
Adaptive Packet Routing for Bursty Adversarial Traffic

William Aiello∗ Eyal Kushilevitz† Rafail Ostrovsky‡ Adi Rosén§

Abstract

One of the central tasks of networking is packet-routing when edge bandwidth is
limited. Tremendous progress has been achieved by separating the issue of routing
into two conceptual sub-problems: path selection and congestion resolution along the
selected paths. However, this conceptual separation has a serious drawback: each
packet’s path is fixed at the source and cannot be modified adaptively en-route. The
problem is especially severe when packet injections are modeled by an adversary, whose
goal is to cause “traffic-jams”.

In this paper, we consider this adversarial setting, motivated by the “adversarial
queuing theory” model of Borodin et al. [BKR+]. More precisely, we consider an
adversary who injects packets, with only their destinations specified, into network
nodes in a continuous manner subject to certain limitations on the injection rate. The
question whether it is possible to deal with such an adversary and to design protocols
that would “discover” routes which avoid “traffic jams” so that nodes only store a
bounded number of packets, was left as an open problem by Andrews et al. [AAF+]
(who deal with the “non-adaptive” case where the adversary provides routes for the
packets). In the present paper, we resolve this open problem. In particular, we present a
simple, deterministic, local-control protocol that applies to any network topology. Our
protocol guarantees that, for any injection sequence generated by the adversary, the
buffers at the nodes are polynomially-bounded and that each packet has a polynomially-
bounded delivery time.

∗AT&T Shannon Laboratory, C215 Bldg 103, 180 Park Avenue, Florham Park NJ 07932 e-mail:
aiello@research.att.com

†Dept. of Computer Science, Technion, Haifa, Israel. e-mail: eyalk@cs.technion.ac.il; Part of this research
was done while visiting DIMACS. URL:http//www.cs.technion.ac.il/∼eyalk

‡Telcordia Technologies (formerly Bellcore) MCC-1C365B 445 South Street, Morristown, NJ 07960-6438
e-mail: rafail@research.telcordia.com

§Dept. of Computer Science, University of Toronto, Toronto, Canada. Part of this research was done
while visiting DIMACS. e-mail: adiro@cs.toronto.edu

0

1 Introduction

Packet routing is one of the central issues in the areas of parallel computing and networking
(see a survey of Leighton [L]). In this paper, we consider packet routing in the setting
of arbitrary synchronous networks. The study of packet routing in this setting can be
categorized along two different axes: (1) whether path selection is non-adaptive (i.e., each
packet’s path through the network is fixed at its source) or adaptive (i.e., each packet’s path
through the network can be modified en-route); and (2) whether the injection of packets is
static (i.e., a finite number of packets are injected once and then routed to completion), or
dynamic (i.e., packets arrive continuously and are routed continuously).

Non-adaptive vs. adaptive path selection: In non-adaptive routing, the entire path
of each packet is chosen before the packet crosses its first edge. Thus, any contention
resolution protocol at the nodes cannot influence the packets’ paths. This feature allows the
routing algorithm to be divided into two separate steps: selection of paths for packets and
contention resolution at edges congested by the selected paths [LMR]. Separating the path
selection from the contention resolution nicely models virtual circuit routing or (randomized)
oblivious routing. Moreover, this separation is extremely helpful from the standpoint of
algorithmic design and analysis. Indeed, there is a large body of work on path selection and
contention resolution for minimizing queue size and latency, that uses this approach. See,
for example, [ST, AAP, KT, KPP] for path selection and [AAF+, BFU, LMR, LMRi, PG,
PG2, RT, OR] for packet-scheduling.

The non-adaptive approach, however, does not allow packets to dynamically adapt to
congestion and faults along their routes. In adaptive path routing, the contention resolution
protocol of an intermediate node may “reroute” a packet in an attempt to achieve smaller
packet latency or higher network throughput. For example, adaptive routing algorithms for
general networks appear in work on end-to-end communication [AMS, AGR, AAG+], and in
work on multicommodity flow [AL, AL2]. There, the paths that the packets follow depend
on the local traffic conditions.

Static vs. dynamic routing: Until recently, routing algorithms which afforded worst-
case analysis on latency and queue size were limited to the static routing problem. There
is a long history of work in this area. See, for example, [L, LMR, LMRi, RT, OR]. The
dynamic routing problem can be solved using a static routing algorithm by running the static
routing algorithm periodically, storing packets injected during a given run of the algorithm,
and using those packets as input for the next run. However, as this approach will result
in large packet latencies and in inefficient use of network resources, better dynamic routing
algorithms are desirable.

In analyzing routing algorithms for dynamic routing problems, there are generally many
ways to model the problem. First, a parameterized model of the packet injections needs to
be specified. Also, the analysis can be done assuming either unlimited or limited buffer sizes.
In the case of unlimited buffer sizes, the proper goal is generally to determine the maximum
buffer size obtained as a function of the injection parameters. In the case of limited buffer
sizes, the goal is to determine the fraction of packets that are dropped as a function of the

1

injection parameters and the buffer sizes. In this paper, we assume unlimited buffer sizes.
Usually, packet injection is modeled by a probabilistic process, such as a Poisson arrival

process at each node with destinations chosen independently and uniformly at random. In
such cases the performance is often measured in terms of the expected latency and queue size.
See, for example, [BU, BFU, HB, HW, SV, STs, M, Mi]. The first attempt to develop a model
of dynamic routing for analyzing the queue size and latency in the worst-case was made by
Cruz [C, C2]. In his model, one assumes arbitrary virtual circuits are established each with
a source of fixed rate (with bounded bursts allowed) subject to the constraint that the total
rate of all sessions using a given edge is strictly less than 1. Borodin et al. [BKR+] introduce
“adversarial queuing theory” which models general non-adaptive path routing. In their
model, packets are not restricted to virtual circuits—each packet is given an arbitrary path
at injection by an adversary. The adversary is characterized by a rate constraint, ε > 0: in
every window of time of any length t, the number of paths corresponding to packets injected
in that window of time which pass through any edge must be at most d(1 − ε)te. Several
bounds on the buffer sizes of several protocol are derived in [BKR+] using this model.

In [AAF+] the model of [BKR+] is generalized to allow bounded bursts. Now the adver-
sary is characterized by both a rate parameter ε > 0 and a window parameter w as follows:
in every window of time of size w, the number of paths corresponding to packets injected in
that window which pass through any edge must be at most (1 − ε)w. Note that the larger
the value of w, the larger the bursts of injections of packets/paths using specified edges the
adversary is allowed. The maximum queue size of a protocol becomes a function of both the
network size and the parameters w and 1/ε. 1 Andrews et al. show that several well-known
and simple deterministic greedy queuing protocols yield queues (and latencies) which are
bounded. However, these bounds are exponentially large. They also describe a randomized
protocol with expected polynomial queue size and latency.

Our results: We consider the setting of dynamic and adaptive packet routing without
probabilistic assumptions on the injection of packets. One of the main open problems in
[AAF+] was to adapt the adversarial routing model of the non-adaptive routing problem to
an adversarial routing model for the adaptive routing problem (i.e., the adversary injects
packets with specified destinations but without specified paths) and to find a universal
protocol that keeps buffers bounded in this model.

In this paper we resolve this problem. Our model is a natural extension of the “adversarial
queuing theory” model [BKR+, AAF+] to the setting of adaptive path selection. Briefly, we
consider the same (w, ε) adversaries as in the non-adaptive case; that is, the limitation on the
sequence of injections is that there exist paths for the packets injected in every consecutive
w time steps that do not use any edge more than (1 − ε)w times. The difference is that in
the adaptive setting these paths are not provided to the protocol with the packets; only the
destination is specified. For this model we present a protocol to route the packets that can
be applied to any network and to any sequence of injections generated by a (w, ε) adversary

1The burst models of [C, C2] and [AAF+] are the same for ε > 0. However, due to the fact that the
[C, C2] adversary is limited to virtual circuits, “traffic shaping” can be applied at the source so that the
traffic across edges is limited to a maximum rate as in [BKR+].

2

with any w > 1 and any ε > 0. Moreover, our protocol is distributed and deterministic, and
it requires buffers of only polynomial size (in the size of the network and the parameters w
and min(1/ε, w)).

Actually, we present three protocols with polynomial sized buffers. They differ in what is
assumed and what is achieved. The first and simplest protocol we denote Basic. It assumes
that each node knows its neighbors’ state at the beginning of each time step and achieves
(polynomially) bounded queue sizes. The second we denote DBasic. In this protocol we do
not assume knowledge of neighbors’ state, and we use O(log n) control bits are piggybacked
on each packet. We show that each node is able to maintain a sufficient approximation
of its neighbors’ state so that the queues remain polynomially bounded as in Basic. The
third protocol, BoundedDT, is a modification of DBasic which guarantees a bound on
the latency of each injected packet in addition to a (polynomial) bound on queue sizes.

Our techniques and related work: Our algorithms use and extend several previous
techniques. In particular they use “diffusion-type” techniques similar to those used, for
example, for communication networks in [AGR, AMS, AAG+], and continuous or discrete
load balancing (see [AAMR, GM, GL+, M]). As such, our algorithms are not “greedy” in
the sense of [AAF+].

Our protocols and analyses are also related to the [AL, AL2] algorithms. While these
algorithms were designed primarily as sequential multicommodity flow algorithms, they can
be interpreted as distributed, local control routing algorithms. Their basic routing protocol
assumes that each origin and destination pair, (u, v), has a fixed number of packets injected
per time step, du,v, subject to the following constraint. For each packet injected, a path can
be specified such that no edge carries more than 1− ε times its capacity. The protocol and
analysis assume that each node knows each (non-zero) du,v. This basic protocol and analysis
can be extended as follows [L2]. For a fixed window of time of size w, and for each origin
and destination pair, (u, v), the adversary can inject d̄u,vw packets in u destined for v in a
window of size w subject to the following constraint. For each packet injected in a window,
a path can be specified such that no edge carries more than 1 − ε times its capacity times
w. The protocol assumes that each node knows each (non-zero) d̄u,v (the analysis makes use
of the window size w). In our model of adversarial injection the number of packets injected
with origin, destination (u, v) in one window need not have any relationship to the number
of such packets injected in another window. Moreover, the algorithms in [AL, AL2] make
use of the knowledge of the the average injection rate, and thus are not able to handle our
more general injection adversary.

