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Abstract

The combination of the bu�er size of routers deployed
in the Internet and the Internet tra�c itself leads
routinely to routers dropping packets. Motivated by
this, we initiate the rigorous study of dynamic store-
and-forward routing on arbitrary networks in a model
in which dropped packets must explicitly be taken into
account. To avoid the uncertainties of tra�c modeling,
we consider arbitrary tra�c on the network. We analyze
and compare the e�ectiveness of several greedy, on-line,
local-control protocols using a competitive analysis of
the throughput. One goal of our approach is for the
competitive results to continue to hold as a network
grows without requiring the memory in the nodes to
increase with the size of the network. Thus, in our
model, we have link bu�ers of �xed size, B, which is
independent of the size of the network, and B becomes
a parameter of the model.

Our results are in contrast to another adversar-
ial tra�c model known as Adversarial Queuing Theory
(AQT), which studies the stability and growth rate of
queues as a function of the network and tra�c param-
eters. For example, in AQT the Furthest-To-Go (FTG)
protocol is stable for all networks whereas Nearest-To-
Go (NTG) can be unstable for some networks. Unlike
AQT, in our setting NTG is preferable to FTG: we show
that the NTG protocol is throughput-competitive on
all networks whereas the FTG protocol has unbounded
competitiveness whenever a network contains even small
cycles.

1 Introduction

Packet data networks, such as the Internet, are becom-
ing the dominant technology over which tra�c of vari-
ous types is being carried, and are thus a central topic
of study in networking research. In this paper, we are
interested in the problem of store-and-forward routing
and scheduling on arbitrary networks. In particular, we
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are interested in dynamic routing in which packets arrive
continuously and are routed in a continuous fashion.

In the Internet, the combination of the bu�er size
of deployed routers and the Internet tra�c itself leads
routinely to the dropping of packets. Motivated by
this, we initiate the rigorous study of dynamic store-
and-forward routing on arbitrary networks in a setting
in which dropped packets must explicitly be taken into
account. To avoid the uncertainties of tra�c modeling
or the assumption of tra�c shaping on ingress, we
consider arbitrary tra�c on the network. We analyze
and compare the e�ectiveness of several greedy, on-
line, local-control protocols using the competitive ratio
of the throughput.1 One goal of our approach is
for the competitive results to continue to hold as a
network grows without requiring the memory in the
nodes to increase with the size of the network. Thus,
in our model the link bu�ers have a �xed size, B,
independent of the size of the network, where B becomes
a parameter of the model. Using this model, we analyze
several simple and popular contention-resolution and
scheduling mechanisms on several classes of networks.

Although our model can be easily generalized to the
case of adaptive routing, for this paper we concentrate
on the case of non-adaptive routing. In this case the
routing algorithm can be divided into two separate
steps: (1) selection of paths for packets; and (2)
selection of packets contending for an output bu�er
and scheduling of the packets selected for the output
bu�ers. Such a separation has been used in a wide
range of investigations. See, for example, [28, 3, 15, 13]
for path selection and [2, 6, 17, 18, 25, 26, 27, 23]
for packet-scheduling. Our on-line protocols will have
responsibility for the latter part. In our model, as in the
AQT model, the path selection step is e�ectively done
by an adversary.

Before describing our model in more detail, we �rst
discuss several issues with previous approaches that our
model attempts to resolve.

1.1 Previous Approaches The vast majority of
dynamic routing modeling and analysis in the literature
can be classi�ed as stability analysis. The general
framework for such analysis is as follows. First a
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parameterized model, either probabilistic or adversarial,
of packet injections into the network is speci�ed. The
former is referred to as queuing theory and the latter
as adversarial queuing theory (cf. [7, 2]). Second, it is
assumed that no packets are dropped. A routing and/or
contention-resolution algorithm is analyzed to bound
the maximum number of packets ever waiting to use
a link, as a function of the injection model parameters
and network parameters. This number is referred to
as the bu�er size. If, for a certain range of injection
parameters, the upper bound on the size of the bu�ers
depends only on the injection and network parameters
(and not on the elapsed time), then the protocol is said
to be stable (for that range of injection parameters).
Ideally, bounds on the latency (i.e., the time between
injection and delivery) of the packets are also derived. 2

Stability analysis can be used to provision memory
in the routers or switches of a packet network as follows.
Assume that the maximum size of the network is known
a priori. Further, assume that the selected tra�c model
and parameters approximate or bound the behavior
of the real tra�c. Given these assumptions, stability
analysis yields an upper bound B on the maximum size
of the bu�ers. When the network is �rst provisioned
or when nodes are added to the network (up to the
maximum), the routers are equipped with bu�ers at
least as large as B. In this case, no packets will be
dropped and the latency bounds given by the analysis
will hold. But, when trying to apply stability analysis to
a packet network like the Internet, the two assumptions
above likely do not hold, giving rise to two major
issues: scalability and tra�c modeling, respectively.
The resolution of each of these problems requires one
inevitably to deal with packet drops. We discuss these
two issues below.

To illustrate the scalability problem for stability
analysis, consider the situation in which the tra�c obeys
the assumptions of the tra�c model but in which the
network continues to grow over time without an a priori
upper bound. All stability analyses of which we are
aware for reasonably general networks, yield bounds
on bu�er sizes that are increasing functions of the
network parameters.3 This is the heart of the scalability
problem. For large networks or those that span several
administrative domains, it is not realistic to add enough
memory to every router in the network in order to
continue to obey the stability bounds whenever the
network grows, and in practice this is simply not done.
Thus, as a network continues to grow, eventually some
bu�ers will be smaller than the bounds given by stability
analysis for the new network size. Once this occurs,

2Since no packets are dropped, the asymptotic fractional

throughput of a stable algorithm is 1 even if the latency is

unbounded for some packets.
3
Of course, tra�c could be constructed so that the bu�ers

remain constant, e.g., tra�c for which all paths are of constant

length or for which the arrival rate is a decreasing function of

the network size. But we do not assume such restricted tra�c

patterns.

some packets will be dropped and the assumptions of
stability analysis used, say, to derive bounds on latency,
will no longer hold.

