ηi bins, for all
i.

In order to show the correctness of the algorithm, we claim that whenever
new bins are opened to pack an ε-tiny item then the new bins actually contain
a tiny slot. We only need to consider the case |Ltiny| ≥ 2ε · |LDR|. Since there
are ε-tiny items, there is at least one bin pattern i with a tiny slot in POff(σ),
and hence ηi ≥ 1 and βi ≥ 1. If for one of those patterns i we have αi = 1 we
are done. Otherwise all the tiny slots are in bin patterns with αi = 0, all of
which are in L0

DR. It follows from arguments above that the overflow can be
packed in less than 2ε · |L0

DR| bins, which is a contradiction.
Last, we consider the set LnDR. As noted above, LnDR ⊇ POff(σ). Let L∗DR =

mini L
i
DR ⊇ POff(σ). We claim that |LnDR| = |L∗DR|, i.e. no more bins are added

to LDR after this point. As shown above, no additional bins will be opened
when ε-tiny items are packed. As L∗DR ⊇ POff(σ), there exists a slot in a bin
of L∗DR for each non-ε-tiny item in σ. Hence, DR will pack all the remaining
non-ε-tiny items in L∗DR without opening any additional bins. Therefore, for
each bin pattern i where αi = 0, we have that the number of bins opened in
DR is exactly ηi (as the advice is ηi and no additional bins are opened), and,
when αi = 1, we have that the number of bins opened in DR is at most

ηi + βi = (1 + βi/ηi) · ηi

≤
(

1 +
2k − 1

22k − 1

)
· ηi

≤
(

1 +
2k − 1

(2k − 1)2

)
· ηi

= (1 + ε)ηi ,

for ε = 1/(2k − 1). Hence, |LnDR| ≤ (1 + ε)Off(σ).
Overall, DR opens (1 + 3ε)Off(σ) bins. By the definition of ε, we have

k = dlog2(1/ε+1)e. Using Lemma 9, the size of advice will be (2k+1) ·T (m) =

(2 dlog2(1/ε+ 1)e+ 1) · (m+ 1)eπ
√

2m/3 which completes the proof.
ut

We are now ready to prove Lemma 8.

Proof of Lemma 8. Without loss of generality we assume that ε is of the form
3/(2k − 1) for some integer k ≥ 2. We show that any ε-desirable packing is
an (m, ε′)-nice packing, where ε′ = ε/3 = 1/(2k − 1) and m = 6d1/(18ε′2)e.
For the proof, we consider all the classes {1, 2, 3, 0} of ε-desirable bins (see
Definition 2).

Immediately from the definition, the bins of class i ∈ {1, 2, 3} in P (σ) are
(m, ε′)-nice. This is because the i items in the bins of class i ∈ {1, 2, 3} can be
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rounded up to 1/i within the capacity of the bin, even if it is larger than the
next multiple of 1/m.

Finally, we need to consider the bins of type 0 which have an empty space
of size at least ε. In these bins, all ε′-normal items are rounded to the next
multiple of 1/m to create a dedicated slot. The number of ε′-normal items is
at most 1/ε′, hence the increase in volume by the rounding is at most 1/(ε′m),
which is less than ε by the choice of m and ε′.

In conclusion, P (σ) is an (m, ε′)-nice packing. Let Off be the algorithm
that produced the packing P (σ). By Lemma 10, DR opens at most (1 +
3ε′)Off(σ) ≤ (1 + ε)Off(σ) bins and uses advice of size (2 dlog2(1/ε′ + 1)e+
1) ·(m+1)eπ

√
2m/3 = (2 dlog2(3/ε+ 1)e+1) ·(6d1/(2ε2)e+1)e2π

√
d1/(2ε2)e. ut

3.2.2 The complete algorithm DR+

The complete algorithm DR+ uses both Abf (Section 3.1) and DR (Sec-
tion 3.2.1) as subroutines, depending on the optimal packing of the request
sequence. Based on the optimal packing, two approximate packings are de-
fined. In order to define these packings, we first need to distinguish between
ε-hard and ε-easy bins as follows.

