
CLIQUE HERE:

ON THE DISTRIBUTED COMPLEXITY IN

FULLY-CONNECTED NETWORKS

BENNY APPLEBAUM1

School of Electrical Engineering

Tel Aviv University

Israel

DARIUSZ R. KOWALSKI

Department of Computer Science

University of Liverpool

UK

BOAZ PATT-SHAMIR2,3

School of Electrical Engineering

Tel Aviv University

Israel

ADI ROSÉN3,4

CNRS and Université Paris Diderot

France

Received: June 2014

Revised: October 2014

Communicated by D. Peleg

ABSTRACT

We consider a message passing model with n nodes, each connected to all other nodes by a link

that can deliver a message of B bits in a time unit (typically, B = O(log n)). We assume that

each node has an input of size L bits (typically, L = O(n log n)) and the nodes cooperate in order

to compute some function (i.e., perform a distributed task). We are interested in the number of

rounds required to compute the function.

We give two results regarding this model. First, we show that most boolean functions require

dL/Be− 1 rounds to compute deterministically, and that even if we consider randomized protocols

that are allowed to err, the expected running time remains Ω(L/B) for most boolean function.

Second, trying to find explicit functions that require super-constant time, we consider the pointer

chasing problem. In this problem, each node i is given an array Ai of length n whose entries are

in [n], and the task is to find, for any j ∈ [n], the value of An−1[An−2[. . . A0[j] . . .]]. We give a

deterministic O(log n/ log log n) round protocol for this function using message size B = O(log n),

a slight but non-trivial improvement over the O(log n) bound provided by standard “pointer dou-

bling.” The question of an explicit function (or functionality) that requires super constant number

of rounds in this setting remains, however, open.

Keywords: CONGEST Model, Communication Complexity, Pointer Jumping, Network Algorithms

1Supported by ISF grant 1155/11, Israel Ministry of Science and Technology (grant 3-9094), GIF grant 1152/2011,

and by the Check Point Institute for Information Security.
2Supported in part by the Israel Science Foundation (grant No. 1444/14).
3Supported in part by a grant from the Israel Ministry of Science, Technology and Space, Israel and the French

Ministry of Higher Education and Research (Maimonide 31768XL).
4Supported in part by ANR project RDAM (ANR-12-BS02-005).



1 Introduction

In the local model of network algorithms, each link can carry a message of arbitrary length in one

time unit, effectively assuming that link bandwidth is unbounded [1414]. This model is therefore allows

us to study the distance that input items must travel in order to produce correct output. In the

present paper we consider a model that trivializes the distance constraints but restricts bandwidth by

considering a clique and putting a cap on the message size, thus allowing us to isolate the effect of

congestion on the complexity of distributed computation.

More specifically, we assume that the network topology is an n-node clique whose links can carry

B bits in a time step. B is a given parameter, and typically it is assumed that B = Θ(log n). In this

special case of the congest model [1414], any B-bits input item can be retrieved by any node in a single

time unit, but if the number of inputs is much larger than n, then the trivial centralized solution of

collecting all inputs at a single node is impossible. We are interested in the time complexity (number

of rounds) of computing various functions and functionalities in this model. From a (multiparty)

communication complexity point of view, our setting is the number-in-the-hand model (see [77]), where

each link can carry B bits per time unit, and the objective is to minimize the number of rounds

required to compute the function (as opposed to the more common question of minimizing the total

number of bits transmitted). We note that in this model (as a special case of the congest model, and

using a streamlined version of the α synchronizer [22]) we may assume that the network is synchronous,

i.e., computations proceed in global rounds.

We assume that the input size at each node is L bits, where L is a given parameter. We focus

on the case where L = Θ(nB). This allows us to consider inputs which describe graphs using O(B)

bits per edge. The main question that drives us is whether there are problems that require super-

constant number of rounds in this model. The simple lower bound argument that “all input must

be communicated” does not hold, because the complete input can be communicated in this case in a

constant number of rounds. No such decision problems are known to date, and on the other hand some

important functionalities can be computed in constant time, e.g., selection and sorting [1313, 1010, 88].