To illustrate the tra�c modeling problem for stabil-
ity analysis, suppose that the network remains �xed and
that all the nodes in the network are provisioned with
su�cient memory according to some stability analysis
for a certain tra�c model. In this case, if the tra�c does
not follow the restriction of the tra�c injection model,
stability analysis will give very little insight into the be-
havior of the network. In particular, nodes may need
bu�ers of sizes larger than the stability analysis postu-
lates, and will not have enough bu�er space to store all
needed packets. Moreover, it appears to be di�cult to
formulate models of Internet tra�c that are both accu-
rate and tractable for further analysis (see e.g. [31]).
In addition, the nature of Internet tra�c continues to
evolve and change so that even if there were an accu-
rate model now, it may be inaccurate in the future. As
an example, the last two years have seen a tremendous
increase in peer-to-peer tra�c. Therefore, it seems de-
sirable to control the network using protocols that are
known to have good performance not only for some spe-
ci�c well de�ned tra�c pattern but for more arbitrary
tra�c as well.

Due to both the scalability issue and the tra�c
modeling issue, it is essentially guaranteed that, ir-
respective of the contention-resolution protocol in the
routers, there will be times when the tra�c is such that
the bu�er at the output port of a link becomes full and
the router will have to drop packets. Moreover, empir-
ically, the size of router bu�ers and Internet tra�c are
such that routers routinely drop packets. Neither prob-
abilistic queuing theory nor adversarial queuing theory
are currently equipped to handle dropped packets.

1.2 Our Approach In this paper we develop a
scalable model for the analysis of routing protocols
on packet networks, that explicitly addresses dropped
packets. To do so, we start with the assumption that
the sizes of a router's bu�ers are �xed when the router is
provisioned in the network and are not increased when
other routers are added to the network. That is, the
size of the bu�ers do not depend on the size of the
network. For simplicity, assume that all bu�ers are
of the same size, denoted B. We treat B as a basic
parameter of our model. We place no restrictions on
the tra�c injected into the network. In particular, we
certainly do not assume that tra�c will be so well-
behaved that the routing algorithm can always avoid
dropping packets, or that tra�c never overloads links
or nodes. Thus, one must fundamentally deal with
dropped packets in the analysis. The goal is to develop
algorithms that have high throughput or low drop rate.
The performance in terms of throughput or drop rate
will be a function of the network parameters, and the
bu�er size. As the network grows and routers are
added to the network, analysis under this approach will
continue to give guarantees on throughput or drop rate.



We are interested in simple local-control contention-
resolution algorithms. As stated earlier, we consider
dynamic routing where tra�c is continuously injected
into the network. Given these elements, combined with
the fact that the bu�ers of the nodes have �xed size,
the algorithms in each node have to decide in an online
manner which packets to drop, and what forwarding-
priorities to assign the remaining packets.

To measure the quality of a given algorithm, we
use competitive analysis [5]. Competitive analysis,
applied to this setting, compares the throughput of
the local-control, online routing algorithm to that of a
centralized, optimal, o�-line policy, that uses the same
bu�ers and is given the entire packet arrival sequence
in advance. Our aim is to �nd online queue policies
with a small competitive ratio. For a full de�nition
of the model, see Section 2. The competitive ratio for
the number of packets dropped can also naturally be
de�ned. However we will show that, in terms of drops,
the competitive ratio of any online policy is unbounded,
and hence this is not a useful measure.

Several recent papers on queuing protocols, this
paper included, have used models that share similar
properties: the queue size is parametric, the tra�c input
is arbitrary, and the metric used is the competitive ratio
[1, 10, 14, 20]. The papers thus far have studied the
throughput (or weighted throughput in the Di�Serve
model) of a single router or switch. To the best of our
knowledge, our paper is the �rst to apply competitive
analysis in this context to the question of throughput
for a network of routers.

1.3 Our Contributions Our contributions are
twofold. The �rst is the formulation of the present ap-
proach and the initiation of a rigorous study of protocol
performance in a network setting that explicitly deals
with dropped packets. We call our approach the Com-
petitive Network Throughput (CNT) Model. The sec-
ond are the following main results that we derive within
our model:

1. Protocols competitive on all networks. We
show that there exist greedy local-control protocols that
are throughput-competitive on all networks. In partic-
ular, we show that the protocol Nearest-To-Go (NTG)
is throughput competitive on all networks (See Theo-
rem 4.1.) Similar proofs hold for the protocols Furthest-
From-Origin (FFO) and Longest-In-System (LIS) (and
are omitted from this abstract). See Table 1. However,
not all greedy protocols are throughput competitive on
all networks as we discuss below.

2. Universally competitive networks. We give
a characterization of the networks on which all greedy
protocols are throughput-competitive. We show that on
DAGs all greedy protocols are competitive (See Theo-
rem 4.2). We then show that when a network has a
cycle, some greedy protocols are not competitive. In
particular, the competitive ratio of the Furthest-To-Go
(FTG) protocol on a cycle is unbounded (See Theo-

NTG FFO LIS FTG NTO SIS FIFO

Compet. Yes Yes Yes No No No No

Stable No No Yes Yes Yes Yes No

Table 1: A comparison of several deterministic greedy
protocols. The rows denote whether the protocols are
throughput-competitive or AQT stable for all networks.

rem 4.4.). Similar proofs hold for the protocols Nearest-
To-Origin (NTO), Shortest-In-System (SIS) and First-
In-First-Out (FIFO) (and are omitted from this ab-
stract). See Table 1.