Definition 4 A bin is ε-hard if its two largest items x, y satisfy x, y > 1/3
and x+ y ≥ 1− ε. Otherwise, we call the bin ε-easy.

The following lemma implies that the items packed in a set of ε-easy bins
can be packed into a set of ε-desirable bins without much overhead. This is
accomplished by removing items from bins so as to make them ε-desirable.
New bins are opened for these removed items in such a way that the items
removed from 3 bins in the ε-easy packing account for 4 bins in the ε-desirable
packing.

Lemma 11 For ε < 1/7, given a set of items packed in E ε-easy bins, it is
possible to obtain an ε-desirable packing of these items using at most 4/3·E+2
bins.

Proof The proof consists in two steps. In step 1, for each ε-easy bin that is not
ε-desirable, we remove a subset of items of total size at most 1/3 such that the
resulting bin becomes ε-desirable. In step 2, we pack the removed items into
ε-desirable bins.

Step 1: Let b be an ε-easy bin that is not ε-desirable. In particular, since it is
not class 0 ε-desirable, its total size is at least 1− ε.
1. If there exists an item y in b with size in (ε, 1/3], we remove y from b,

making it class 0 ε-desirable.
2. Otherwise, if b includes any set S of items with total size in (ε, 2ε], we

remove S from b, making it class 0 ε-desirable. Note that such a set S
contains a set of items of total size at least ε so that the size of each item
is at most ε (note that if S contains an item larger than ε, we would be in
case 1)
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3. Otherwise the largest item x in b has size at least 1/3. Let S be the re-
maining items in b.
(a) If the size of S is at most ε, we remove S, making b a class 0 or class 1

ε-desirable bin.
(b) Otherwise, the size of S is more than 2ε. Let y ∈ S be the second largest

item in b. The size of y cannot be less than or equal to ε, otherwise all
other items in S are also smaller than or equal to ε and we would be in
Case 2. Since we are not in case 1 and y is larger than ε, we conclude
that y is bigger than 1/3. Since b is not ε-hard, x+ y < 1− ε. Let T be
the set of all items in b except for the two largest items x and y. Since
x and y are larger than 1/3, the total size of items in T is at most 1/3.
Then we remove T , and b becomes a class 0 ε-desirable bin.

Step 2: Among the item sets removed in Step 1, we distinguish (i) singletons
of size (1/3− ε, 1/3] and (ii) other sets. The sets of class (i) are packed 3 by 3
into new class 0 or class 3 ε-desirable bins. The last opened bin may have less
than 3 items.

For all other items sets (case ii), we proceed similarly except that we create
class 0 ε-desirable bins, by the following argument. Since ε < 1/7, we obtain
that 3 item sets of size at most 2ε have total size less than 6ε < 1− ε. ut

Similarly, we can convert ε-hard bins to ε-desirable bins.

Lemma 12 For ε < 1/7, given a set of items packed in H ε-hard bins, it is
possible to obtain an ε-desirable packing of these items using at most 3/2·H+2
bins.

Proof Define two class of ε-hard bins depending on whether the second largest
item (i) is in the range [1/2 − ε, 1/2] or in the range (1/3, 1/2 − ε). For each
pair of bins b1 and b2 from the same class C, we open a new bin and place the
second largest items of b1 and of b2. As a result, the bins b1 and in b2 become
class 0 ε-desirable bins. The new bin is either class 0 ε-desirable, or if its empty
space is at most ε, then it contains two items in the range [1/2 − ε, 1/2] and
hence is class 2 ε-desirable. Overall, for every two original ε-hard bins, three
bins are created in the ε-desirable set of bins. The additive factor of 2 comes
from the parity of the two classes of ε-hard bins in the original set.

The result in the above lemma is tight in the sense that there are instances
of ε-hard bins so that converting them to any ε-desirable packing increases the
number of bins by a factor of 3/2. For example, consider a packing formed
by H bins, each including two items of sizes 1/2 + ε/2 and 1/2 − ε/2. Any
ε-desirable packing has H bins for large item of size 1/2 + ε/2 (without any
other item), while any other bin can have at most two items of size 1/2− ε/2.
So, any ε-desirable packing has at least 3/2 ·H bins.