The algorithms in [AL, AL2] assume that each node knows its neighbors’ states (like our
first protocol Basic). Maintaining this information in general networks may require a very
large number of control bits. Thus, these algorithms do not yield fully distributed protocols.
Our protocol DBasic uses estimates on the states of neighboring nodes, rather than using
their exact states, and maintains this information using O(log n) control bits piggybacked
on each packet.

Like the protocols of [AL, AL2], our Basic and DBasic protocols are robust even if the
network is changing dynamically. We allow the adversary to control the capacity of each

3

edge. As before the adversary also injects packets. We require that in a given window, the
adversary can specify paths for the injected packets in such a way that the average capacity
of an edge in the window is not exceeded. See Section 5 for more details.

Like our protocols Basic and DBasic, the algorithms in [AL, AL2] are not guaranteed
to deliver all injected packets to their destination. Our BoundedDT protocol solves the
problem of guaranteeing delivery of all packets and, in fact, bounds the latency of delivery.
Briefly, protocol BoundedDT runs protocol DBasic for most time steps but reserves a few
time steps for a static routing protocol that will deliver packets that stayed in the network
“for too long”. Once the static routing protocol has completed delivering its packets, all the
packets in the queues of DBasic are transferred to the queues of the static routing protocol.
Since the queues of DBasic are bounded, there is a bounded number of packets that are
being transfered, and the static protocol can route these packets in a bounded amount of
time (see Section 4 for more details).

Organization: In Section 2 we give some definitions including a formal definition of the
adversary. In Section 3, we give our basic protocol. This protocol solves the problem in that
it requires only polynomial size buffers but it does not guarantee bounded delivery time for
the packets. In Section 4 we modify the protocol so as to have bounded delivery time as
well. Section 5 briefly discusses several extensions.

2 The Model

We model a communication network by a graph G = (V,E), where |V | = n and |E| = m.
Each node v ∈ V models a processor, and each edge e ∈ E models a link between two
processors. The processors store and forward packets. Packets at each node are stored in
buffers. The network is synchronous; we number the time steps, known to all processors,
by t ∈ IN = {1, 2, 3, . . .}. We model each edge as bidirectional, i.e., in each time step each
edge can deliver one packet in each direction (See Section 5 for extensions to capacitated
edges, directed edges, and faulty edges). We sometimes consider windows of time, which are
continuous sequences of time steps. We denote by W t

w the time window from the start of
time step t to the end of time step t + w − 1.

Each time step is conceptually partitioned into three sub-steps: first, packets may be sent
between neighbors across edges, at most one packet per edge per time step in each direction;
next, each node accepts all new packets injected from the outside; finally each node removes
all packets that have reached their destination. We adopt the following convention on the
notation of times. For times which are the beginning of a time step we use the simple notation
t (without any primes). For times that are the end of a time step we use the notation t′.

New packets may be injected into the network at each time step. Each packet is injected
into an arbitrary source processor s, and has some arbitrary destination processor d that
it has to reach. Thus, a packet p = (s, d) is specified by the node into which it is injected
and the destination of the packet. No route is given. The sequence of injected packets is

4

controlled by an adversary.

Definition 1: We say that the adversary injecting packets is an A(w, ε) adversary, for some
ε > 0 and some integer w > 1, if the following holds: for any time t ∈ IN, let It be the set of
packets injected during the w time steps from t to t + w− 1, inclusive. Then, the adversary
can associate with each packet p = (s, d) ∈ It, a simple path from s to d, such that each
direction of every edge e ∈ E is used by these paths at most b(1− ε)wc times.

Remark: A packet p injected at time t′ will be in It for all t, t′ ≤ t < t′ + w. The
paths that the adversary selects for p in the definition above need not be the same for all
t, t′ ≤ t < t′ + w. This is in contrast to the adversarial model for non-adaptive routing in
which the adversary selects a path which the packet has to follow, and which cannot change
for each window.

3 The Main Protocol

In this section we present our main protocol. This protocol guarantees that the buffers at
each node remain bounded for any input sequence given by any A(w, ε) adversary. That is,
the size of the buffers is at most some (polynomial) function of the size of the network and
the parameter min(w, 1/ε) (although the values of w and ε are not known to the protocol).
In Section 4, we extend this protocol to guarantee that each packet is delivered within a
bounded amount of time. Our protocols are local in nature; that is, decisions are taken
in each processor separately, based on the information the processor has in its node only.
This information includes the sizes of its own buffers as well as information gathered from
control bits piggybacked on the packets. Our protocol uses dlog ne+7 control bits per packet
(the main protocol given in Section 3 uses dlog ne + 4 control bits per packet). Note that
dlog ne bits are inherently required to transmit the destination of the packet. For clarity
of exposition, we first present our protocol with the assumption that each node knows the
sizes of buffers on the other ends of its adjacent edges (and does not use any control bits
except for specifying the destination). In Section 3.3 we show how to modify the protocol
and proof so as to eliminate this assumption. Also, we note that the protocol need not have
any topological information about the underlying graph (such information will be needed for
the protocol presented in Section 4).

3.1 The Protocol

The protocol maintains several buffers in each node v ∈ V : for each edge e = (v, u) ∈ E
adjacent to v, and for every destination d ∈ V , the protocol maintains a buffer for packets
bound for d. Thus, there is a buffer of packets for each triplet (v, u, d), that we denote Qv,u,d.
Denote the set of packets in Qv,u,d at time t by Qt

v,u,d and by qt
v,u,d the size (i.e., number of

packets) of the buffer Qv,u,d at the time t (i.e., qt
v,u,d = |Qt

v,u,d|). At each destination d, we

5

consider the value of qt
d,u,d, for any u ∈ V and any time t which is the beginning of a time

step, to be always 0 (as packets that arrive to their destinations are immediately removed).
Let qt

v,∗,d be the number of packets at node v destined for node d at time t; i.e., the sum
of all qt

v,u,d over (v, u) ∈ E. At the end of every time step, each node v will distribute as
evenly as possible all the packets destined for d among its edges, for every d. That is, at the
beginning of every time step t ≥ 2, for all v, d ∈ V and for all (v, u) ∈ E,

bqt
v,∗,d/δvc ≤ qt

v,u,d ≤ dqt
v,∗,d/δve, (1)

where δv is the degree of node v. Since at the beginning of time step 1, when the network is
empty, (1) is satisfied, this invariant is maintained by the protocol at the beginning of every
time step.

The following protocol is performed by each node v ∈ V , at each time step t ∈ IN.
Protocol Basic:

1. For each e = (v, u) ∈ E, let d ∈ V be such that qt
v,u,d− qt

u,v,d is maximal over all d ∈ V
(break ties arbitrarily). If qt

v,u,d − qt
u,v,d is positive then send one packet over the edge

e from Qv,u,d to Qu,v,d.

2. Accept all packets injected by the adversary to the node v.

3. Remove any packets that arrive at their destination.

4. For every destination d ∈ V , redistribute all packets among the corresponding buffers
so as to maintain invariant (1), breaking ties arbitrarily.

3.2 Analysis

In this section we prove the following theorem.

Theorem 1: If the sequence of packets is given by an A(w, ε) adversary, then the number
of packets stored at any given time in any of the buffers of protocol Basic is at most
O(m3/2n3/2w/ε) where ε ≥ 1/w without loss of generality.2

An immediate corollary to the above theorem is that the total number of packets stored by
Basic at any given time is at most M(w, ε) = O(m5/2n5/2w/ε).

In the following we assume that the sequence of packets is injected by an A(w, ε) adver-
sary. Note however that the protocol does not know the values of w and ε (i.e., these values
are not used by the protocol).

Proof: We start with a simple claim about the change in the size of a given buffer.

2Note that since ε > 0 and since an A(w, ε) adversary is limited to injecting b(1 − ε)wc packets at each
window (where the floor is used since the number of packets is obviously an integer), then ε ≥ 1/w does not
impose any additional constraint.

6

Claim 2: For any t1 ≤ t2 ≤ t1 + w − 1, and for all (u, v) ∈ E and d ∈ V ,

qt1
v,u,d − w − 1 ≤ q

t′2
v,u,d ≤ qt1

v,u,d + 2w + 1.

(We remark that one can incorporate ε into the statement of this claim. This, however,
yields only a minor improvement to our bounds.)
Proof: By invariant (1), bqt1

v,∗,d/δvc ≤ qt1
v,u,d ≤ bq

t1
v,∗,d/δvc + 1 for all (v, u) ∈ E. Consider

the number of packets with destination d stored in v at time t′2, which is denoted q
t′2
v,∗,d. In

time window [t1, t
′
2] at most δvw such packets can arrive into node v across the edges. In

addition, at most δvw such packets can be injected by the adversary into v (otherwise, the
restriction on the adversary is violated). Thus, at most 2wδv such packets can be added to
the node. On the other hand, at most δvw such packets can be sent out by v in the time

window [t1, t
′
2]. We get that qt1

v,∗,d − δvw ≤ q
t′2
v,∗,d ≤ qt1

v,∗,d + 2wδv. It follows that

q
t′2
v,u,d ≤ bq

t′2
v,∗,d/δvc+ 1 ≤ bqt1

v,∗,d/δvc+ 2w + 1 ≤ qt1
v,u,d + 2w + 1

since bqt1
v,∗,d/δvc ≤ qt1

v,u,d. Similarly,

qt1
v,u,d − w − 1 ≤ bqt1

v,∗,d/δvc − w ≤ bqt′2
v,∗,d/δvc ≤ q

t′2
v,u,d

since qt1
v,u,d ≤ bq

t1
v,∗,d/δvc+ 1.

The following, more general, claim can be proved by a straightforward modification of the
proof above.

Claim 3: For any t1 ≤ t2 ≤ t1 + k · w − 1, for any integer k, and for all (u, v) ∈ E and
d ∈ V ,

qt1
v,u,d − k · w − 1 ≤ q

t′2
v,u,d ≤ qt1

v,u,d + 2k · w + 1.