3. The topology of the line. We analyze the com-
petitive ratios attainable on the topology of the line. We

show that NTG achieves a competitive ratio of O(n
2

3 )
(where n in the number of nodes in the line), while other
protocols such as FTG and Longest-In-System (LIS)
have a lower bound of 
(n). Furthermore, Nearest-To-
Go is not far from optimal since no greedy protocol can
have a competitive ratio better than 
(

p
n). This lower

bound is complemented by a lower bound of 
(n) for
the case of B = 1. (See Section 5.)

Consider the side-by-side comparison of some of our
results to those of adversarial queuing theory (AQT) [7,
2, 9], given in Table 1. Interestingly, this small sample
of basic protocols displays all four possible combinations
of competitive/not-competitive with stable/not-stable.
In particular, there are protocols that are stable on
all networks but have unbounded competitive ratio on
some networks, e.g., FTG, NTO, and SIS. Conversely,
there are protocols that are unstable on some networks
but are competitive on all networks, e.g., NTG and
FFO.

Our results thus suggest, perhaps surprisingly, that
some protocols that are unstable i.e., are deemed unde-
sirable from the perspective of stability analysis, may
provide good throughput, and may be preferable to
some stable protocols, when the environment is such
that packets must inevitably be dropped. Our results
thus provide evidence that for routing on scalable net-
works with �xed-size bu�ers and ill-behaved tra�c, tra-
ditional stability analysis may not be the right means
for comparing alternative routing protocols.

1.4 Related Work We briey review related work
on dynamic store-and-forward routing on arbitrary net-
works. As explained above, the analysis of dynamic
packet arrivals has concentrated on the questions of sta-
bility and queue sizes. For such analysis, some type
of limit must be placed on the tra�c injected into the
network. Without a restriction, the injection rate can
exceed the maximum bandwidth bisection of the net-
work and, hence, the size of the bu�ers will grow as
a function of time. One standard method for limiting
the injections is to model the packet injections by a
probabilistic process, such as a Poisson arrival process
(with su�ciently small rate) at each node with destina-



tions chosen independently and uniformly at random.
In this case the performance is often measured in terms
of the expected latency and bu�er size. See, for example,
[8, 6, 11, 12, 30, 29, 21, 22].

Another approach is the adversarial queuing theory
(AQT), proposed by Borodin et al. [7]. AQT limits
the packet tra�c in terms of two parameters w and
r � 1. For all time windows of size w, and for all
edges e, the number of packets injected during that
window of time by the adversary and whose paths
include e cannot exceed rw. Borodin et al. and Andrews
et al. [7, 2] show that several well-known and simple
deterministic greedy queuing protocols yield bu�ers
(and latencies) which are bounded (however, these
bounds are exponentially large). On the other hand
they show that certain other greedy protocols do not
guarantee stability. A subset of their stability results,
of particular relevance for comparing our results, are
given in Table 1 along with our corresponding results
for throughput-competitiveness.

Recently, Awerbuch et al. [4] reported results in a
model somewhat similar to ours. As in our model, they
allow arbitrary tra�c to be injected into the network
and use competitive analysis to measure the throughput
of on-line algorithms. However, contrary to our work, [4]
compares the performance of on-line algorithms to the
performance of an adversary restricted to a limited class
of routing strategies, rather than to the performance
of an unrestricted optimal adversary as in the present
paper. In addition, they allow the size of each queue
used by the on-line algorithm to be a multiple of the
queue size used by the adversary, and for the reported
results, this multiple is an increasing function of network
parameters.

Organization The rest of the paper is organized
as follows. In Section 2, we formally de�ne the model.
In Section 3, we show that no algorithm can have a
�nite competitive ratio for the measure of packet loss.
We therefore adopt the measure of throughput for our
study. In Section 4, we examine the competitiveness of
the NTG protocol. We then show that on DAGs any
greedy protocol is competitive, while the cycle does not
exhibit this phenomenon. In Section 5 we analyze the
competitive ratio achievable on the topology of the line.
Due to space limitations, substantial parts of the proofs
are omitted from this abstract.

2 The Competitive Network Throughput
Model

We model a packet network as a directed graph G =
(V;E), jV j = n, jEj = m, where nodes represent routers
and edges represent unidirectional communication links.
The system is synchronous. Time proceeds in discrete
time steps. All links have unit capacity: in each time
step, each link can transmit one unit-sized packet in the
direction it is oriented. Each directed link is identi�ed
with an output port in the router at the tail of that
link and with an input port in the router at the head of

that link. At the output port, there is a bu�er of size
B > 0 which can store up to B unit sized packets. At
the input port, there is a bu�er of size one.

In addition to the input ports and output ports
associated with network links, each node may also have
several tra�c input ports. When packets are injected
into the network, they are injected into the tra�c input
ports. For the sake of uniformity, the bu�ers of the
tra�c input ports, like the link input bu�ers, are of size
one, i.e., one packet may be injected into a tra�c input
port in every time step. Denote by I the maximum
number of tra�c input ports in any node in the network.

Each packet is injected into a tra�c input bu�er of
a source node and is labeled with a given destination.
Packets travel in the network in a store-and-forward
manner. During each time step a single packet from
each output bu�er is forwarded to the input bu�er at
the head of the link. Then, packets that have not
arrived yet to their destination are moved from input
bu�ers to output bu�ers within each node. If the
number of packets destined for a bu�er is greater than
the free space in the bu�er then some packets must be
dropped. At the end of each time step, the link and
tra�c input bu�ers are empty, and each packet present
in the network resides in some link output bu�er.