Fix an arbitrary packing POff(σ) and define H and E to be the number
of ε-hard and ε-easy bins in POff(σ), respectively, and let γ denote the ratio
H /E . In the following lemma, we define P1 based on POff(σ) using Lemmas
11 and 12, and we approximate P1 with DR.
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Lemma 13 For any request sequence σ and an ε < 1/10, algorithm DR has
a competitive ratio of 9γ+8

6γ+6 + ε and uses advice of size O(23.7(1+γ)/ε · log(γ/ε)).

Proof We create an ε′-desirable packing P1 with parameter ε′ = ε/(1 + γ)
from POff(σ) and then use the DR algorithm in order to achieve the claimed
competitive ratio. First, by Lemma 11, the E ε′-easy bins can be converted
into at most 4/3 · E ε′-desirable bins (with some additive constant number of
bins). Next, by Lemma 12, the H ε′-hard bins can be converted into at most
3/2 ·H ε′-desirable bins.

From Lemma 8, DR can be used to approximate P1 in an online manner
by opening at most (1.5γ + 4/3 + ε′)E + c bins (where c is a constant). Note
that the cost of Opt is H + E = (1 +γ)E . Hence, the competitive ratio of the

online algorithm is at most 1.5γ+4/3+ε′

1+γ = 9γ+8
6γ+6 + ε. Further, from Lemma 8,

the advice used is O(23.7/ε
′ · log(1/ε′)) = O(23.7(1+γ)/ε · log(γ/ε)). ut

Next, we define the packing P2 based on POff(σ) and the online algorithm
that approximates it. Recall that P2a is a packing of the items with size at
least 1/3 and P2b is an ε-desirable packing of the items with size no more than
1/3. To approximate P2a, since it consists of items of size larger than 1/3, we
use Abf (Section 3.1). To approximate P2b, since all the bins are ε-desirable,
we use the online algorithm DR. This defines an online algorithm that opens
at most ((1.3904+3ε′)γ+1.8349+ε′) ·E bins. The formal details can be found
in the proof of the following lemma.

Lemma 14 There is an online algorithm that uses advice of size O(211.1/ε log(1/ε))
and achieves a competitive ratio of 1.3904γ+1.8349

γ+1 + ε.

Proof Given the packing POff(σ), we first create the new packing P2 consisting
of two distinct packings P2a and P2b. The packing P2a consists of the items
larger than 1/3 and P2b consists of the items smaller than or equal to 1/3
and forms an ε′-desirable packing with parameter ε′ = ε · (γ + 1)/(3γ + 1). To
transform the packing POff(σ) into P2, we first consider the ε′-hard bins and
then the ε′-easy bins.

ε′-hard bins: For the H ε′-hard bins, the total size of items smaller than 1/3
in each bin is at most ε′. The items smaller than 1/3 from each one of the 1

ε′−1
ε′-hard bins can be packed into a new bin with an empty space of size more
than ε′. This creates ε′

1−ε′H < 2ε′H new bins that are included in P2b. Note
that these new bins include an empty space of size ε > ε′ and are ε′-desirable
of class 0. Further, the original H ε′-hard bins now contain only items of size
at least 1/3 and are included in P2a.

ε′-easy bins: We split the E ε′-easy bins into four sets as follows.

E0: No items of of size more than 1/3.
E1a: A single item in the range (1/3, 1/2].
E1b: A single item in the range (1/2, 1].
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E2: Two items in the range (1/3, 1].

For each class of ε′-easy bins, the items are repacked such that some of
the bins belong to the packing P2a and others belong to the packing P2b as
follows.

E0: By Lemma 11, the bins of E0 can be repacked into 4/3 · |E0| ε′-desirable
bins that are included in P2b.

E1a: If the parity of E1a is odd, we add an empty bin to the set E1a. For
each pair of bins in E1a, the two items of size in the range (1/3, 1/2] are
moved into a new bin that is included in P2a. The original bins are class 0
ε′-desirable bins and included in P2b. Overall, this will contribute at most
1/2 · |E1a|+ 1 bins to P2a and |E1a| bins to P2b.