Our results. Our contribution in this paper is twofold. First, we give an existential proof that

shows that there are predicates (functions with a single bit of output) that require super-constant

number of rounds. In fact, we show that “most” predicates require dL/Be − 1 rounds to compute

deterministically (Section 33). Moreover, even if we consider randomized protocols that are allowed to

err, the expected number of rounds remains Ω(L/B) for “most” predicates. In our quest to find an

explicit function (or functionality) that requires a super-constant number of rounds, we consider the

pointer chasing problem. In this problem, each node i is given an array Ai of length n whose entries

are in [n], and the task is to find, for any j ∈ [n], the value of An−1[An−2[. . . A0[j] . . .]]. This function

seems to be a natural candidate for a lower bound of the type we look for because of its apparent

sequential specification. Moreover, this function has been extensively used in the communication

complexity literature [1212, 1515, 33, 66]. It is not hard to see that using the “pointer doubling” technique,

this problem can be solved in O(log n) rounds in our setting (here L = O(n log n), and assuming

B = O(log n)). While we fall short of our original goal of proving a super-constant lower bound for

pointer chasing, we make a slight, but non-trivial, improvement on the upper bound side and give

an O(log n/ log logn)-round deterministic protocol (Section 44). The question of finding an explicit

1



function (or functionality) with a super constant lower bound in this setting remains, however, open.

1.1 Related work

The Clique model. The special case of the fully-connected network (clique) in the congest model was

first considered by Lotker et al. [1111]. For simplicity, we state all results below under the assumption

that B = Θ(log n) and L = O(n log n). In [1111] it is shown that if each link has a weight known to its

endpoints, then a minimum-weight spanning tree can be found in O(log log n) rounds. The next work

in this model [1313] gives a randomized algorithm to sort n2 items, where each player receives as input

n items. The goal is that each player knows the rank of each of its input items, among the global

n2-items input. The running time of the algorithm in [1313], using a result of Lenzen and Wattenhofer

[1010], is constant in expectation and w.h.p. Lenzen subsequently improved the result by showing that

sorting can be solved deterministically in constant time [88]. In [88] it is also shown that any routing

instance, in which each node is the source of at most n messages and at most n messages are destined

at each node, can be performed in O(1) deterministic time. We note that the latter result allows one

to consider algorithms and lower bounds designed for the BSP model [1717], where it is assumed that

in every “round,” each node can send and receive at most h messages for a given parameter h of the

model. In the clique model, h = n.

We note that Lenzen and Wattenhofer [99] considered a similar but “globally restricted” model,

where in each communication round, O(nε) bits can be transferred (possibly all from a single source

to a single destination). They show that any algorithm that uses only nε bits of memory per node,

over networks of polylogarithmic maximal degree, and runs in T rounds in the local model, can be

emulated in the globally restricted model in time O(log T + T log logn/ log n), which means that any

problem with a log-time algorithm in the polylog-bounded-degree congest model has an O(log log n)

time algorithm in the globally-restricted model.

Finally, we point out that concurrently with our work, Drucker et al. [55] have reported an existential

lower bound of (n− 5 log n)/B rounds for the deterministic computation of a boolean function in the

case where L = n. They also prove a transformation of a certain class of circuits to the clique model,

therefore showing that a lower bound on the clique model implies a lower bound on that class of

circuits. Also, in [55] the “Clique-Bcast” model is considered, where in each round each node can

broadcast a single B-bit message that is received by all.

Pointer Chasing. The problem of pointer chasing is an important problem in communication

complexity theory, where it was studied mainly in the 2-party setting. In this setting, it is assumed

that Alice receives an array A of n entries, each in the range [n], and similarly Bob receives an array

B. Given k, the goal is to compute A[B[A . . . A[1] . . .]] where dereferencing is done k times starting

with Alice (e.g., for k = 2 the task is to find B[A[1]]). While it is easy to compute the output in k

rounds starting with A, using a total of O(k log n) bits of communication, it was shown that if only

k − 1 communication rounds are available (or when k rounds are available, but the first to speak is

Bob), then the communication complexity jumps to Θ(n log(k−1) n) for all fixed k, where log(k) is the

k-iterated logarithm function [1212, 44, 1515]. Another version of pointer chasing, where the input to the

two players represents an n-ary tree, rather than a bipartite graph of 2n nodes, is used in [66] to derive

lower bounds on the communication complexity over noisy channels. The multiparty communication

2



complexity literature has considered the problem in our formulation (i.e., the input represents a layered

graph) but in the number-on-the-forehead model (cf. [77]) which is different than our setting (see, e.g.,

[44, 33]).