We now define a potential function Φ on which our proof of the theorem is based. For
each buffer of size q, we assume that each packet p in that buffer is assigned a unique height
h(p) from 1 to q as if the packets are stored one on top of the other. Let the potential of a
buffer be the sum of the heights of packets in the buffer. That is,

Φt
v,u,d

4
=

∑
p∈Qt

v,u,d

h(p) =

(
qt
v,u,d + 1

2

)
.

Let P t be the set of all packets stored in all nodes at time t. The value of Φ at time t is
defined by

Φt 4
=
∑

p∈Pt

h(p) =
∑
d∈V

∑
e=(v,u)∈E

[
Φt

v,u,d + Φt
u,v,d

]
.

For the purpose of analysis, assume that the packets that are sent in sub-step 1 of the
protocol are the packets with maximum height in the corresponding buffers. That is, in

7

sub-step 1 of time step t, if a packet is sent from Qv,u,d to Qu,v,d then the packet which is
taken from Qv,u,d is of height qt

v,u,d. Moreover, when such a packet is injected into Qu,v,d it
is assigned height qt

u,v,d + 1. Thus, the potential decreases by qt
v,u,d − (qt

u,v,d + 1) ≥ 0 due to
this packet movement.

Observe that the potential function can only change upon the following events: (1) the
addition of a new injected packet into a buffer (increases the potential function); (2) the
transfer of a packet across an edge (can either decrease the potential function or not change
it); (3) the redistribution of packets in buffers in a node (either decreases the potential
function or does not change it); and (4) the removal of packets at their destination (decreases
the potential function).

We will analyze the behavior of the potential function over any window W t
w of w time

steps. Therefore, to give an upper bound on the increase of the potential function during
W t

w, we consider the increase in potential due to all packets injected in time window W t
w,

and the decrease due to some packet transfers during the same time. Below we state the
central technical lemma of our analysis which quantifies the potential decrease due to some
packet movements on edges along a path from s to D, in terms of the number of packets
destined to D, and stored in s.

Lemma 4: Let e1, e2, . . . , e`, for ei = (vi−1, vi) ∈ E, be a simple path in G. Denote v` by
D. Let t1, t2, . . . , t` and t be any set of times satisfying t ≤ ti ≤ t + w − 1 for all 1 ≤ i ≤ `.
Let ∆i, for 1 ≤ i ≤ `, be the decrease in the potential function due to a packet transfer in
time step ti on ei from vi−1 to vi. Then

∑`
i=1 ∆i ≥ qt

v0,u,D − `(3w + 4), for any (v0, u) ∈ E.

The lemma implies that if qt
v0,u,D is “very large” then

∑
∆i is “very large” as well.

Proof: First, we consider a single ∆i. The potential, corresponding to the buffers of
destination D, along the edge ei at time ti (just before any packet was sent at this time step)
is Φti

vi−1,vi,D
+Φti

vi,vi−1,D. If a packet whose destination is D is indeed sent from vi−1 to vi then
the size of Qvi−1,vi,D is decreased by 1 and the size of Qvi,vi−1,D is increased by 1. Therefore, the
decrease in the potential caused by such packet transfer would be qti

vi−1,vi,D
− (qti

vi,vi−1,D + 1).
By the resolution rule that we use (Step 1 of protocol Basic), the actual packet that is
sent along edge ei at time ti is one that corresponds to some destination d that makes this
difference maximal (and non-negative). Therefore, the decrease in potential can only be
bigger; i.e.,

∆i ≥ qti
vi−1,vi,D

− (qti
vi,vi−1,D + 1).

(In the special case where there is no destination d for which qti
vi−1,vi,d

− qti
vi,vi−1,d is positive

no packet is sent on this edge in this direction at this time step; in such a case ∆i = 0 and
the inequality still holds.) Note that we refer here to the size of buffers at time ti. However,
using Claim 2, we can relate these sizes to the sizes of buffers at time t. That is,

∆i ≥ (qt
vi−1,vi,D

− w − 1))− (qt
vi,vi−1,D + (2w + 1) + 1)

= qt
vi−1,vi,D

− qt
vi,vi−1,D − (3w + 3) .

8

Therefore,

∑̀
i=1

∆i ≥
∑̀
i=1

[qt
vi−1,vi,D

− qt
vi,vi−1,D − (3w + 3)]

= −`(3w + 3) + qt
v0,v1,D − qt

v`,v`−1,D +
`−1∑
i=1

(−qt
vi,vi−1,D + qt

vi,vi+1,D) .

Now, since v` = D then qt
v`,v`−1,D = qt

D,v`−1,D = 0. In addition, each of the terms (qt
vi,vi+1,D −

qt
vi,vi−1,D) is at least −1, by invariant (1) (with respect to node vi), and similarly the difference

between qt
v0,v1,D and qt

v0,u,D (for any u adjacent to v0) is at most 1. Altogether, we get that∑`
i=1 ∆i ≥ qt

v0,u,D − `(3w + 4).

The following is our main lemma which implies that once some buffer gets sufficiently
large the potential function will not increase over w consecutive time steps.

Lemma 5: Let qt
max be the size of the largest buffer in the whole network at time t. Then

Φ(t+w−1)′ − Φt ≤ c5nmw2 − qt
maxdεwe, for n ≥ 3, w ≥ 4, m ≥ 4, and some constant c5 (e.g.,

c5 = 11 suffices).

Remark. Whenever a constant is introduced in a lemma, the subscript of the constant
will be equal to the number of the lemma.

Proof: Consider the set of all packets It injected in time window W t
w, for some time t.

For each packet pk = (vk, dk) ∈ It, we count the potential increase due to the injection and
identify some packet transfers that will cause a decrease in potential.

We first identify the increases in potential. Each packet pk = (vk, dk) ∈ It was added at
some time step τk to a buffer Qvk,uk,dk

in node vk. Let αk be the potential increase due to the

injection of this packet. By our definitions, αk ≤ q
τ ′k
vk,uk,dk

. By Claim 2, αk ≤ qt
vk,uk,dk

+2w+1
for each pk ∈ It.

Now let us identify some of the decrease in potential. For each packet pk = (vk, dk) ∈
It, consider the path from its injection point, vk, to its destination dk, guaranteed by the
definition of the A(w, ε) adversary. Let this path be πk = ek

1, e
k
2, . . . , e

k
`k

. The set of paths
associated with all the packets of It have, by the definition of the adversary, the property
that no edge is used more than b(1 − ε)wc times in either direction. This leads to the
following claim:

Claim 6: For each path πk, as above, we can associate a sequence of times T k = {tk1, . . . , tk`k
},

where t ≤ tkj ≤ t+w− 1 for 1 ≤ j ≤ `k (i.e., a time step for each edge in the path), in a way
that for each edge, at most b(1− ε)wc distinct time steps (in each direction) are assigned.3

3We emphasize that the paths are not given to the protocol and are used only for its analysis. In particular,
the protocol is likely to use different paths for the packets. Also, we emphasize that we make no hidden
assumptions on the times in T k other than that no edge is assigned more than b(1 − ε)wc time steps (e.g.,
we do not assume that tk1 ≤ tk2 ≤ . . . ≤ tk`k

).

9

Thus, each edge, in each direction, will still have at least dεwe “free” time steps during time
window W t

w.

Proof: An assignment can be achieved, for example, in a greedy manner by first making
the assignment corresponding to π1, then the assignment corresponding to π2, etc. For each
edge e ∈ E and each direction ∗ ∈ {+,−} denote by Si

e,∗ the set of times assigned to edge
e in direction ∗ in the first i steps of this process. That is, S0

e,∗ = ∅, and to define Si
e,∗ we

assign times to the edges of πi as follows. For each edge e and direction ∗, used in πi, pick
an arbitrary element of {t, . . . , t+w− 1} \Si−1

e,∗ and add that element to Si−1
e,∗ to obtain Si

e,∗.
Such an element must exist by the definition of the adversary. If Se,∗ is the set after all paths
have been assigned then, again by the restrictions on the adversary, |Se,∗| ≤ b(1 − ε)wc for
each e, ∗. This completes the proof of Claim 6.

By Lemma 4, for every packet pk ∈ It, the decrease in the potential function, due to
packets transfers along πk at times T k is at least qt

vk,uk,dk
− `k(3w+4) ≥ qt

vk,uk,dk
−n(3w+4).

As observed above, these paths leave dεwe “free” time steps (during time window W t
w) for

each edge. We use this “free” time to get an additional reduction in the potential function.
Let v∗, u∗, and d∗, be such that qt

max = qt
v∗,u∗,d∗ . Using any simple path leading from v∗

to d∗ and the “free” time slots available for each of the edges along this path, we have by
Lemma 4 that the decrease in the potential along this path, at these time steps, is at least

dεwe(qt
max − n(3w + 4)) ≥ dεweqt

max − nw(3w + 4).

We can now sum all the increases and decreases identified above.

Φ(t+w−1)′ − Φt ≤
∑

pk∈It

αk −
∑

pk∈It

[qt
vk,uk,dk

− n(3w + 4)] − (dεweqt
max − nw(3w + 4))

≤
∑

pk∈It

[qt
vk,uk,dk

+ 2w + 1]−
∑

pk∈It

[qt
vk,uk,dk

− 4nw]− dεweqt
max + 4nw2

≤
∑

pk∈It

[2(w + 1) + 4nw] + 4nw2 − dεweqt
max

≤ 2mw · (nw + 4nw) + 4nw2 − dεweqt
max

≤ 11mnw2 − dεweqt
max ,

for n ≥ 3, w ≥ 4, m ≥ 4. Hence, we proved Lemma 5.

To complete the proof of Theorem 1, we consider times τi = iw + 1, for i ≥ 0. Now
consider the value of the potential function at Φτi and at Φτi+1 . Let B = (A + 1)/

√
2 where

A = c5mnw/ε. We consider two cases. First, suppose that Φτi ≥ 2mn · B2. This implies
that there is at least one buffer with potential at least B2. Recall that the height q and
potential Φ of a buffer satisfy q2/2 < Φ < (q + 1)2/2. Thus, the height of this buffer is at
least A. By Lemma 5, Φτi+1 ≤ Φτi . Now suppose that Φτi < 2mn · B2. By Lemma 5 (since
the buffer size is always non-negative), the increase in the potential function is bounded by
c5mnw2, and we have that Φτi+1 ≤ Φτi + c5mnw2.