While our model can be adapted to the case of
adaptive routing, in this paper we consider the case of
non-adaptive routing. In this case the selection of the
path for each packet is separate from the scheduling and
contention-resolution algorithms. Whenever a packet is
injected into the network, its path is determined (either
implicitly by routing tables or by explicitly encoding
it in the packet itself). We assume that all paths are
simple.

Each time step is divided into two substeps: the
forwarding substep and the switching substep. In the
forwarding substep, for each link, a packet may be
selected from the output bu�er at the tail of the link.
Then the selected packet is forwarded to the input bu�er
at the head of the link. This substep also includes the
injection of at most one packet into each injection bu�er.
The method for deciding which packet to forward is
called the output scheduling policy.

In the switching substep, within each router, all
the link and tra�c input bu�ers are emptied of their
packets. The packets from the input bu�ers are either
transferred to the output bu�er of the next link on
their path or dropped (or simply output if the node is
the packet's destination). When more than B packets
are to be placed in a certain bu�er then some packets
must be dropped. We distinguish between preemptive
and non-preemptive policies. For preemptive policies
we allow packets from the input bu�ers to preempt
packets already in the output bu�er. The preempted
packets are dropped. For non-preemptive policies, a
packet already in the bu�er cannot be dropped from the
bu�er, and the packets to be dropped must be selected
from the packets in the input bu�ers. We concentrate
in this paper on preemptive policies. The method for



deciding which packets should be dropped is called the
contention-resolution policy

We are interested in algorithms that are online
and local-control. These algorithms, henceforth called
protocols, operate as a set of separate algorithms, one
for each node. They make their decision in each time
step based only on the information available in that
node at that time step (without full view of the network,
or knowledge of future arrival of packets).

Of particular interest are greedy protocols. A
scheduling protocol (and the forwarding substep) is
greedy if it always forwards a packet over an edge if
there is at least one packet in the output bu�er at
the tail of that edge. A contention resolution protocol
(and the switching substep) is greedy if it keeps each
bu�er as full as possible in each time step. A proto-
col is greedy if both the scheduling protocol and the
contention-resolution protocol are greedy. We concen-
trate primarily on greedy protocols and mostly on pro-
tocols where the scheduling and contention-resolution
policies are the same. That is, in each time step all
the packets contending for a given link are ordered by
their priority according to the speci�c policy. The �rst
B packets are placed in the corresponding output bu�er
and the rest are dropped. The packet with highest pri-
ority will be the one that is forwarded over the link in
the next time step.

We use competitive analysis to analyze our algo-
rithms. For a minimization problem we say that algo-
rithm A is c-competitive if for every sequence of pack-
ets � injected into the network it holds that A(�) �
c�OPT (�)+�, where A(�) and OPT (�) are the costs of
algorithm A on �, and the cost of the optimal (central-
ized, clairvoyant) algorithm on �, respectively, and � is
a constant independent of �. For a maximization prob-
lem the requirement is that A(�) � (1=c)OPT (�)� �,
where A(�) and OPT (�) are the bene�ts obtained by
algorithms A and OPT as above. As we show below,
there is no protocol with �nite competitive ratio for the
measure of the number of dropped packets. Hence, in
our model, we use the competitive ratio of throughput
as our measure.

We view I and B as characteristics of the routers
and hence as network parameters. For a given set of
routers with a given set of injection bu�ers, there is no
restriction on the tra�c injected into those bu�ers. The
competitive ratio is a function of network parameters
such as n, m, B, I, and perhaps others (e.g., the
maximum degree of the nodes).

3 Loss of Packets

In this section, we consider the measure of the number
of packets that are dropped by the protocol. We show
that there is no competitive protocol for this measure.
In fact, we show that there is no online algorithm, even
centralized, that can guarantee a number of packet-
drops that is bounded compared to what the optimal
algorithm can do. This holds even for the case where the

optimal algorithm is required to be greedy. We prove
the above on a network which is a line of at least 4 nodes;
it follows that the same impossibility result applies for
every network that contains such a sub-network.

Theorem 3.1. Assume I � 2. 4 For the topology of
the line there is no protocol with �nite competitive ratio
for the measure of the number of packets dropped.

Proof Sketch. The proof takes the following
approach. For every on-line protocol P, the adversary
can inject a �nite sequence such that P will drop at least
one packet, while the adversary can schedule its own
forwarding of the packets so that no packet is dropped
and all packets are delivered. To do so the adversary
creates a situation where for some bu�er, protocol P
has more packets in this bu�er than the adversary. The
adversary then injects to that bu�er more packets than
P can accept. The above process takes a �nite amount
of time and thus can be repeated inde�nitely. Hence,
the number of dropped packets for the on-line protocol
is unbounded whereas the number of packets dropped by
the optimal o�-line algorithm is zero. Details omitted.

4 Throughput Competitiveness

From now on, we consider the measure of throughput;
that is, the number of packets that are delivered by
any given time t. We �rst show that there exist greedy
protocols that are competitive for all networks. In
particular, we show that the protocol Nearest-To-Go
(NTG) has a competitive ratio ofO(md), where m is the
number of edges in the network and d is the maximal
length of a path traversed by any packet (Section 4.1).
Similar proofs hold for FFO and LIS (details omitted).