The pointer doubling technique is due to Shiloach and Vishkin, who invented it in the context of

computing connected components in the PRAM model [1616].

2 The Model

The model we consider consists of n players Pi, 0 ≤ i ≤ n−1, where each pair of players is connected by

a bidirectional communication link (i.e, the communication graph is an undirected clique). The system

is synchronous, and in each time step, each communication link can transmit B bits, in each direction,

for some given integer parameter B > 0. We note that it is common to assume that B = Θ(log n), in

the spirit of the word model in classical RAM (see, e.g., [11]).

Each player Pi, 0 ≤ i ≤ n − 1, receives as input a string of L bits denoted xi, for some given

integer parameter L > 0. We assume that xi ∈ S, for some S ⊆ {0, 1}L. The task of the players is to

compute some functionally f(x0, . . . , xn−1)→ (y0, . . . , yn−1), such that each player Pi, 0 ≤ i ≤ n− 1,

outputs a bit string yi ∈ T ⊆ {0, 1}M for some given integer parameter M ≥ 0. We shall consider

the case of L > B; otherwise, all inputs can be gathered by each single player in a single round. Note

that in many cases it is desirable that the input describes a graph over the players, in which case

typically L = Θ(n log n), because this way we can attach to each possible incident edge O(log n) bits

(for example, specifying the edge weight). We assume that each player Pi knows its index i in the

sense that it can be used by the code of the program the player runs.

A protocol P runs in rounds, where in each round each player sends to each other player a message

of B bits, on the link connecting them. At any round, in addition to sending messages, each player

can write its output. This is formalized by assuming a special write-once output tape.

Given a function f , we say that a run of a protocol P is correct if for the vector of inputs given to

the players, ~x, and for the outputs written by the players, ~y, it holds that f(~x) = ~y.

The running time of a deterministic protocol P on a given input ~x, denoted TP (~x), is the number

of rounds until all players have written on their output tape.

Definition 1. Given a function f , t ≥ 1, and 0 ≤ p ≤ 1, a deterministic protocol P is said to D(t, p)-

solve f if (1) for any ~x ∈ Sn, TP (~x) ≤ t; and (2) there is a set X ⊆ Sn, |X | ≥ p · |Sn|, and the protocol

is correct when run on any ~x ∈ X .

Definition 2. Given a function f , t ≥ 1, and 0 ≤ p ≤ 1, a randomized protocol P is said to R(t, p)-

solve f if (1) for any ~x ∈ Sn, E[TP (~x)] ≤ t; and (2) for any ~x ∈ Sn, the probability that the protocol is

correct when run on ~x is at least p. The probabilities (and expectations) are over the random choices

of the protocol.

We note that since the bandwidth of the communication links is bounded there may be a difference

in the round complexity of randomized protocols if we allow shared randomness or not. For the lower

3



bound we present we allow the parties to have shared randomness (which makes the lower bound only

stronger). Our upper bound is deterministic so it applies in both models.

3 Lower Bound

In this section we prove that in the clique model, “most” boolean functions cannot be computed

deterministically in less than dL/Be − 1 rounds.11 Note that in the clique model, any function can

be computed in dL/Be rounds, simply by sending all input to all players, who then compute their

output locally. To avoid trivialities due to output size, we consider predicates, i.e., boolean functions

f : {0, 1}Ln → {0, 1}.

We start by showing, for any predicate f , the existence of a deterministic protocol with certain

properties given a randomized protocols with certain (other) properties.

Lemma 3.1. Let f be a predicate. If there exists a randomized protocol that R(t, p)-solves f , then for

any constant c > 1
p there exists a deterministic protocol that D(c · t, p− 1

c )-solves f .