E1b: If the parity of E1b is odd, we add an empty bin to the set E1b. For every
pair of bins in E1b, the items smaller than 1/3 are packed into a new bin.
After packing the new bins, by Lemma 11, the items can be repacked into
4/3 ·1/2 · |E1b| = 2/3 · |E1b| bins that are included in P2b. The original bins
only contain items with size greater than 1/3 and are included in P2a.

E2: Up to two empty bins are added to E2 so that |E2| mod 3 = 0. For every
three bins in E2, all the items with size less than 1/3 are packed in a new
bin. Similar to E1b, after packing the new bins, by Lemma 11, the items
can be repacked into 4/3 · 1/3 · |E2| = 4/9 · |E2| bins that are included in
P2b. The original bins only contain items with size greater than 1/3 and
are included in P2a.

Approximating P2: Overall, (omitting the additive constants) the number of
bins in the new packing is:

H + 1/2 · E1a + E1b + E2︸ ︷︷ ︸
P2a: bins with items>1/3

+ 2ε′H + E1a + 2/3 · E1b + 4/9 · E2 + 4/3 · E0︸ ︷︷ ︸
P2b: ε

′-desirable bins with items≤1/3

Note that in the above packing, all the items with size more than 1/3 are
in P2a and the rest are in P2b. Hence, the size of an item determines to which
packing it belongs. The algorithm applies Abf to place items of size larger
than 1/3 separately from other items. The result will be an approximation of
P2a and requires 1 bit of advice. By Theorem 2, at most 1.3904 · (H + 1/2 ·
E1a + E2 + E0) + E1b bins are opened for items larger than 1/3. Note that
E1b corresponds to the set H in Theorem 2. In order to pack the items of P2b,
the algorithm uses DR. From Lemma 8, DR will open at most (1+ ε′)(2ε′H +
E1a+1/2·E1b+1/3·E2+E0) bins and uses advice of size O(23.7/ε

′
log(1/ε′)) =

O(211.1/ε log(1/ε)) for ε′ = ε · (γ + 1)/(3γ + 1) > ε/3.
The number of bins in the packing of the online algorithm (omitting addi-

tive constants) is at most:

1.3904(H + 1/2 · E1a + E2) + E1b + (1 + ε′) · (2ε′H + E1a + 2/3 · E1b + 4/9 · E2 + 4/3 · E0)

≤ (1.3904 + 3ε′)H + (1.6952 + ε′)E1a + (1.67 + ε′)E1b + (1.8349 + ε′)E2 + (1.334 + ε′)E0

≤ (1.3904 + 3ε′)H + (1.8349 + ε′) · E
= ((1.3904 + 3ε′)γ + 1.8349 + ε′) · E



24 Angelopoulos, Dürr, Kamali, Renault, Rosén

We conclude that the competitive ratio of the algorithm is at most

(1.3904 + 3ε′)γ + 1.8349 + ε′

γ + 1
=

1.3904γ + 1.8349

γ + 1
+ ε.

ut

We are now ready to prove the main result of this section that shows that
advice of constant size (with respect to the length of the input sequence) is
sufficient to achieve a competitive ratio arbirarily close to 1.47012.

Theorem 3 Algorithm DR+ uses advice of constant size (dependant on ε)
and has a competitive ratio of at most 1.47012 + ε.

Proof We consider two cases depending on the value of γ. Define γ∗ := 5015/1096 ≈
4.7633. If γ ≤ γ∗, then, using DR, we approximate the packing P1 as described
in Lemma 13; this gives a ratio of at most 9·γ∗+8

6·γ∗+6 + ε < 1.470112+ ε. If γ > γ∗,
then, using DR and Abf, we approximate the packing P2 as described in
Lemma 14; the competitive ratio is at most 1.3904·γ∗+1.8349

γ+1 + ε < 1.47012 + ε.