10

Since Φτ0 = 0 we can conclude that for τi = iw + 1, Φτi ≤ 2mnB2 + c5mnw2. Since
B = O(mnw/ε) and since the height of each buffer, qt

v,u,d, is at most
√

2Φt
v,u,d, it follows that

the height of each buffer at times τi is at most O(m3/2n3/2w/ε). Since by Claim 2 each buffer
can increase by at most 2w + 1 in any w consecutive time steps, we have an upper bound
on the height of any buffer, at any time, of O(m3/2n3/2w/ε). This completes the proof of
Theorem 1.

3.3 The Fully Distributed Protocol

The protocol Basic defined above is not fully distributed. In particular, each node v uses for
its decisions the size of the buffers at the other end of its edges. In this section we show how
to make the protocol fully distributed. For this, we replace in Step 1 of Basic the values
qt
u,v,d stored in node v (that is, the real buffer sizes in adjacent nodes u) with values at

u,v,d,
which will be estimates on qt

u,v,d. Furthermore, node u will also hold values At
u,v,d, which the

protocol will ensure are kept equal to the values at
u,v,d at adjacent nodes v. We denote this

fully distributed version of Basic by DBasic. DBasic will use the following procedure:
every node v ∈ V will update the estimates at each time step t ∈ IN. Each time step is
allocated to one of the n destination in a round robin way. For a time step which is allocated
to destination d, for each edge (v, u) from node v, v sends to u the difference between the
actual size of the buffer qt

v,u,d and the value of the estimate At
v,u,d, but only up to values in

the range [−4n, +4n]. Thus, the number of bits that v uses for each such message is only
dlog ne+4. For convenience, we number the destinations d ∈ V by numbers from 0 to n− 1.

Procedure Update at node v:

1. Let d = (t− 1) mod n.

2. (send updates:) For each e = (v, u) ∈ E, let bt
v,u,d = qt

v,u,d − At
v,u,d. If bt

v,u,d ≤ 0
let rt

v,u,d = max(bt
v,u,d,−4n). If bt

v,u,d > 0 let rt
v,u,d = min(bt

v,u,d, 4n). Send rt
v,u,d to u

(actually, the value rt
v,u,d is piggybacked on the packet sent from v to u on e at time

t). Let At′
v,u,d ← At

v,u,d + rt
v,u,d.

3. (receive updates:) For each e = (v, u) ∈ E, receive the value rt
u,v,d on edge e. Let

at′
u,v,d ← at

u,v,d + rt
u,v,d.

The next lemma shows that the estimates on the buffer sizes that the nodes hold are
always close to the real buffer sizes. Throughout this section we will assume that w ≥ 4n
(See Section 5 for a discussion on removing this assumption). This also implies that every
estimate, corresponding to any destination, is updated at least once (actually at least 4
times) during each window of w time steps. Also note that it is possible that, due to bursty
injection of packets, during the n time steps between two updates of au,v,d the change in the
buffer size, qu,v,d, will be much larger than 4n (which is the maximal quantity by which au,v,d

is changed at a single time step). Yet, the next lemma shows that au,v,d is not too far from
qu,v,d at any time.

11

Lemma 7: For any t, any e = (v, u) ∈ E, and any d ∈ V , |qt
u,v,d − at

u,v,d| ≤ c7w, for some
constant c7 (e.g., c7 = 16 suffices).

Proof: We make the following observations about the changes in the values qu,v,d and
au,v,d during w time steps. For any t1, t2 such that |t1− t2| ≤ w, the difference in buffer sizes
is |qt1

u,v,d − qt2
u,v,d| ≤ 2w + 1 ≤ 3w, by Claim 2. For the same times t1, t2, the difference in the

estimated buffer size is |at1
u,v,d− at2

u,v,d| ≤ 5w (if w is divisible by n it is at most 4w; otherwise
it is 4w + 4n ≤ 5w). With these observations, the proof of the lemma is by induction on t.
When the protocol starts we have q1

u,v,d = a1
u,v,d = 0, and in the next w steps qu,v,d cannot

grow to more than 3w, and au,v,d cannot grow to more than 5w by the above observations.
Thus, the difference between the two is at most 5w and the lemma holds for t ≤ w. For
the induction step, consider t > w and let t∗ = t − w. The induction hypothesis implies
that |qt∗

u,v,d − at∗
u,v,d| ≤ 16w. Consider two cases: (a) if |qt∗

u,v,d − at∗
u,v,d| ≤ 8w then by the

observations on the changes in qu,v,d and au,v,d the difference at time t cannot grow to more
than 16w. (b) if qt∗

u,v,d is larger (smaller) than at∗
u,v,d by more than 8w then it follows, again

by the above observations, that qu,v,d will remain larger (smaller) than au,v,d, by at least 4n
during each of the next bw

n
c · w time steps. Therefore, in all updates of au,v,d during this

time it will be increased (decreased) by 4n and so it will be increased (decreased) by total
of at least 4n · bw/nc. Note that this is at least 3w for w ≥ 4n. In the worst case, qu,v,d is
increased (decreased) at the same time by at most 3w, and so the difference at t is at most
the difference at t∗.

We now turn to prove an upper bound on the size of the buffers of protocol DBasic.
The proof follows the proof for protocol Basic. The main difference stems from the fact
that now the decision on sending a packet is based on the estimates of the sizes of buffers
in adjacent nodes, rather than on the real sizes (each node still uses for its own buffers the
real size). This may cause a different decision, and may lead to an increase in the potential
function due to a packet transfer. We first give an upper bound on the possible increase in
the potential function due to a packet transfer.

Lemma 8: For any time t and any e = (v, u) ∈ E, the transfer of a packet from v to u can
increase the potential function by at most c7w.

Proof: If a packet is sent from Qv,u,d to Qu,v,d at t then the increase in the potential
function is exactly qt

u,v,d+1−qt
v,u,d. For the packet to be sent it must hold that qt

v,u,d−at
u,v,d ≥

1. But qt
u,v,d − at

u,v,d ≤ c7w, by Lemma 7. It follows that

qt
u,v,d + 1− qt

v,u,d ≤ c7w + at
u,v,d + 1− qt

v,u,d ≤ c7w .

The following is a version of Lemma 4 that applies to protocol DBasic.

Lemma 9: Let e1, e2, . . . , e`, for ei = (vi−1, vi) ∈ E, be a simple path in G. Denote v` by
D. Let t1, t2, . . . , t` and t be any set of times satisfying t ≤ ti ≤ t + w − 1 for all 1 ≤ i ≤ `.

12

Let ∆i, for 1 ≤ i ≤ `, be the decrease in the potential function due to a packet transfer in
time step ti on ei from vi−1 to vi. Then

∑`
i=1 ∆i ≥ qt

v0,u,D − `(c9w + 4), for any (v0, u) ∈ E
and some constant c9 (e.g., c9 = 2c7 + 3 suffices).

Proof: First, we consider a single ∆i. Let d be such that a packet with destination d is
sent along edge ei at time ti (we will deal with the case that no packet is sent later). The
potential, corresponding to the buffers of destination d, along the edge ei at time ti (just
before any packet was sent at this time step) is Φti

vi−1,vi,d
+ Φti

vi,vi−1,d. Therefore, the decrease

in the potential caused by such packet transfer would be qti
vi−1,vi,d

− (qti
vi,vi−1,d + 1). Using

Lemma 7, we have

∆i = qti
vi−1,vi,d

− (qti
vi,vi−1,d + 1)

≥ qti
vi−1,vi,d

− (ati
vi,vi−1,d + c7w + 1) .

Since the protocol sent a packet with destination d, by the resolution rule it follows that

qti
vi−1,vi,d

− ati
vi,vi−1,d ≥ qti

vi−1,vi,D
− ati

vi,vi−1,D ,

and using Lemma 7 again we get

∆i ≥ qti
vi−1,vi,d

− (ati
vi,vi−1,d + c7w + 1)

≥ qti
vi−1,vi,D

− (ati
vi,vi−1,D + c7w + 1)

≥ qti
vi−1,vi,D

− (qti
vi,vi−1,D + 1)− 2c7w .

In the special case where no packet is sent, ∆i = 0. This special case occurs only if for all d,
qti
vi−1,vi,d

− ati
vi,vi−1,d ≤ 0. It follows that that for all d (including D)

qti
vi−1,vi,d

− (qti
vi,vi−1,d + 1)− 2c7w ≤ qti

vi−1,vi,d
− (ati

vi,vi−1,d − c7w + 1)− 2c7w

= qti
vi−1,vi,d

− ati
vi,vi−1,d − 1− c7w ≤ 0 .

Thus the lower bound on ∆i holds also in this case.
Note that we refer in the above to the size of buffers at time ti. However, using Claim 2,

we can relate these sizes to the sizes of buffers at time t. That is,

∆i ≥ (qt
vi−1,vi,D

− w − 1))− (qt
vi,vi−1,D + (2w + 1) + 1)− 2c7w

= qt
vi−1,vi,D

− qt
vi,vi−1,D − ((2c7 + 3)w + 3) .

Therefore,

∑̀
i=1

∆i ≥
∑̀
i=1

[qt
vi−1,vi,D

− qt
vi,vi−1,D − ((2c7 + 3)w + 3)]

= −`((2c7 + 3)w + 3) + qt
v0,v1,D − qt

v`,v`−1,D +
`−1∑
i=1

(−qt
vi,vi−1,D + qt

vi,vi+1,D)

13

Now since v` = D then qt
v`,v`−1,D = qt

D,v`−1,D = 0. In addition, each of the terms (qt
vi,vi+1,D −

qt
vi,vi−1,D) is at least −1, by invariant (1) (with respect to node vi+1), and similarly the

difference between qt
v0,v1,D and qt

v0,u,D (for any u adjacent to v0) is at most 1. Altogether, we

get that
∑`

i=1 ∆i ≥ qt
v0,u,D − `((2c7 + 3)w + 4).

We now give an analogue of Lemma 5 that applies to protocol DBasic.