We then show that there exist networks on which
all greedy protocols are competitive. In particular, we
show that on DAGs every greedy protocol has bounded
competitive ratio. The universal upper bound on the
throughput competitiveness is a function of the speci�c
DAG. We further show that there is a family of DAGs
for which this universal upper bound is nearly tight by
showing a lower bound on the throughput competitive-
ness of all greedy algorithms for a complete binary tree.
On the other hand, we show that networks that contain
cycles render some greedy protocols non-competitive. In
particular, the Furthest-to-Go (FTG) heuristic has un-
bounded throughput-competitiveness on the cycle (Sec-
tion 4.4). The same result holds for NTO, SIS, and
FIFO using a similar proof (details omitted). These re-
sults thus also yield a characterization of the network
topologies on which all greedy protocols are competi-
tive.

4.1 Nearest-to-Go is Competitive on all Net-
works In this section we prove the existence of pro-
tocols which are competitive for all networks. Speci�-
cally, we show an upper bound on the competitive ratio

4
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impossibility proof below.



of the protocol NTG (that is, a protocol that uses the
NTG priority decision both in the switching substep
and in the forwarding substep). Let d be the length of
the longest path followed by any packet. We show that
NTG is O(md) competitive on any network.

Theorem 4.1. The protocol NTG is O(md)-
competitive for any network G.

Proof. For the purpose of the analysis assign to each
packet p, injected into the network by the adversary,
a weight w(p). The weight of p is 1 if this packet is
eventually delivered by the adversary, and 0 otherwise.
Let ADV t be the total weight of packets injected by
the adversary until time t. Note that ADV t is an
upper bound on the number of packets delivered by the
adversary until time t. We start with a claim that gives
a lower bound on the number of packets delivered by
NTG in a given amount of time (proof omitted).

Claim 4.1. For any k � B, if at time t NTG has at
least k packets in the network, then NTG delivers at
least k packets by time t + dk.

We now divide the time axis into time frames of dB

time steps each, where frame j is Fj
4
= [(j � 1)dB +

1; jdB). Let aj be the total weight of packets injected
by the adversary during Fj. Let bj be the number of
packets delivered by NTG during Fj.

We claim that bj+bj+1 � minfaj ; Bg, for any j � 1.
To see that, distinguish between two cases: either (1)
NTG holds in its bu�ers at some time during Fj at least
B packets; or (2) at each time step during Fj NTG holds
fewer than B packets. For the �rst case, let t be a time
in Fj where NTG holds at least B packets. It follows
from Claim 4.1 that NTG delivers by time t + dB at
least B packets. Since time t + dB is in Fj+1, this
shows that bj + bj+1 � B. In the second case, NTG
never drops a packet during Fj. It follows that if at
least aj packets are injected during Fj , then at the end
of Fj NTG has in the network at least aj � bj packets.
Since there are fewer than B packets in the network at
every time step in Fj, aj � bj < B. By Claim 4.1 at
least aj � bj packets are delivered during Fj+1. We get
bj + bj+1 � bj + (aj � bj) = aj .

For any time t, we now bound the number of packets
injected by the adversary with weight 1 by time t, in
terms of the number of packets delivered by NTG by
time t. Let s be such that (s � 1)dB � t < sdB. We
have

2

sX

j=1

bj �
s�1X

j=1

(bj + bj+1) �
s�1X

j=1

minfaj; Bg

Now observe that for any j, aj � mB + mdB �
2mdB. This is because any packet injected with weight
1 cannot be dropped by the adversary. The number
of packets injected but not dropped in time interval

of length T time units is at most mB + mT (since
at most mT packets may be delivered and at most
mB packets may be stored in the bu�ers). Therefore,Ps�1

j=1minfaj ; Bg �
Ps�1

j=1

aj
2md

= 1
2md

Ps�1

j=1 aj , and so
Ps

j=1 bj � 1
4md

Ps�1
j=1 aj. Since ADV t � Ps�1

j=1 aj +

2mdB, and NTGt =
Ps

j=1 bj, we have,

NTGt =

sX

j=1

bj � 1

4md

s�1X

j=1

aj � 1

4md
ADV t � B

2
:

4.2 A UniversalUpper Bound for DAGs In this
section we show that on DAGs any greedy protocol is
competitive. The competitive ratio is a function of the
speci�c DAG G = (V;E). To de�ne this ratio, we de�ne
for any v 2 V : 5

f(v)
4
= 1 +

X

e=(u;v)2E

f(u):

and f(G)
4
= maxv2V f(v).

Theorem 4.2. For any DAG G and any greedy proto-
col, the competitive ratio is at most O(f(G)).

Proof. Let P t be the number of packets delivered by the
protocol by time t, and ADV t be the number of packets
delivered by the adversary by time t. We prove that for

any t, P t � ADV t

O(f(G))
� O(mB) :

For the purpose of the proof we de�ne, in addition
to the real packets that the protocol delivers, virtual
packets and a mechanism that can \virtually deliver"
them. These packets cross edges piggybacked on real
packets that the protocol transmits and are stored in
two types of special bu�ers, maintained at the tail of
every edge: the virtual holding bu�er and the virtual
transit bu�er . In the following we call a packet that
the adversary eventually delivers a D-packet.

We now describe how to handle virtual packets al-
ready in the system, and then how virtual packets are
created. When virtual packets arrive at node v piggy-
backed on a packet p, then if v is the destination of p
the virtual packets are \virtually delivered". Otherwise
let e be the next edge on the path of p. Then the vir-
tual packets are placed in the virtual transit bu�er of
e. When a (real) packet p leaves some node v on edge
e, then all the packets in the virtual transit bu�er of e
are piggybacked on p and the virtual transit bu�er is
emptied. In addition, two packets are extracted from
the virtual holding bu�er of e and are piggybacked on p
as well (if there are less than two packets in the bu�er,
then less than two packets are taken).