In both cases, the advice is of constant size (Lemmas 13 and 14) that depends
on ε. ut

4 A 7/6 lower bound for sublinear-sized advice

In this section, we prove that any online algorithm with o(n) bits of advice has
a competitive ratio of at least 7/6. Our construction is inspired by the one given
in [13], which showed a lower bound of 9/8. Our main contribution is a different
charging scheme from the one used in [13]. Both lower bounds use a reduction
from a variant of the binary string guessing problem (2-SGKH) [16,7]. Let
e(X) be the number of bits required to encode a number X in a self-delimited
fashion. One way to do that is to write the value of dlog(dlog(X + 1)e + 1)e
in unary, the value of dlog(X + 1)e in binary, and the value of X in binary.
The resulting self-delimited code will have length e(X) = dlog(X + 1)e +
2dlog(dlog(X + 1)e+ 1)e+ 1.

In 2-SGKH, the online algorithm must guess an n-length bitstring bit-by-
bit. The value of each bit is revealed after the algorithm makes its guess and
the algorithm incurs a cost of 1 for each incorrect guess. For a given value of
α in the range [1/2, 1), let bα(n) = (1 + (1 − α) log(1 − α) + α logα)n. Note
than b(n) is a linear function of n.

Lemma 15 ([7]) Any online deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly more than αn bits, for 1/2 ≤ α < 1, requires at
least bα(n) bits of advice.

We use the binary string guessing problem with promise (2-SGKHβ) that
is parameterized by β. This problem is the same as 2-SGKH except that the
input string is guaranteed to have exactly a β fraction of 0s (i.e., βn in total).
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Intuitively, this restriction reduces the space of possible request sequences thus
making the problem easier in some sense; however, as shown in the following
lemma, a linear amount of advice is unavoidable in order to guess more than
max {β, 1− β} bits correctly.1

Lemma 16 Any deterministic algorithm for 2-SGKHβ that is guaranteed to
guess correctly more than αn bits, for max {β, 1− β} < α < 1, requires at
least bα(n) bits of advice, where γ = min {β, 1− β}.

Proof The proof is very similar to the proof of Lemma 9 in [13]. Suppose, by
way of contradiction, that there is a family of algorithms Aβ for 2-SGKHβ

that correctly guess more than αn bits and uses fewer than b(n) advice bits.
We will show how to use Aβ so as to obtain an online algorithm B for the
2-SGKH problem. The initial e(γn) + 1 bits of the advice tape for B contain
a bit that indicates whether 0 or 1 is the least frequent bit in the bitstring, as
well as e(γn) bits for encoding the number of bits of the least frequent value.
With this information, B is able to determine β for this instance of 2-SGKH.
The remainder of the advice string contains the bits required by Aβ to solve
the instance of 2-SGKH. Algorithm B runs Aβ on this instance and outputs
the guesses of Aβ and, therefore, B will be correct whenever Aβ is correct. By
our initial assumption, B is correct on more than αn bits and uses fewer than
b(n) + e(γn) + 1 = (1 + (1 − α) log(1 − α) + α logα)n bits of advice in total.
However, by Lemma 15, this is a contradiction and the lemma follows. ut

Let B denote any algorithm for the bin packing problem; we will show
how to obtain an online algorithm A for 2-SGKH1/2 that constructs a request
sequence online based on its input and uses the output of B on this sequence
so as to generate its output. Given an instance I of the 2-SGKH1/2 problem
with a bitstring of length n, we construct a request sequence σI for the online
bin packing problem with length 2n as follows. The sequence consists of a
prefix of n/2 items, a central part of n items and a suffix of n/2 items. All
n/2 items of the prefix have a size of 1/2 + ε, where ε is an arbitrary small
positive value. The n central items have distinct sizes in the range (1/2 −
2ε, 1/2− ε). (The exact manner in which their size is determined is explained
subsequently.) Among these n items, we refer to the smallest n/2 items as
small items and to the remaining items as large items. We emphasize that
this terminology is independent of Section 2. The n/2 items of the suffix are
the exact complements of the small items, i.e., for any small item of size x,
there is an item of size 1− x in the suffix. We observe that there is a packing
of σ that uses n bins. The n/2 small items are packed with their complements
in the suffix; moreover, the n/2 large items are packed each with an item of
the prefix. Since there are n items of size strictly more than 1/2, this packing
is optimal.