Lemma 10: Let qt
max be the size of the maximal buffer in the whole network at time t.

Then, Φ(t+w−1)′ − Φt ≤ c10mnw2 − qt
maxdεwe, for n ≥ 3, w ≥ 4, m ≥ 4, and some constant

c10 (e.g., c10 = 3c9 + 2c7 + 5 suffices).

Proof: We follow and modify the proof of Lemma 5. The difference between the proof of
the present lemma and the proof of Lemma 5 is that in the present case we cannot ignore
any packet transfers, because packet transfers may increase the potential function (since the
decision whether to send a packet is made based on estimates rather than the actual buffer
sizes which are not known). However, by Lemma 8, we have an upper bound on this increase.

Let pk, αk, πk and T k be as in the proof of Lemma 5. By Lemma 9, the decrease in the
potential function due to packet transfers along πk at times T k is at least qt

vk,uk,dk
− `(c9w +

4) ≥ qt
vk,uk,dk

− n(c9w + 4). Using the dεwe “free” time steps we have another decrease of at
least

dεwe(qt
max − n(c9w + 4)) ≥ dεweqt

max − nw(c9w + 4).

The increase in the potential function occurs for injection of packets, and may also occur
for packet transfers. The increase due to packet injections is

∑
pk∈It αk, while the increase

due to packet transfers is upper bounded by 2mw · c7w. Summing up we have

Φ(t+w−1)′ − Φt

≤
∑

pk∈It

αk + 2mw · c7w

−
∑

pk∈It

[qt
vk,uk,dk

− n(c9w + 4)]− (dεweqt
max − nw(c9w + 4))

≤
∑

pk∈It

[qt
vk,uk,dk

+ 2w + 1] + 2c7mw2

−
∑

pk∈It

[qt
vk,uk,dk

− (c9 + 1)nw]− dεweqt
max + (c9 + 1)nw2

≤
∑

pk∈It

[2(w + 1) + (c9 + 1)nw] + 2c7mw2 + (c9 + 1)nw2 − dεweqt
max

≤ 2mw(nw + (c9 + 1)nw) + 2c7mw2 + (c9 + 1)nw2 − dεweqt
max

≤ (3c9 + 2c7 + 5)mnw2 − dεweqt
max .

The lemma follows.

Finally, to give an upper bound on the size of any buffer, we use the above lemma and
the same arguments as those in the proof of Theorem 1. We get a bound of O(m3/2n3/2w/ε)
on the size of any buffer.

14

4 A Protocol with a Bound on Delivery Time

Protocol DBasic of the previous section guarantees bounded buffers as long as the packets
are injected by some adversary A(w, ε). However, this protocol does not guarantee a bound
on the delivery time of the packets. Indeed, some packets may get stuck in the network
forever. In this section we extend the protocol so as to guarantee that each packet is delivered
within a (polynomially) bounded number of time steps. We will assume for now that w ≥ 4n
(In Section 5 we discuss removing this assumption).

4.1 The Case where w is Known

First we define a protocol that provides such guarantees on the delivery time, but has to
know an upper bound W on the value w according to which the adversary injects the packets.
In Section 4.2 we eliminate this requirement.

The main idea is as follows. We will run, in parallel to the main protocol DBasic,
another “underground” drainage protocol. This protocol gets at certain time steps all the
packets stored in the buffers of the main protocol, and will be responsible for their delivery.
The buffers of the main protocol become empty at such an event. The drainage protocol
receives more packets from the main protocol only after all its buffers become empty (that
is, all its packets are delivered). The advantage of the drainage protocol is that it receives
only a bounded amount of packets (since the buffers of the main protocol are bounded), and
all of them at the same time, and thus can deliver the packets in some bounded amount of
time. To enable the drainage protocol to operate we have to assign it, from time to time,
some time steps in which it can move its packets across edges. We will assign the drainage
protocol one time step every 2W time steps. The main point to be proved in this section is
that in spite of the fact that some of the time steps are allocated to the drainage protocol,
the main protocol, Basic, still maintains bounded buffers. The line of proof will be similar
to the line of proof of the previous section, modified in order to take into account the fact
that some of the time steps are allocated to the drainage protocol.

The Drainage Protocol The drainage protocol is a protocol that is injected once with
packets at the nodes. If the total number of packets injected is M , then all packets are
delivered within T (M) time steps (where we count only time steps in which the drainage
protocol operates). Clearly there are such protocols, the simplest of them, maybe, being the
one that routes any packet with destination d along a shortest path to d, with some arbitrary
greedy congestion resolution rule. By the results of Mansour and Patt-Shamir [MP], for such
protocols T (M) ≤M + n. Obviously, the size of buffers used by such a protocol is bounded
by M .

We also devise a procedure called Update that will allow all processors to know if the
drainage protocol has delivered all its packets.4 To do that, we send at every time step an

4Alternatively, the processors can simply wait “enough time” (i.e., T (M) steps, for the largest possible
M according to the bound on the buffer size). However, since we will later need a notification mechanism

15

additional bit across any edge (piggybacked on a packet if such is sent). We partition the
time into windows of size 2W and we want that at the beginning of each such window all
processors will be synchronized as to this information. The mechanism works as follows. At
the first time step of each such window, each processor checks if its buffers of the drainage
protocol are empty or not. It sets a flag busy to 0 or 1 accordingly. Then each processor
sends the value of this flag along all of its edges. When such a bit is received by a processor
the local flag is ORed with the bit received. The new value of the flag is then sent in the
next time steps. Since we assume that W ≥ 4n, at the beginning of the first time step of
the next window the value of every flag is 1 if and only if there is at least one processor that
had packets in the “drainage” buffers exactly 2W time steps before.

BoundedDT(W) Our protocol maintains in each node the flag busy, all the buffers of
protocol DBasic, and in addition all the buffers and variables that the drainage protocol
maintains. The behavior of the protocol is controlled by a variable w which (in the current
subsection) is set to W , the upper bound that we have on w. We define the protocol below
using the drainage protocol, protocol DBasic and procedure Update as black boxes: at each
step either protocol DBasic or the drainage protocol will assume control in all processors,
and will send packets according to their own separate decisions. In addition, procedure
Update is performed in parallel (whether DBasic or the drainage protocol assume control),
to update the estimates that DBasic uses in the nodes. The control bits to be sent by this
procedure are piggybacked on the packets sent, whether they are sent by DBasic or the
drainage protocol.

Protocol BoundedDT(W):
Initially, in all nodes the flag busy is set to 0, and the variable w to W . Then, the following
is performed by every node v ∈ V , at each time step t ≥ 1.

1. If t = 2iw + 1 for some i:

• If busy = 0 then empty all buffers of DBasic and move the packets as input
to the drainage protocol in node v; if busy = 1 and the buffers of the drainage
protocol (in v) are empty set busy to 0; otherwise (if busy = 1 but the buffers of
the drainage protocol are not empty) set busy to 1.

• Allow the drainage protocol to operate for one time step (that is, send and accept
packets according to its decisions).

Otherwise (i.e., t 6= 2iw + 1 for any i), run protocol DBasic (that is, send and accept
packets according to the decisions of DBasic).

2. For every t, send the value of busy on all outgoing edges (this bit is to be piggybacked
on packets if such are sent according to Step 1).
OR the flag busy with all the values for busy received from the adjacent nodes.

for other purposes, we introduce it here.

16

3. For every t apply procedure Update (the bits sent are piggybacked on packets if such
are sent in Step 1; the bits received are received during the same step).

We now prove that this protocol has bounded buffers and, at the same time, guarantees
delivery in a bounded amount of time. We prove the following theorem.

Theorem 11: If the packets are injected by an A(w, ε) adversary, for any ε > 0, and any
integer w ≤W , then the total number of packets stored by BoundedDT(W) at any time is
at most O(m5/2n5/2w/ε). In addition, each packet is delivered at most O(m5/2n5/2wW/ε) =
O(m5/2n5/2W 2/ε) times steps after its injection.

(Note that the bound on the number of packets is in terms of the actual adversary parameter
w, while the bound on the delivery time is in terms of the upper bound W .) To prove the
above theorem, we use the following two lemmas. The first lemma gives a bound on the
size of any buffer of DBasic maintained by BoundedDT(W). The second lemma gives a
bound on the delivery time of any packet. Note that a bound on the size of any buffer of
DBasic implies a bound on the total number of packets DBasic holds, and therefore also
a bound on the number of packets the drainage protocol holds. This implies a bound on the
total number of packets BoundedDT(W) stores.

Lemma 12: If the sequence of packets is given by an A(w, ε) adversary, for w ≤ W , then
the number of packets stored at any given time in any buffer of DBasic maintained by
BoundedDT(W), is at most O(m3/2n3/2w/ε).

Lemma 13: If the sequence of packets is given by an adversary A(w, ε), for w ≤ W , then
each packet is delivered by BoundedDT(W) in at most O(m5/2n5/2W 2/ε) time steps.

To prove the above two lemmas, we first note that Claim 2 and Lemmas 7 and 8, hold
for the present protocol as well since they are only based on the limitations on the adversary
and the fact that the buffers of DBasic in each node are kept balanced. We give below a
version of Lemma 9 applicable to the present protocol. The modification is in the conditions
about the times set for the edges of the path. First, they all have to be time steps in which
DBasic has control of the network (i.e., we have to show that the time steps allocated to
the drainage protocol do not significantly disturb the main protocol). Secondly, the time
steps span over a period of 2w time steps rather than w time steps.

Lemma 14: Let e1, e2, . . . , e`, for ei = (vi−1, vi) ∈ E, be a simple path in G. Denote v` by
D. Let t1, t2, . . . , t` and t be any set of times satisfying t ≤ ti ≤ t + 2w − 1 for all 1 ≤ i ≤ `,
and such that for every ti DBasic has control of the network at time step ti. Let ∆i, for
1 ≤ i ≤ `, be the decrease in the potential function due to a packet transfer in time step ti
on ei from vi−1 to vi. Then

∑`
i=1 ∆i ≥ qt

v0,u,D − `(c14w + 4), for any (v0, u) ∈ E, and some
constant c14 (e.g, c14 = 2c7 + 6 suffices).