Proof. Let P be a randomized protocol that R(t, p)-solves f . Using P , we construct another random-

ized protocol P ′ that works as follows. For the first ct rounds, P ′ operates exactly as P . At the end

of round ct, each player that has not yet written on its output tape, writes an arbitrary value on the

output tape. Note that on any input, by the Markov inequality, the probability that P runs more

than ct rounds is at most 1
c . It follows that, for any input ~x, protocol P ′ has a deterministic upper

bound of ct rounds on its running time, and that on any input ~x, P ′ is correct with probability at

least p− 1
c . Next, we claim that there exists some specific random tape for P ′ for which the resulting

deterministic protocol P ∗ D(ct, p − 1
c )-solves f . To see that such a tape exists, consider the uniform

distribution over the inputs. Choose at random a random tape T for P ′. The probability that P ′ with

T is correct on a uniformly at random chosen input is at least p− 1
c . By the pigeonhole argument this

implies that there is a random tape T ∗ with which P ′ is correct with probability at least p− 1
c (over

the uniformly at random chosen inputs). Since the inputs were taken from a uniform distribution, this

implies that a p− 1
c fraction of inputs is computed correctly, and hence P ∗, which is P ′ with tape T ∗,

D(ct, p− 1
c )-solves f .

Lemma 3.2. For every constant p > 1/2, the number of predicates f : {0, 1}Ln → {0, 1} that admit a

deterministic D(L/B − 1, p)-protocol is o(2(2
Ln)).

Proof. A protocol is completely specified by a set of functions πτ (i, j), τ ≥ 1, 0 ≤ i, j ≤ n− 1, which

specify, for each round τ each sender i and each receiver j, what message is sent from i to j at round

τ . We use πτ (i, i) to denote the function that says, for each player Pi and round τ , what Pi writes on

its output tape at round τ .

Now, any function πτ (i, j) depends on the (τ − 1)(n− 1) messages received by player i until (and

including) round τ − 1, and on the input to player Pi. It follows that any function πτ (i, j) depends on

1 Recall that typically, L = Θ(n logn) and B = Θ(logn).

4



at most τ(n− 1)B + L bits. Also, πτ (i, j) ∈ {0, 1}B for i 6= j and πτ (i, i) ∈ {0, 1,⊥} (where ⊥ means

“no output”). Therefore there are at most (2B)2
L+τ(n−1)B

possible functions πτ (i, j).

Any round τ is defined by n2 such function, therefore the number of different protocols that run

in at most t rounds (i.e., the number of different D(t, p) protocols to compute a boolean function) is

bounded from above by

t∏
τ=0

((
2B
)2L+τ(n−1)B

)n2

= 2B·n
2
∑t
τ=1 2

L+Bτ(n−1) ≤ 22Bn
2·2L+Bt(n−1)

.

For t ≤ L/B − 1, and since B < L, this is 2o(2
nL).

Every given protocol P gives some output ~y = P (~x) on any input ~x. If the protocol P D(t, p)-solves

f , then |{~x ∈ {0, 1}Ln : P (~x) 6= f(~x)}| ≤ (1− p)2Ln. For a given protocol P the number of functions

f that conform to this bound is at most

b(1−p)2Lnc∑
d=0

(
2Ln

d

)
≤ 2H(1−p)·2Ln ,

where H is the binary entropy function (this is an upper bound on the volume of a binary Hamming

ball of radius (1− p)2Ln).

It follows that the number of boolean functions f for which there exists a protocol that D(L/B −
1, p)-solves f is at most

2(H(1−p)+o(1))·2Ln ,

and, since H(1− p) < 1 for p > 1/2, the lemma follows.

We can now prove that most predicates do not admit a deterministic protocol with less than

dL/Be − 1 rounds, even if the protocol is allowed to err on many (i.e., almost half of the) inputs.

Formally, we prove the following theorem.

Theorem 3.3. Suppose that each player has an L-bit input, and each link can carry a B-bit message in

each round. Let p > 1/2 be a constant. For a (1−o(1))-fraction of the predicates f : {0, 1}Ln → {0, 1},
there is no deterministic protocol that D(L/B − 1, p)-solves f .

Proof. The number of predicates f : {0, 1}Ln → {0, 1} is

2(2Ln) .