5
The combinatorial interpretation of f(v) is the number of

directed path ending at v, including the null path.



Now we describe how virtual packets are created.
We create new virtual packets to compensate for each
packet that the adversary eventually delivers (i.e., a D-
packet) but the protocol drops. Let t be a time step, and
let e be an edge emanating from node v. We consider
the switching substep of time step t at the tail of e. If
no packet is dropped at the tail of e at t, then no new
virtual packet is placed in the bu�ers of e. Assume that
at least one packet is dropped. Let x be the number
of packets that arrive at v on link input ports in the
forwarding substep of t, and for which e is the next
edge on their path. Let � be the number of D-packets
injected into v in the forwarding substep of t and e is the
�rst edge on their path. Let b be the number of packets
in the bu�er at the tail of e at the end of the forwarding
substep. During the switching substep we create x new
virtual packets and place them in the virtual transit
bu�er of e, and we create maxf0;� � (B � b)g new
virtual packets and place them in the virtual holding
bu�er of e.

We now analyze the above mechanism. We �rst
claim that no D-packet is ever \lost". That is, when we
drop such packets, they are compensated by new virtual
packets. We give the following claim.

Claim 4.2. For any time t, the number of D-packets
injected by the adversary by time t is at most the total
number of real packets and virtual packets delivered by
the protocol by time t, plus the total number of real
packets and virtual packets stored in all output bu�ers
(of all types) at time t.

Proof. The proof is by induction on time. For time
t = 0, the claim is trivial. For any time step t > 0,
assume the claim holds at the end of time step t�1. We
consider each node v and each edge e emanating from v
separately. Let x, � and b as de�ned above and examine
�rst the forwarding substep. At this substep, some new
D-packets are injected for which e is the next edge on
their path { these are included in the quantity �; all
other packets that are forwarded during this substep
have no inuence, at this point, on the correctness of
the claim as they just change their location (including
those, real or virtual, packets that are delivered to their
destinations). Next, consider the switching substep of
time step t. If no packet is dropped at the tail of e at
time step t, then all the �+ x (real) packets are added
to the bu�ers of e. Otherwise the bu�er at the tail of e is
full at the end of t. That is, B�b packets are added to it.
In addition we add x new virtual packets to the virtual
transit bu�er and maxf0;� � (B � b)g new virtual
packets to the virtual holding bu�er . The total number
of packets added to the bu�ers of v in the switching
substep is then (B�b)+x+maxf0;��(B�b)g � x+�.
This compensates for the vacated link input bu�ers, and
the D-packets which were in the tra�c input bu�ers.

Lemma 4.1. Let e be an edge emanating from node
v. Then, the maximum number of virtual packets

piggybacked on a packet that crosses e is at most 3f(v)�
1.

Proof. Let the level of a node v be the length of the
longest path leading to node v. We prove the claim
by induction on the level ` of node v. For ` = 0,
observe that the virtual transit bu�er of node v is always
empty since there is no edge leading into v. Therefore,
the number of virtual packets piggybacked on a packet
that crosses e is at most 2 which proves the claim since
f(v) = 1.

For ` > 0, we �rst bound the number of virtual
packets in the virtual transit bu�er of e at any time
step t. The virtual packets in this bu�er are either
virtual packets that arrived to v piggybacked on some
packet that arrived on an edge e0 = (u; v) at time step
t� 1, or new virtual packets created at v at time t� 1.
Since the level of u is less than ` then, by the induction
hypothesis, the number of packets piggybacked on a
packet that crosses e0 is at most 3f(u)�1. The number
of new virtual packets added to the virtual transit bu�er
in a single time step is at most the in-degree of v. It
follows that the total number of packets in the virtual
transit bu�er of v at t is at most

P
e=(u;v)2E 3f(u). The

number of packets piggybacked on a packet that crosses
e is therefore at most

P
e=(u;v)2E 3f(u)+2 � 3f(v)�1.

Now, consider the virtual holding bu�er at the tail
of an edge e emanating from node v. Observe that in
any consecutive B time steps the adversary can inject
into v at most 2B�1 D-packets requiring e. This follows
since at most one packet can leave the bu�er at the tail
of e in each time step, and more packets will overload the
bu�er, forcing the adversary to drop packets. Therefore,
in any B consecutive time steps, the number of new
virtual packets placed in the virtual holding bu�er of
e is at most 2B � 1. At the same time, a new virtual
packet is put in the virtual holding bu�er of e at time t
only if the bu�er of e is full at t, and hence in the next
B time steps a packet crosses edge e. It follows that the
number of virtual packets in the virtual transit bu�er is
bounded by O(B) at any time.

Next, consider the number of packets delivered by
the greedy protocol and by the adversary by some
time t. Clearly the number of packets delivered by
the adversary by time t is bounded from above by the
number of D-packets it injects by time t. Using Claim
4.2, Lemma 4.1 and the above bound on the size of the
virtual holding bu�er we have,

ADV t � P t + 3f(G)P t + O(m(f(G) + B))

� 4f(G)P t + O(m(f(G) + B)) :

We get P t � 1
O(f(G))

�ADV t �O(mB).

4.3 A Universal Lower Bound for Trees We now
show that there is a class of DAGs for which the above
universal upper bound is nearly tight.



Theorem 4.3. On a tree of n nodes with edges directed
towards the root and maximum path length h, the
competitive ratio of every greedy algorithm is 
(n=h).

Proof omitted. Note that for complete binary
trees, the upper and lower bound are within a factor
of O(logn).