17

Proof: The proof is identical to the proof of Lemma 9 up to the point where we relate the
size of the buffers at ti to their size at time t. That is, as in the proof of Lemma 9 we get
that

∆i ≥ qti
vi−1,vi,D

− (qti
vi,vi−1,D + 1)− 2c7w .

Now, using Claim 3, we get that

∆i ≥ (qt
vi−1,vi,D

− 2w − 1))− (qt
vi,vi−1,D + (4w + 1) + 1)− 2c7w

= qt
vi−1,vi,D

− qt
vi,vi−1,D − ((2c7 + 6)w + 3) .

Continuing the same calculations as in the proof of Lemma 9 with the above bound we get
the required result.

We give now a version of Lemma 10 (which in turn is a version on Lemma 5) applicable for
BoundedDT(W). The difference in our case is that, from time to time, protocol DBasic
does not have control of the network when run under BoundedDT(W) (i.e., in those time
steps where the drainage protocol is active). However, this happens only at most once every
2w time steps. Therefore, we prove the following lemma for windows of time of size 2w
rather than w. We use the same potential function Φ defined in the previous section.

Lemma 15: Assume that the sequence of packets is given by a A(w, ε) adversary, and
assume that DBasic is run, such that it is denied control of the network at most once in
every 2w time steps. Let qt

max be the size of the maximal buffer in the whole network at time
t, Then Φ(t+2w−1)′ − Φt ≤ c15mnw2 − qt

max(2dεwe − 1), for n ≥ 3, w ≥ 4, m ≥ 4, and some
constant c15 (e.g., c15 = 6c14 + 4c7 + 13 suffices).

Proof: Denote by It the set of all packets injected in time window W t
2w. Denote by τk

the time step at which packet pk = (vk, dk) ∈ It is injected, and let Qvk,uk,dk
be the buffer

in node vk to which pk was injected. Denote by πk = ek
1, . . . , e

k
`k

the path guaranteed by the
adversary for packet pk.

We first identify for each packet the increase in the potential function due to its injection.
Let αk be the increase in the potential due to the injection of packet pk ∈ It. Clearly

αk ≤ q
τ ′k
vk,uk,dk

. Using Claim 3, we have that αk ≤ qt
vk,uk,dk

+ 4w + 1. Next, we argue about
the decrease in the potential associated with the paths guaranteed by the adversary. Since
in the window W t

2w at most one time steps is not under the control of DBasic, there are at
least 2w− 1 time steps in W t

2w is which DBasic has control of the network. Thus we apply
a procedure similar to the one of Claim 6 to assign time sets to the paths of the packets,
guaranteed by the adversary. We can do that in a way that all time steps assigned are such
that DBasic has control of the network, and there will still be at least 2dεwe − 1 “free”
time steps in which DBasic has control of the network.

In all, we assign times to all paths, and have 2dεwe−1 ≥ 1 “free” time steps. Now, using
Lemma 14, the decrease in the potential function due to the path of each packet is at least

qt
vk,uk,dk

− `(c14w + 4) ≥ qt
vk,uk,dk

− n(c14w + 4) .

18

From the “free” time steps, we get another reduction of

(2dεwe − 1)(qt
max − n(c14w + 4)) ≥ (2dεwe − 1)qt

max − 2nw(c14w + 4).

The increase in the potential function occurs for injection of packets, and may also occur for
packet transfers. The increase due to packet injections is

∑
pk∈It αk, while the increase due

to packet transfers is upper bounded by 2m2w · c7w. Summing up we have

Φ(t+w−1)′ − Φt

≤
∑

pk∈It

αk + 2m2w · c7w

−
∑

pk∈It

[qt
vk,uk,dk

− n(c14w + 4)]− ((2dεwe − 1)qt
max − 2nw(c14w + 4))

≤
∑

pk∈It

[qt
vk,uk,dk

+ 4w + 1] + 4c7mw2

−
∑

pk∈It

[qt
vk,uk,dk

− (c14 + 1)nw]− (2dεwe − 1)qt
max + 2(c14 + 1)nw2

≤
∑

pk∈It

[4(w + 1) + (c14 + 1)nw] + 4c7mw2 + 2(c14 + 1)nw2 − (2dεwe − 1)qt
max

≤ 2m2w(2nw + (c14 + 1)nw) + 4c7mw2 + (2c14 + 1)nw2 − (2dεwe − 1)qt
max

≤ (6c14 + 4c7 + 13) ·mnw2 − (2dεwe − 1)qt
max .

Observe that BoundedDT(W), with W ≥ w, satisfied the conditions of the above
lemma, and thus the lemma applied to this protocol.

Proof of Lemma 12. We consider times τi = 2i ·w+1, for i ≥ 0. Now, consider the value
of the potential function at Φτi and at Φτi+1 . Let B = (A + 1)/

√
2 where A = c15mnw/ε.

There are two cases. First, suppose that Φτi ≥ 2mn ·B2. This implies that there is at least
one buffer with potential at least B2. Recall that the height q and potential Φ of a buffer
satisfy q2/2 < Φ < (q + 1)2/2. Thus, the height of this buffer is at least A. By Lemma 15,
Φτi+1 ≤ Φτi . Now suppose that Φτi < 2mn ·B2. By Lemma 15 (since the buffer size is always
non-negative), the increase in the potential function is bounded by c15mnw2, and we have
that Φτi+1 ≤ Φτi + c15mnw2.

Since Φτ0 = 0 we can conclude that for τi = iw + 1, Φτi ≤ 2mnB2 + c15mnw2. Since
B = O(mnw/ε) and since the height of each buffer, qt

v,u,d, is at most
√

2Φt
v,u,d, it follows

that the height of each buffer at times τi is at most O(m3/2n3/2w/ε). Since, by Claim 3, the
size of each buffer can grow by at most 4w + 1 in any 2w consecutive time steps, we have an
upper bound on the height of any buffer, at any time, of O(m3/2n3/2w/ε).

A corollary of Lemma 12 is that the total number of packets stored at any time by
the buffers of DBasic is at most O(m5/2n5/2w/ε). This implies that the total number of
packets stored by the drainage protocol at any time is the same, and the total number of

19

packets stored by BoundedDT(W) at any given time is at most M ′(w, ε) = O(M(w, ε)) =
O(m5/2n5/2w/ε).

Proof of Lemma 13. First, note that once a packet is moved to the drainage protocol,
the number of time steps until it is delivered is at most (M ′(w, ε) + n) · 2W . This is because
at most M ′(w, ε) packets are moved to the empty buffers of the drainage protocol, which
thus needs at most M ′(w, ε)+n time steps in which it has control to deliver all packets [MP].
However, the drainage protocol has control of the network once every 2W time steps. By the
same argument, the buffers of the drainage protocol get emptied at most (M ′(w, ε)+n) ·2W
time steps after packets have been moved to them. Thus a packet, if not delivered earlier
by DBasic, will be transferred to the drainage protocol at most (M ′(w, ε) + n) · 2W + 2W
time steps after it is injected (the additional 2W time steps come from the fact that it takes
the network time to “realize” that the buffers are empty). Altogether, we get that a packet
can spend in the network at most

2((M ′(w, ε) + n) · 2W) + 2W = O(m5/2n5/2wW/ε) = O(m5/2n5/2W 2/ε)

time steps, as needed.

Both Lemmas and the corollary above imply Theorem 11.

4.2 The Case where w is Unknown

We now consider the general case of a protocol that guarantees a bound on the delivery time,
and without the protocol having any information on the window size, w, that defines the
adversary. The high-level structure of this protocol, BoundedDT, is to have an estimate
of the window size, w (a variable stored by each processor), and run BoundedDT(W) until
one of the processors realizes that the estimate is too low with respect to the real value w
according to which the adversary injects the packets. Then, the estimate is doubled and the
new version of the protocol is run. Each node maintains a variable maxbuf which holds the
maximum size of a buffer it has ever locally seen. This value is used to decide if a processor is
“happy” with the estimate w or not. At the first time step of every window of 2w time steps,
each processor sets its local happy flag according to the current estimate and its variable
maxbuf. Then, a procedure similar to the one used for the busy flag is used, in a way that
after 2w time steps all the processors are “not happy” with the current estimate if and only if
there was at least one processor that was not happy. Then, each unhappy processor doubles
its estimate. We show below that the buffers remain (polynomially) bounded, and that there
exists an upper bound on the delivery time, in spite of the fact that the estimate w may at
times be incorrect.

We first formally define protocol BoundedDT. It maintains in each node a variable
maxbuf that will hold the maximum buffers size (of DBasic) that was ever seen at the node,
and a flag happy, which will indicate if the estimate w of w is still in accordance with the
variable maxbuf. The protocol is defined using two black-boxes: procedure Estimate w,

20

and protocol BoundedDT(W) of Section 4.1. We first define the procedure Estimate w.

Note that this procedure updates the variable w used by BoundedDT(W). Define f(w)
4
=

m3/2n3/2w2.

Procedure Estimate w:
Initially in all nodes v ∈ V the variable maxbuf is set to 0, the flag happy is set to 1 and the
variable w is set to 2dlog ne+2 ≥ 4n. Then, the following is executed in any node v ∈ V and
for any time step t ∈ IN.

1. If t = 2iw + 1 for some i and happy is 0, then set w to 2w. If maxbuf > f(w) then set
happy to 0; otherwise set happy to 1.

2. For every e = (v, u) ∈ E and any d ∈ V , set maxbuf to max(maxbuf, qt
v,u,d).

3. Send the flag happy to all adjacent nodes (this bit is piggybacked on packets if sent).
Receive all happy flags from adjacent nodes. AND all received bits with happy.

We now define the protocol BoundedDT, using the above procedure and BoundedDT(W)
as black-boxes. Note that the procedure Estimate w updates the variable w that controls
the behavior of BoundedDT(W). However this is done only at intervals of at least 2w time
steps, for the current value of w.

Protocol BoundedDT:
Initiate all variables for Estimate w, and BoundedDT(W).
For every t ∈ IN run both BoundedDT(W) and Estimate w.