Hence, by Lemma 3.23.2, the fraction of predicates f for which there exists a protocol that D(L/B−1, p)-

solves f , out of all predicates, is o(1).

Using Lemma 3.13.1 and Theorem 3.33.3 we have the following theorem.

Theorem 3.4. Suppose that each player has an L-bit input, and each link can carry a B-bit message in

each round. Let p > 1/2 be a constant. For a (1−o(1))-fraction of the predicates f : {0, 1}Ln → {0, 1},
it holds that if P is a randomized protocol that R(t, p)-solves f , then t = Ω(L/B).

5



We summarize with a corollary about the typical values of L and B.

Corollary 3.5. Consider the predicates with O(n log n) bits of input at each player. Assume that

in each round, each player sends to any other player a message of size O(log n) bits. Then for any

constant p > 1/2, for most predicates f it holds that if a (randomized) protocol P R(t, p)-solves f ,

then t = Ω(n).

4 Protocol for Pointer Chasing

In this section we consider the problem of pointer chasing, and study it in our model for the case of

B = log n (i.e., each link can transmit a message of log n bits in each round).

We start with a formal definition of the problem.

4.1 The problem

The problem is defined for any integer n > 0. Each of the players Pi, for 0 ≤ i ≤ n− 1, gets as input

a vector Ai of size n, in which each entry holds a number in the range 1 to n. The interpretation of

Ai[j], for 1 ≤ j ≤ n, is a pointer to the Ai[j]’th entry in the vector Ai+1. The goal is to compute for

any j ∈ [n], the value of An−1[An−2[. . . A0[j] . . .]]. Intuitively, the goal is to follow a chain of pointers

as in Fig. 11. We consider this problem on the clique when the bandwidth of each link is log n bits,

i.e., when we set B = log n in our model.

𝐴0 𝐴1 𝐴2 𝐴3 

Figure 1: An illustration of the pointer chasing problem. Player i holds array Ai, and the goal is to

follow the chain starting at a given position. Note that while this example demonstrates a case where

the arrays Ai are permutations, this is not necessarily the case in all instances.

For ease of discussion and notations, the input can also be viewed as representing a layered directed

graph of n + 1 layers of width n, where the entry Ai[j], for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n represents a

directed edge from node j in layer i to node Ai[j] in layer i+ 1. Note that every node has out degree

exactly 1 (except layer n where the nodes have out degree 0). The task of the players, under this

interpretation, is to compute, for every 1 ≤ j ≤ n, the identity of the node of layer n which is reached

by a length-n path starting at node j of layer 0. Note that the goal of the players is to compute a

function (the output of all players is the same, i.e., a vector of length n, representing the nodes at the

end of the paths).

6



4.2 Routing Primitives

To define our protocol we employ the following result of Lenzen (Theorem 3.7, [88]) for the Information

Distribution Task.

Theorem 4.1 ([88]). Consider a communication network in the form of a clique, where every link can

transmit O(log n) bits per round. Any set of messages (of O(log n) bits each) such that each node sends

at most n messages and each node has to receive at most n messages, can be routed distributively in

O(1) rounds.

In our description of the protocol we use the procedure that is guaranteed by Theorem 4.14.1 and

denote it Route.

In addition to Route we use another routing primitive that we call Disseminate. For this routing

primitive the players are partitioned into disjoint “teams” Tw. We assume that each player knows the

complete partition of the players into teams. Further, in each teams Tw, there is a single sender

sw ∈ Tw which has a vector vi of n integers in the range [1..n] to disseminate to all the members of

its team. This primitive is implemented in two rounds as follows.

In the first round of Disseminate each sender sw sends to player Pt, for 0 ≤ t ≤ n− 1, a message

containing the tuple (w, vi[t+ 1]), i.e., the identity of the team and the value of the t+ 1’th entry of

the vector to disseminate. This can be done in parallel for all teams, in a single round using the links

connecting the senders to the various players Pt, for 0 ≤ t ≤ n−1. In the second round of Disseminate

each player Pt, 0 ≤ t ≤ n−1 sends the messages it received to the appropriate players that need to get

them, i.e., to the members of the appropriate team. That is, each player Pt, 0 ≤ t ≤ n− 1 sends each

message (w, vi[t + 1]) that it received to all players of the team Tw. This can be done in parallel for

all players Pt, 0 ≤ t ≤ n− 1, and all teams in a single round since each player sends a single message

to any other player.