4.4 Furthest-to-Go is Not Competitive on the
Cycle We have seen that on DAGs, all greedy algo-
rithms are competitive. We have also seen that NTG
is competitive for all networks. However, it is not the
case that all greedy algorithms are competitive on all
networks. We show below that if the rule for discarding
packets is that the packet with the furthest destina-
tion has the highest priority (to be forwarded and not
dropped), i.e. Furthest-To-Go (FTG), then the protocol
is not competitive on the cycle.

Theorem 4.4. FTG is not competitive on the cycle.

Proof. Consider a cycle with nodes numbered 0 to n�1.
All packets injected into node i are destined to node
(i + 2) mod n. The adversary operates by injecting in
each time step a single packet into each of the nodes.
Now observe that FTG never delivers any packet. To
see that, observe that for a packet with destination node
i to be delivered, the packet has to cross node i�1. But
the adversary injects into node i�1 a constant stream of
packets with destination i+ 1, which have priority over
all packets with destination i. Thus, FTG never delivers
any packet. The adversary however can deliver at least
(roughly) half of the packets: it will accept and deliver
all the packets injected into nodes i for (say) even i.

We remark that it is possible to construct O(n)-
competitive protocols for the cycle of n nodes. In fact
any greedy protocol that drops packets only from tra�c
input ports and not from link input ports will be O(n)
competitive (note that since the in-degrees and out-
degrees of all nodes on the cycle are 1 this is possible).
Details omitted.

5 The Competitive Ratio on the Line

In this section we analyze the competitive ratio attain-
able on the topology of the line, and compare the per-
formance of several protocols. Applying the result for
general DAGs from Section 4.2 to the line of n nodes, we
get that any greedy protocol is O(n) competitive. For
the case B = 1, this is best possible (up to constant fac-
tors), for any protocol. But when B > 1, better bounds
can be achieved. We show that the protocol Nearest-

To-Go (NTG) achieves a competitive ratio of O(n
2

3 ) on
the line. On the other hand the protocols Longest-In-
System (LIS) and Furthest-To-Go (FTG) have a lower
bound of 
(n). We further show that NTG is not far
from optimum by providing a lower bound of 
(

p
n) for

any greedy protocol.

Theorem 5.1. For every greedy protocol on the n-node
line, the competitive ratio is 
(n) if B = 1 and 
(

p
n)

if B > 1.

The proof is omitted. We now proceed to prove our
upper bound for NTG.

Theorem 5.2. Consider a line network with n + 1
nodes, and assume that B > 1. Then the protocol NTG

is O(n
2

3 ) competitive.

We number the nodes and edges from left to right,

starting with 1 in both cases. Let L = dn 2

3 e. Partition
the line into intervals. We mark each edge iL, for i � 1,
as a border edge. All the edges j for (i � 1)L < j < iL
belong to interval number i. A packet is called long if
its path contains at least one border edge; otherwise,
it is called short. A packet for which the last edge on
its path is in interval i is called an interval i packet.
Let At denote the number of packets delivered by the
adversary until time t. Let N t denote the number
of packets delivered by NTG until time t. Denote
by At

s the number of short packets delivered by the
adversary by time t. Denote by At

l the number of
long packets delivered by the adversary until time t.
Observe that At = At

l + At
s. Theorem 5.2 follows from

the following two lemmas that we prove below: (1)

At
s � O(n

2

3 )N t + O(nB + n
5

3 ) (Lemma 5.1); and (2)

At
l � O(n

2

3 )N t + O(nB + n
5

3 ) (Lemma 5.5).
We call a packet that the adversary eventually

delivers a D-packet. For the purpose of analyzing
NTG we de�ne, in addition to the real packets, virtual
packets and a mechanism that virtually delivers some of
these packets (this is a variant of the mechanism used in
Section 4.2). Virtual packets cross edges piggybacked on
real packets that cross edges according to the schedule
of NTG . For the usage of this mechanism, we maintain
at the tail of each edge i a virtual transit bu�er and a
virtual holding bu�er. We �rst describe how we handle
virtual packets already in the system, and then how
new virtual packets are created. When a (real) packet p
arrives at node i with piggybacked virtual packets on it,
then if i is the destination of p, the virtual packets on
it are virtually delivered. Otherwise, they are placed in
the virtual transit bu�er. When a packet leaves node i
and crosses edge i, all the packets in the virtual transit
bu�er of i are piggybacked on it, and are extracted from
this bu�er. In addition, if the virtual holding bu�er
at the tail of i is not empty, 3 packets are taken from
this bu�er (or less, if there are fewer packets in this
bu�er), and piggybacked on the packet that crosses edge
i. The virtual holding bu�er is maintained using the
FIFO policy. Next, we describe how new virtual packets
are created. Let t be a time step and consider each node
i separately. Let x be the number of packets arriving
to i from i � 1 at time t (x is either 0 or 1) and � be
the number of D-packets injected into i at time t. Let
�0 be the number of packets injected into i at time t
and never delivered by the adversary, and let b be the



number of packets in the bu�er of i at the beginning
of the switching substep of t. If no packet is dropped
at i then no new virtual packet is created. Otherwise,
NTG orders all the packets in the output and input
bu�ers according to their distance-to-destination, and
puts the B packets with highest priority into the bu�er
of i. We convert the next maxf0; x + � � (B � b)g
packets (which are some packets that NTG drops) into
virtual packets and place them in the virtual holding
bu�er . We now give a claim pertaining to the number
of packets and virtual packets that NTG maintains.

Claim 5.1. For any time t, the number of D-packets
injected by the adversary by t is at most the number
of real packets and virtual packets delivered by NTG by
time t, plus the number of real packets and virtual
packets stored in the bu�ers of NTG at time t.