In the following we prove a bound on the size of the buffers of the combined protocol, and
a bound on the delivery time of any packet. These bounds are in terms of the parameter w
which defines the adversary. The protocol does not have any knowledge about this parameter
(not even an upper bound). Note that if we work with a too-low estimate this will cause
the drainage protocol to be activated “too often” which may cause the buffers of DBasic
to overflow (since DBasic will be denied control “too often”). If we work with a too-high
estimate, then the drainage protocol will not be given control often enough, and we will not
be able to guarantee delivery time in terms of the real parameter w. In the following we
prove that this cannot happen: we can have both bounded buffers, and bounded delivery
time.

The following lemma provides a bound on the the size of any buffer of DBasic when run
under BoundedDT.

Lemma 16: If the sequence of packets is given by an A(w, ε) adversary, for any w > 1,
and any ε > 0, then the number of packets stored at any given time in any buffer of DBasic
run under BoundedDT is at most O(m2n2w2) = c16m

2n2w2, for some constant c16.

21

Proof: Let j be such that 2j−1 ≤ w < 2j. Observe that when the value of w is changed the
main difference in the behavior of the protocol is in how often does the drainage protocol
get control of the network. If no buffer ever exceeds f(2j−1) ≤ f(w) = O(m3/2n3/2w2), then
the lemma holds. Now let t be the first time that in some processor v some buffer exceeds
f(2j−1). By the end of this time step this buffer is at most f(2j−1) + 2w. Assume that, at
time t, the current estimate on w used by the processors is wi = 2i (i.e., the value of w at t
is wi). Thus, by time step t + 2wi processor v will set its happy flag to false, by procedure
Estimate w (Recall that the initial value of w is wdlog ne+2 = 2dlog ne+2 ≥ 4n, and we assume
that w ≥ 4n). The happy flag will continue to be false as long as the estimate is not increased
to 2j (possibly more if the size of the buffers grows even higher). After j − i doublings of
the variable w occur by procedure Estimate w, the value of w reaches wj = 2j. This will
take at most (5/2)wj ≤ 5w time steps (2wi steps until the happy flag is set to false, 2wi

until the first doubling, 2wi+1 until the second doubling and so on, where finally we need
2wj−1 for the last doubling). During these time steps any buffer can grow by at most 11w,
by Claim 3. We get that if the size of any buffer becomes bigger than f(2j−1) then, after at
most 5w time steps, the value of w in all nodes reaches 2j, and that up until this time all
buffers are bounded by f(2j−1) + 13w = O(m3/2n3/2w2). Thus, we consider now times after
the estimate (the variable w) reaches 2j. To prove that the lemma holds after this time, we
use arguments similar to those used for BoundedDT(W). Note that the difference here
is in two points only. First, the buffers do not start empty, and secondly, the parameter w

could grow over time.
Let t∗ be the time at which the estimate reaches 2j. We consider times ti = t∗ + i2w + 1.

Since for all times t∗ and later the variable w is at least 2j > w, we have the DBasic, run
under BoundedDT, is denied control at most once in every 2w time steps. Thus Lemma
15 holds for any time t ≥ t∗. We can thus repeat the arguments of the proof of Lemma 12 to
get an upper bound on the size of any buffer, where the modification is in that the buffers
of DBasic do not start empty at time t∗ (but rather with size at most O(m3/2n3/2w2)).

Since the size of the buffers at t∗ is at most O(m3/2n3/2w2), the value of the potential
function at this time is at most O(2mn(m3/2n3/2w2)2 = O(m4n4w4). Using Lemma 15 and
arguments as those in the proof of Lemma 12, we have that the value of the potential function
at times ti = t∗ + i2w + 1 is bounded by O(m4n4w4). This means that the height of any
buffer will not exceed O(m2n2w2), at times ti. Using Claim 3, between these times any buffer
can grow by at most another 4w + 1, which gives us an upper bound of O(m2n2w2) on the
size of any buffer at any time. Observe that this bound holds even if the estimate variable
w grows above 2j.

We now give an upper bound on the delivery time of any packet.

Lemma 17: If the sequence of packets is given by an adversary A(w, ε), then each packet
is delivered by BoundedDT in at most O(m13/4n13/4w3) time steps.

Proof: By Lemma 16, we know that each buffer of DBasic never holds more than
c16n

2m2w2 packets at any given time. This yields 2mn · c16m
2n2w2 = O(m3n3w2) pack-

ets altogether. Observe that we can express this bound on the size of any single buffer as

22

f(
√

c16 ·m1/4n1/4w) = c16n
2m2w2. Therefore, the estimate that the protocol uses on w (i.e.,

the variables w) will never exceed 2·√c16·m1/4n1/4w. This means that, every 4
√

c16·m1/4n1/4w
time steps, or more frequently, the drainage protocol is given control of the network. Thus,
every packet will be delivered within (O(m3n3w2)+n) ·4√c16m

1/4n1/4w2 = O(m13/4n13/4w3)
time steps.

We conclude with the following theorem.

Theorem 18: If the sequence of packets is given by an A(w, ε) adversary, then the to-
tal number of packets stored by BoundedDT at any given time is at most M(w, ε) =
O(m3n3w2). Every packet is delivered to its destination in at most T (w, ε) = O(m13/4n13/4w3)
time steps.

Remark: Note that our bound for the final protocol are not in terms of ε. The reason is
that our protocol estimates the adversary’s parameters, and does that by estimating w, and
assuming the smallest possible ε, namely ε = 1/w.

5 Discussion and Extensions

In this section we discuss the assumptions made in the proof and some extensions of our
results.

5.1 Removing Assumptions

In the statement of results and in the proofs of our protocols we have made a number of
assumptions on the parameters n, m and w. Namely, we have assumed that n ≥ 3, m ≥ 4 and
w ≥ 4, for Basic and that n ≥ 3, m ≥ 4 and w ≥ 4n for DBasic and BoundedDT. We
now argue that our results hold with only small modifications even when these assumptions
do not hold.

We first deal with the assumptions n ≥ 3, m ≥ 4 and w ≥ 4. In the proofs these
assumptions were used to bound the change in potential drop in a window of size w by the
simple expression c · mnw2 − dεweqt

max for a constant c. If any of these assumptions do
not hold, the proofs still go through with the same expression, but with larger constants.
Another way to view the case when n and m are small is to add an additional connected
component of n = 3 nodes and m = 4 edges. Nothing in our proofs assumes that the network
is connected, and thus the proofs will go through for this modified network and the original
sequence of packets. This shows that the results hold, with larger constants, even if n and
m are small. For the case that w is small, we note that any sequence of packets given by an
A(w, ε) adversary, can also be given by an A(k ·w, ε) adversary for any integer k. Therefore,
when w < 4 we can assume that the sequence of packets is given by an A(4w, ε) adversary
rather than an A(w, ε) adversary. The results thus hold with a larger constant.

The assumption w ≥ 4n is used in the proof of Lemma 7, and in the proof of Lemma 16.
If this assumption does not hold we proceed as follows. If w < 4n, we consider the sequence

23

as being given by an A(w′, ε) adversary, for w′ = d4n
w
ew. For this adversary the assumption

clearly holds. The results of Lemma 7 are now c · w′ = c · d4n
w
ew ≤ c · ((4n/w + 1)w) =

c · (4n + w) ≤ 2c · max(4n, w). The same holds for Lemma 16. That is, our final results,

without any assumption, should be in terms of w∗ 4
= max(4n,w) rather than w, and with

a larger constant. The protocols BoundedDT(W) and BoundedDT can be modified to
work in the case that w ≤ 4n but w∗ will remain a factor in the bounds.

5.2 Larger Capacity

The results given above are for networks composed of bidirectional edges with unit capacities.
However, they can be extended to networks composed of bidirectional edges with integer
capacities. We define a c-capacity edge to be an edge which can deliver c packets in each
direction in each time step. A simple method of extending the results to capacitated networks
is as follows. Denote by C the sum of capacities over all edges in the network. The routing
algorithm views each c-capacity edge as representing c 1-capacity bidirectional parallel edges,
or “p-edges.” The number of 1-capacity p-edges is C.

First, we observe that nothing in the analysis of the network of 1-capacity edges was
incompatible with parallel edges. Thus, if the adversary is also limited to view c-capacity
edges as c 1-capacity p-edges, then all the proofs hold with m substituted by C. We denote
the parameterized class of such adversaries by Ã(w, ε). For concreteness, we state below
the restrictions on any Ã(w, ε) adversary. For any time t ∈ IN, let It be the set of packets
injected during the w time steps from t to t + w − 1, inclusive. Then, the adversary can
associate with each packet p = (s, d) ∈ It, a simple path of 1-capacity p-edges from s to d,
such that each direction of every 1-capacity p-edge e ∈ E is used by these paths at most
b(1− ε)wc times.

A slightly more involved view of a capacitated network yields the same bounds on buffer
size and delivery time but allows the adversary to inject more packets. We denote the new
parameterized class of adversaries by Ā(w, ε). An Ā(w, ε) adversary can associate with each
packet p = (s, d) ∈ It, a simple path of capacitated edges from s to d, such that each
direction of every c-capacity edge e ∈ E is used by these paths at most cw − dεwe times.

In this view of the network each c-capacity edge is composed of c 1-capacity “channels.”
The modified algorithm maintains a buffer at each node for each channel, destination pair.
So, the number of buffers is the same as in the previous approach. However, as described
above, an Ā(w, ε) adversary can “have in mind” a path composed of capacitated edges,
whereas the Ã(w, ε) adversary must “commit” to the 1-capacity p-edge used in each capac-
itated edge of a path. Lemma 4 is easily modified to achieve a potential drop using a path
of channels rather than edges. Claim 6 is modified as follows. For each packet (pk, dk) ∈ It,
let πk be the path of edges from pk to dk given by the Ā(w, ε) adversary.

Claim 19: For each path πk, as above, we can associate a sequence of times T k = {tk1, . . . , tk`k
}

and a sequence of channels {ēk
1, . . . , ē

k
`k
} where t ≤ tkj ≤ t + w − 1 for 1 ≤ j ≤ `k in a way

that for each channel, at most w distinct time steps (in each direction) are assigned and

24

each edge, in each direction will still have at least dεwe “free” time steps among its channels
during time window W t

w.