4.3 An O(log n/ log log n)-round protocol

For ease of presentation we describe the protocol in the terminology of solving the pointer chasing

problem defined for layered graphs. Furthermore, for ease of presentation we assume that n is a power

of 2.

The protocol starts with an input such that each player Pi, for 0 ≤ i ≤ n − 1, holds a vector Ai
of size n that represents the n endpoints of paths of length 1 edge each (i.e. single edges), starting in

each of the n nodes of level i in the graph. The protocol works in iterations where in each iteration the

endpoints of paths of longer and longer length are computed. This is done in an aligned way. That

is, at the end of each iteration j there is a value `j such that the endpoints of all paths of length `j ,

emanating from all nodes in the graph of level i, such that i mod `j = 0, are known to player Pi.
All players Pi hold a vector ~vi which is maintained to hold these endpoints. For the beginning of the

protocol, i.e., at the end of the ”empty iteration” j = 0, `j = 1 and the vector ~vi is initialized to the

the input vector Ai of each player Pi.

The protocol proceeds in two stages, which differ in the way that shorter paths are combined into

7



longer paths, and in the speed at which the path length grows.

The first stage is just the classical pointer doubling procedure run for r iterations (where r is to

be determine later). Specifically, in iteration j, for every i such that i ≡ 0 (mod 2j), Pi+2j−1 sends

Ai+2j−1 to player Pi. Note that using the procedure Route this can be done in each iteration in

parallel for all players, in constant number of rounds.

By the end of the first stage, each player Pi with i ≡ 0 (mod 2r) holds the endpoints of n paths of

length 2r edges each, emanating from level i in the graph. We then partition the players into teams

of size 2r players each, where each team Tw, 0 ≤ w < n/2r consists of the consecutive players Pw2r+j ,
for 0 ≤ j < 2r. With these teams, and players Pw2r as the sender for team Tw, we invoke procedure

Disseminate (see Section 4.24.2) to disseminate the endpoints known to the senders to all the members

of their respective teams. This takes two rounds and ends the first stage of the protocol.

In the second stage, the algorithm proceeds by assigning tasks to teams of players. When an

iteration of the second stage starts, all players in a team hold the same information. The goal of an

iteration is that q short paths will be combined into a longer path (q to be determined later). This is

done by way of trying out all possible concatenations of q consecutive paths. Each such concatenation

is checked by some player, which verifies whether the ending node of each shorter path in the possible

concatenation is equal to the starting node of the following path of the same possible concatenation.

To do that, each one of the nq possible concatenations of shorter paths is assigned to some player,

which gets the appropriate information and verifies if the concatenation is valid. The parameter q is

chosen so that the information needed by any player in order to check all concatenations assigned to

it can be received in a constant number of rounds (using Route), and that there are enough players

to assign all nq possible concatenations.

More precisely, let C
def
= 2r. The players are partitioned into teams, where each team consists of C

consecutive players, i.e., each team Tw, 0 ≤ w < n/2r consists of the players Pw2r+j , for 0 ≤ j < 2r.

When iteration k ≥ 1 of the second stage starts, we have n
C · q

−(k−1) active teams. Initially, when the

second stage starts, all teams are active teams. The players of any active team all hold the endpoints of

the n (C ·qk−1)-length paths emanating from the nodes of the layer that corresponds to the first player

of the team (for the basis of the induction, the reader can verify that this holds for iteration k = 1

of the second stage, i.e., when the first stage of the protocol ends). We then take each q consecutive

active teams as a group, and let each group find the endpoints of the paths of length C · qk emanating

from the layer that corresponds to the first player of the first team.