Proof. The proof is by induction on time. It obviously
holds at time 0. Consider time step t. We make the
argument separately for each node i. Let x;�, �0 and
b be as de�ned above. During the forwarding substep
NTG transfers packets (both real and virtual) which
therefore might change their status from \undelivered"
to \delivered" but this has no impact on the correctness
of the claim; also in this substep some packets might be
injected; these are accounted for below in the quantities
�;�0. Now, consider the switching substep. The bu�er
at node i has z = (B� b)�x \free" slots. If �+�0 � z
then NTG does not drop any injected packet; in this
case the number of real packets grows by � or more.
If � + �0 > z then the number of real packets grows
by maxf0; zg (note that NTG may accept out of the
�0 packets more than maxf0; zg at the expense of real
packets that were already in its bu�ers) and the number
of virtual packets by at least � � z. Hence the total
number of (real and virtual) packets grows also by �
and the claim still holds.

We now state two claims about the virtual packets
mechanism. Their proofs are omitted.

Claim 5.2. There are at most 3B � 1 packets in the
virtual holding bu�er in any node i at any time. Every
packet that is added to the virtual holding bu�er at time
t, leaves this bu�er by time t+ B.

Claim 5.3. A virtual packet with destination node k,
never crosses edge k0 for any k0 � k.

We continue our proof by considering �rst the short
packets and then the long packets.

Short Packets We �rst show that the number of
packets delivered by NTG is O(n

2

3 ) competitive com-
pared to the short packets delivered by the adversary.
We start with the following claim, which is a variant of
Claim 5.1. Proof omitted.

Claim 5.4. For any time t, and for any j, the number
of D-packets which are short interval j packets and are

injected by the adversary by t, is at most the number
of real (short and long) interval j packets delivered
by NTG by time t, plus the number of real packets in
bu�ers at the tail of interval j edges at time t, plus the
number interval j virtual packets that were converted
into virtual packets at the tail of an interval j edge (and
are either delivered or undelivered at time t).

We now claim the following lemma which shows

that NTG is O(n
2

3 ) competitive compared to the short
packets of the adversary. Proof omitted.

Lemma 5.1. At
s � O(n

2

3 )N t + O(nB + n
5

3 ).

Long packets We now show that the the total

number of packets delivered by NTG is O(n
2

3 ) compet-
itive compared to the long packets delivered by the
adversary. To this end we again consider the piggy-
backing procedure described above. Let T1 = n + B,

let T2 = n + n
2

3 (B � 1), and let T = T1 + T2. For a
given �nal time t, let 0 < t1 < t2 < � � � < tk � t, be
the sequence of time steps in which some packet crosses

some edge with more than 3n
2

3 packets piggybacked on
it. We now take a subsequence of this sequence so that
any two adjacent times are at least T time steps apart.
That is, we take the �rst time step in the original se-
quence as the �rst one of the subsequence. The second
one in the subsequence is the earliest time which is at
least T time steps later than the �rst one, and so on. Let
this subsequence be tj1 ; tj2 ; : : : ;. Based on these times,
we de�ne time intervals of the time axis as follows:

1. For each tji , we de�ne red interval i to be [tji �
T1; tji + T2]. Let R be the number of red intervals.
Observe that any time step can belong to at most
two such intervals.

2. The remaining time steps are included in green
intervals as follows. For i = 1, green interval i
is [1; tj1 � T1). For any 1 < i � R, green interval i
is (tji�1 +T2; tji�T1). For i = R+1 green interval

i is (tiR +T2; t]. Observe that some (or all) of these
intervals may be empty, but any time step either
belongs to one green interval or to one or two red
intervals.

Let AGi be the number of long packets that the
adversary delivers during green interval i. Let NGi be
the number of packets that NTG delivers during green
interval i. Analogously, let ARi be the number of long
packets that the adversary delivers during red interval
i and NRi the number of packets that NTG delivers
during red interval i.

To prove our bound for long packets, we use the
following three lemmas (proofs omitted).

Lemma 5.2. For any i � R, NRi � n
2

3 (B � 1).

Lemma 5.3. For any i � R, ARi � nB + Tn
1

3 =

O(nB + n
4

3 ).



Lemma 5.4. For any i � R, AGi � O(n
2

3 )(NGi+NRi).

For i = R+ 1, AGi � O(n
2

3 )NGi +O(nB + n
5

3 ).

Based on the above three lemmas we can prove the
main lemma of this part:

Lemma 5.5. For any t, At
l � O(n

2

3 )N t+O(nB + n
5

3 ).

Proof. Let R be the number of red intervals until time t,
and let R+1 be the number of green intervals. Clearly,

At
l �
PR

i=1ARi+
PR

i=1AGi+AGR+1. By Lemmas 5.2

and 5.3 we get that for any i � R, ARi � O(n
2

3 )NRi.

Therefore we have, At
l � O(n

2

3 )
PR

i=1NRi+
PR

i=1AGi+
AGR+1 : Using Lemma 5.4 we get,

At
l � O(n

2

3 )

RX

i=1

NRi +O(n
2

3 )

RX

i=1

(NGi + NRi) +

[O(n
2

3 )NGR+1 + O(nB + n
5

3 )] :

Since each time step appears either in one green interval
or in one or two red intervals the last expression is at

mostO(n
2

3 )N t+O(nB+n
5

3 );which concludes the proof.

This concludes the proof that NTG is O(n
2

3 ) com-
petitive on the line. As opposed to the protocol NTG ,
the protocols FTG and LIS have a lower bound of 
(n)
on the line of n-nodes. (proof omitted).

Theorem 5.3. For I � 2, the competitive ratio of both
LIS and FTG on the line of n nodes is 
(n).
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