1 Technically, the statement of Lemma 16 is very similar to Lemma 9 in [13]. We note,
however, that the latter is correct only when the number of 0s is n/2. To avoid any ambiguity,
the statement of Lemma 16 is parameterized by β, as opposed to Lemma 9 in [13].
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The size of each of the n central items of σ is determined as in [13], using
an iterative process. More precisely, we do so by maintaining an interval which
is initially set to (1/2− 2ε, 1/2− ε). The endpoints of the interval (except the
initial values) indicate the largest small item and the smallest large item among
the revealed items. The size of the next item is in the middle of the interval,
e.g., the first item has size 1/2− 1.5ε. Let bi be the i-th such item and let the
current interval be (x, y). Then, the size of bi is (x+ y)/2. If ri ∈ σB is 0, then
bi is defined to be a small item and the interval is updated to ((x + y)/2, y).
Otherwise, ri is 1, bi is defined to be a large item, and the interval is updated
to (x, (x+ y)/2). Note that the size of the item bi+1 reveals to the algorithm
B whether bi was small or large. This relates back to 2-SGKH1/2, where the
bit values are revealed after the guesses.

Note that B must open a bin for the n/2 items of the prefix of σB as they
all have a size greater than 1/2. The manner in which B packs each of n central
items will determine the n guesses of A. Let bi be the i-th such item. Algorithm
B has 3 options for packing bi: (1) to open a new bin for bi; (2) to pack bi in a
bin with an item from the prefix; or (3) to pack bi in a bin with some item bj ,
j < i. If B chooses option (1), the item is labelled as small and A guesses 0. If
B chooses either option (2) or (3), the item is labelled as large and A guesses
1.

The following lemma relates the number of incorrect guesses (or number of
mislabeled items) to the number of extra bins opened (in comparison to Opt).
We will use the same accounting technique as in [13], but a new mapping of
incorrect guesses to mislabellings, which leads to an improved bound. More
precisely, we show that each extra bin corresponds to 3 mislabellings (as op-
posed to [13], in which the corresponding number equals 4). Let fn denote the
family of all possible request sequences σB, as described above, for all possible
bitstrings of length n with exactly n/2 0s.

Lemma 17 Suppose that there is an algorithm B that uses b(n) bits of advice
and opens at most Opt(σ) + c bins for all σ ∈ fn. Then, there exists an
algorithm for the 2-SGKH1/2 problem that uses b(n) bits of advice and makes
at most 3c errors.

Proof Let A be the online algorithm described above that uses B to solve
instances of the 2-SGKH1/2 problem. Note that in the reduction a mislabelling
of an item is equivalent to a wrong guess by A. Thus, we can relate the number
of errors of A to the additional bins opened by B as compared to POPT (σ) by
means of the mislabeled items.

We observe that, without loss of generality, B places the items of the suffix
in a bin with its complement, if possible, otherwise it opens a new bin. In
addition, we can assume that every small item, for which B opened a bin, will
be packed with its complement. As a consequence, the additional bins opened
by B are exactly those that were opened for a large item.

Given the three options of the algorithm, we distinguish between 3 types
of mislabellings: (1) a large item opens a new bin; (2) a small item is packed
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Fig. 3 Illustration of the lower-bound construction. The top figure shows sequence σ, with
the optimal packing depicted in the middle figure. The bottom figure depicts a packing
produced by B and illustrates the mislabellings and the mappings defined in the proof of
Lemma 17. Mislabelled items are colored gray.

in a bin with a prefix item; and (3) a large item is packed with a small item
(see Figure 3 for an illustration).

Next, we show how to map every mislabelling to an additional bin (in com-
parison to POPT (σ)) in such a way that at most 3 mislabbelings are mapped
to each additional bin.

First, we match all mislabellings of type 2 with large items that are not
packed with prefix items, see figure 3. This is possible because for every large
item not packed with a prefix item, there is a prefix item not packed with a
large item, and some of those may be packed with a small item.