The proof of this claim is very similar to the proof of Claim 6. The remainder of the proof
that Basic has bounded buffers then follows. For DBasic, the Update protocol is slightly
modified. Each channel sends O(log n) bits of update information each step. Again, using
Claim 19, the remainder of the proof for bounded buffers remains the same. The proofs of
the bounds for BoundedDT(W) follow with very simple modifications. For an Ā(w, ε), the
protocol is modified slightly. Rather than having all the channels of each capacitated edge
be devoted to the drainage protocol for one step every 2W steps, only one channel of each
capacitated edge is devoted to the drainage protocol every 2W steps.

5.3 Other Issues

Robustness: Diffusion-type protocols are often robust to edge failure. To model edge
failure in our context, Definition 1 should be modified as follows. An A(w, ε) adversary is
allowed to inject packets, as before, and to have edges operational, i.e., “up”, during certain
time steps or not operational, i.e., “down,” subject to the following constraint. For any
time t ∈ IN, let It be the set of packets injected during time window W t

w. Then, for every
t ∈ IN, the adversary can associate with each packet p = (s, d) ∈ It, a simple path from s
to d, such that for each edge e ∈ E and each direction of e, the number of time steps that
the edge is up minus the number of paths in It which use this edge in that direction is at
least dεwe. With this definition, protocol Basic should only be modified as to not send
a packet over a “down” edge (the buffers associated with such edge are still maintained as
before). If we assume that when an edge comes up after being down, the nodes are notified
as to the status of their neighbors’ buffers, then the proof for Basic goes through with only
minor modifications. For protocol DBasic the only modification needed is that when an
edge comes up after being down, all the control bits that would have been sent during the
steps in which the edge was down are assumed to be sent during the procedure for bringing
the edge up. (Alternatively, if the edge is down for a long time, it may be desirable to send
the size of the buffers associated with the edge).

For capacitated networks, the adversary may vary the capacity of each edge. The defini-
tions of the adversaries for capacitated networks are easily generalized to allow the adversaries
to vary the capacity of the edges. For Ã(w, ε) adversaries, for each p-edge and each direction,
the number of time steps that the edge is up minus the number of paths that pass through
the edge in that direction is at least dεwe. For Ā(w, ε) adversaries, for each edge and each
direction, the sum of the number of steps each channel of the edge is up minus the number
of paths that pass through the edge in that direction is at least dεwe.

Directed networks: Our results still hold even if the network is directed. If the network
is not strongly connected then we have to add a slight modification to our protocol; namely,
node u never sends a packet with destination d, over an edge leading to node v, if there is no

25

directed path from v to d (and hence u does not have at all a buffer for such packets). With
this modification, our proofs still hold in the directed case. We still need to allow control
bits to flow across edges in both directions (or to assume that nodes know the size of the
buffers across their adjacent edges).

Other potential functions: In this paper we analyze our protocol using a “linear poten-
tial function” Φ (it is “linear” in the sense that the contribution of every packet is linear
in its height). When “diffusion-type” algorithms have been used in other contexts, “expo-
nential potential function” variants of the algorithms have yielded improved bounds (See
[AL2, GL+]). It is worthwhile checking whether exponential potential function variants of
our protocols would yield improved bounds.

Acknowledgments We thank Matthew Andrews, Allan Borodin, Tom Leighton and Yu-
val Rabani for useful discussions. We also thank an anonymous referee for useful comments.

References

[AAF+] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu,
“Universal Stability Results for Greedy Contention-Resolution Protocols”, Proc. of
37th FOCS, pp. 380–389, 1996.

[AAG+] Y. Afek, B. Awerbuch, E. Gafni, Y. Mansour, N. Shavit, A. Rosén. Slide - The Key
to Polynomial End-to-End Communication. Journal of Algorithms, Vol. 22, No. 1,
pp. 158–186, 1997.

[AAMR] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao, “Approximate Load Balancing on
Dynamic and Asynchronous Networks,” Proc. of 25th STOC, pp. 632–641, 1992.

[AAP] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput Competitive On-Line Rout-
ing,” Proc. of 34th FOCS, pp. 32–40, 1993.

[AAPW] B. Awerbuch, Y. Azar, and S. Plotkin, and O. Waarts, “Competitive Routing of
Virtual Circuits with Unknown Duration,” Proc. of 5th SODA, pp. 321–330, 1994.

[AFH+] M. Andrews, A. Fernández, M. Harchol-Balter, and T. Leighton, L. Zhang, “Gen-
eral Dynamic Routing with Per-Packet Delay
Guarantees of O(distance + 1/session rate),” Proc. of 38th FOCS, pp. 294–302,
1997.

[AGR] Y. Afek, E. Gafni, A. Rosén, “Slide—A Technique for Communication in Unreliable
Networks,” Proc. of 11th PODC, pp. 35–46, 1992.

[AL] B. Awerbuch and T. Leighton, “A Simple Local-Control Approximation Algorithm
for Multicommodity Flow”, Proc. of 34th FOCS, pp. 459–468, 1993.

26

[AL2] B. Awerbuch and T. Leighton, “Improved Approximation Algorithms for the Multi-
commodity Flow Problem and Local Competitive Routing in Dynamic Networks”,
Proc. of 26th STOC, pp. 487–496, 1994.

[AMS] B. Awerbuch, Y. Mansour, N. Shavit, “End-to-End Communication with Polyno-
mial Overhead,” Proc. of 30th FOCS, pp. 358–363, 1989.

[BFU] A.Z. Broder, A.M. Frieze, and E. Upfal, “A General Approach to Dynamic Packet
Routing with Bounded Buffers”, Proc. of 37th FOCS, pp. 390-399, 1996.

[BKR+] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Wiliamson, “Adversarial
Queuing Theory”, Proc. of 28th STOC, pp. 376–385, 1996.

[BU] A.Z. Broder, and E. Upfal, “Dynamic Deflection Routing on Arrays,” Proc. of 28th
STOC, pp. 348-355, 1996.

[C] R. Cruz, “A Calculus for Network Delay, Part I: Network Elements in Isolation,”
IEEE Transactions on Information Theory, pp. 114–131, 1991.

[C2] R. Cruz, “A Calculus for Network Delay, Part II: Network Analysis,” IEEE Trans-
actions on Information Theory, pp. 132–141, 1991.

[CMSV] R. Cypher, F. Meyer auf der Heide, C. Scheideler, and B. Vöcking. “Universal
algorithms for store-and-forward and wormhole routing”, Proc. of 28th STOC, pp.
356-365, 1996.

[GL+] B. Ghosh, T. Leighton, B. Maggs, S. Muthukrishnan, G. Plaxton, R. Rajaraman,
A. Richa, R. Tarjan, and D. Zuckerman, “Tight Analyses of Two Local Load Bal-
ancing Algorithms,” Proc. of 27th STOC, pp. 548–558, 1995.

[GM] B. Ghosh and S. Muthukrishnan, “Dynamic Load Balancing on Parallel and Dis-
tributed Networks by Random Matchings,” Proc. of 6th SPAA, pp. 226–235, 1994.

[HB] M. Harchol-Balter and P. Black, “Queuing Analysis of Oblivious Packet-Routing
Algorithms,” Proc. of 5th SODA, pp. 583-592, 1994.

[HW] M. Harchol-Balter and D. Wolfe “Bounding Delays in Packet Routing Networks,”
Proc. of 27th STOC, pp. 248-257, 1995.

[KPP] A. Kamath, O. Palmon, and S. Plotkin, “Routing and Admission Control in General
Topology Networks with Poisson Arrivals,” Proc. of 7th SODA, pp. 269-278, 1996.

[KT] J. Kleinberg and E. Tardos. “Disjoint Paths in Densely Embedded Graphs.” Proc.
of 36th FOCS, pp. 52-61, 1995.

[L] F.T. Leighton. “Methods for message routing in parallel machines”. Invited paper
in Proc. of 24th STOC, pp. 77-96, 1992.

27

[L2] F.T. Leighton, personal communication, 1998.

[LMR] T. Leighton, B. Maggs, S. Rao, “Packet Routing and Job-Shop Scheduling in
O(congestion+dilation) Steps,” Combinatorica, Vol. 14, No. 2, pp. 167–180, 1994.

[LMRi] T. Leighton, B. Maggs and A. Richa, “Fast Algorithms for Finding
O(Congestion+Dilation) Packet Routing Schedules,” Combinatorica, to appear.

[M] M. Mihail, “Conductance and Convergence of Markov Chains—A Combinatorial
Treatment of Expanders,” Proc. of 30th FOCS, pp. 526–531, 1989.

[Mi] M. Mitzenmacher, “Bounds on the Greedy Routing Algorithm for Array Networks”,
J. Comput. System Sci. 53 (1996), No. 3, pp. 317–327.

[MP] Y. Mansour, and B. Patt-Shamir, “Greedy Packet Scheduling on Shortest Paths”,
Journal of Algorithms, Vol. 14, No. 3, pp. 99–129, 1993.

[MV] F. Meyer auf der Heide and B. Vöcking. “A packet routing protocol for arbitrary
networks”. Proc. of STACS ’95.

[OR] R. Ostrovsky and Y. Rabani, “Local Control Packet Switching Algorithm,” Proc.
of 29th STOC, pp. 644–653, 1997.

[PG] A. Parekh, and R. Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM
Transactions on Networking, 1 (3) pp. 344–357, 1993.

[PG2] A. Parekh, and R. Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Multiple-Node Case,” IEEE/ACM
Transactions on Networking, 2 (2) pp. 137–150, 1994.

[RT] Y. Rabani and É. Tardos. “Distributed packet switching in arbitrary networks”.
Proc. of 28th STOC, pp. 366-375, 1996.

[ST] A. Srinivasan and C.-P. Teo. “A constant-factor approximation algorithm for packet
routing, and balancing local vs. global criteria”. Proc. of 29th STOC, pp. 636-643,
1997.

[STs] G. Stamoulis and J. Tsitsiklis, “The Efficiency of Greedy Routing in Hypercubes
and Butterflies,” IEEE Transactions on Communications, 42 (11), pp. 3051–208,
1994.

[SV] C. Scheideler and B. Vöcking, “Universal Continuous Routing Strategies,” Proc. of
8th SPAA, 1996.

28