Second, we assign mislabellings to additional bins, as follows. A type 1 mis-
labelling is mapped to the bin opened for the large item. A type 2 mislabelling
is assigned to the additional bin hosting the large item to which it is mapped.
A type 3 mislabelling is mapped to the bin containing the corresponding small
item.

Third, we consider three different configurations of the additional bins
opened by B, and count the number of mislabellings assigned to them. All
configurations contain a large item, for which the bin was opened, which is
(1) alone; or (2) packed with a small item; or (3) packed with a large item.
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All configurations correspond to a distinct type 1 mislabelling, plus possibly a
type 2 mislabelling. In configuration (2), we have to count an additional type
3 mislabelling. In configuration (3), the second large item (i.e., the item that
was placed last in the bin) is correctly labelled, but there may be a second
type 2 mislabelling assigned to it.

In summary, there is a mapping from mislabellings to additional bins, such
that every bin is the image of at most 3 mislabellings. This completes the
proof of the lemma. ut

We can now show that Ω(n) advice bits are necessary to obtain a compet-
itive ratio better than 7/6.

Theorem 4 Any deterministic online algorithm with advice for the bin pack-
ing problem requires at least bα(n)−e(n/2)−1 bits of advice to be ρ-competitive,
1 < ρ < 7/6, where α = 4− 3ρ.

Proof Let B be an algorithm for the bin packing problem with a competitive
ratio of ρ that uses b(m) bits of advice, where m is the length of the request
sequence. For a request sequence σ and Opt(σ) = n, B uses at most ρn =
n + (ρ − 1)n bins. By Lemma 17, this implies that there exists an algorithm
A for the 2-SGKH1/2 problem that uses b(2n) bits of advice and makes at
most 3(ρ − 1) errors on an input string of length n. That is, A is correct on
n− 3(ρ− 1)n = (4− 3ρ)n bits. For α = (4− 3ρ), the bounds on ρ imply that
1/2 < α < 1. The claim follows by applying Lemma 16 with α = (4− 3ρ) and
β = 1/2. ut

5 Conclusion

In this work we studied the effect of constant-size advice on the performance
of online bin packing algorithms. On the positive side, we introduced and ana-
lyzed two different online algorithms: a relatively simple algorithm (RedBlue)
with competitive ratio 1.5+ε, and a more complex algorithm (DR+) with com-
petitive ratio 1.47012 + ε. We note that algorithm RedBlue converges to 1.5
quicker than the more complicated algorithm DR+; in particular, RedBlue
outperforms all online algorithms with 16 bits of advice. On the negative side,
we showed that advice of linear size is required to achieve a competitive ratio
better than 7/6.

The obvious direction for future works is to improve the upper and lower
bounds on the competitive ratio. For the upper bound, we note that that
breaking the barrier of 1.5 on the competitiveness of online algorithms (and
thus also the bound established in this paper) may indeed require an involved
approach. More precisely, even for the special case in which all items have
size greater than 1/3, almost all classic bin packing algorithms such as Best-
Fit, NextFit, FirstFit, Harmonic have competitive ratio equal to 1.5. For
the lower bound, it would be interesting to consider a further strengthening
of the reduction from the string guessing problem. More precisely, it would
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be interesting to apply the weighted counting scheme of Mikkelsen [27] to a
different request sequence than the one used in this paper as well as in [13].
For instance, one could consider request sequences similar to the one of Sec-
tion 4 which, however, do not have a prefix of items of size larger than 1/2.
This would be beneficial, since the cost of the optimal solution would not be
inflated by the presence of such items.
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5. Bianchi, M.P., Böckenhauer, H., Brülisauer, T., Komm, D., Palano, B.: Online minimum
spanning tree with advice - (extended abstract). In: R.M. Freivalds, G. Engels, B. Cata-
nia (eds.) SOFSEM 2016: Theory and Practice of Computer Science - 42nd International
Conference on Current Trends in Theory and Practice of Computer Science, Harrachov,
Czech Republic, January 23-28, 2016, Proceedings, Lecture Notes in Computer Science,
vol. 9587, pp. 195–207. Springer (2016). DOI 10.1007/978-3-662-49192-8 16
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