This is done as follows, in parallel in all groups. The players of the first team in the group are

designated as tester players. Each such tester player receives, from each of the q teams, n/q endpoints

of paths (of length n
C · q

−(k−1) each). It can then check all possible (nq )q possible combinations to

possibly find valid concatenations. Since the tester team is composed of C players, we can check in

this way C · (nq )q possible concatenations. So long as qq ≤ C, this allows us to check all necessary nq

possible concatenations. Note that each tester node receives n endpoints and that, since each team is

composed of C players, each player has to send n/q endpoints to some tester player. Therefore this

procedure can be performed in O(1) rounds using Route.

When the information arrives as the tester nodes, they check the possible concatenations under

their “responsibility.” Once the nodes have terminated validating concatenations, each node that has

8



found valid concatenation(s) sends them to the first player of its team. Observe that exactly n valid

concatenations will be found overall (per group) and that each player therefore identifies at most n

valid concatenations. This can therefore be done in O(1) rounds for all groups in parallel using Route.

We then invoke the procedure Disseminate so that all the endpoints known to the first player in

each tester team is known to all members of that team. Observe that this is done in parallel for all

tester teams in two rounds.

The tester teams of iteration k (of the second stage) then become the active teams for the next

iteration, i.e., iteration k + 1 of the second stage.

The protocol ends when there is a single active team, which is equivalent to the condition that the

ending nodes of n paths of length n edges, emanating from level 0 in the graph have been computed,

and are known to player P0. This information can then be broadcast to all players in two rounds,

using Disseminate once again (with a single team consisting of all players, and the sender being P0).

4.4 Analysis

The correctness of the algorithm was already discussed during the description of the algorithm. In

short, it follows from standard doubling technique arguments for the first stage, and from the fact

the the size of each team is large enough to check all possible concatenations in each iteration of the

second stage.

To analyze the time complexity, observe that each iteration of either the first or second stage takes

O(1) rounds. The time complexity of the protocol is therefore linear in the number of iterations.

Fact 4.2. The first stage consists of r iterations.

Fact 4.3. The second stage has logq(n/C) iterations.

Since the correctness of the second stage of the protocol requires that 2r = C ≥ qq, we fix

q =
√

log n and r = 1
2

√
log n · log log n. We can now conclude with the following theorem.

Theorem 4.4. There is a deterministic protocol for the pointer chasing problem with running time

of O(log n/ log log n) rounds.

Proof. Using the above two facts, and since C = 2r, the running time of the protocol is

O(r + logq(n/2
r)) = O(

1

2

√
log n · log logn+ log√logn(n/2r))

≤ O(
1

2

√
log n · log logn+ log√logn n)

≤ O(log n/ log logn) .

Acknowledgments

We thank Pierre Fraigniaud and Zvi Lotker for useful discussions.

9



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-

Wesley Publishing Co., Reading, MA, 1974.

[2] B. Awerbuch. Complexity of Network Synchronization. Journal of the ACM, 32(4):804–823, 1985.

[3] J. Brody. The maximum communication complexity of multi-party pointer jumping. In IEEE Conference

on Computational Complexity, pages 379–386. IEEE Computer Society, 2009.

[4] C. Damm, S. Jukna, and J. Sgall. Some bounds on multiparty communication complexity of pointer

jumping. Computational Complexity, 7(2):109–127, 1998.

[5] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model. In Proc. 33rd Ann.

ACM Symp. on Principles of Distributed Compting, 2014. To appear.

[6] G. Kol and R. Raz. Interactive channel capacity. In D. Boneh, T. Roughgarden, and J. Feigenbaum,

editors, STOC, pages 715–724. ACM, 2013.

[7] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[8] C. Lenzen. Optimal deterministic routing and sorting on the congested clique. In Proc. 32nd ACM Symp.

On Principles of Distributed Computing (PODC), pages 42–50, 2013. Also available as arXiv:1207.1852.

[9] C. Lenzen and R. Wattenhofer. Brief announcement: Exponential speed-up of local algorithms using non-

local communication. In Proc. 29th ACM Symp. On Principles of Distributed Computing (PODC), pages

295–296, 2010.

[10] C. Lenzen and R. Wattenhofer. Tight bounds for parallel randomized load balancing: extended abstract.

In Proc. 43th Ann. ACM Symp. on Theory of Computing, pages 11–20, 2011.

[11] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-weight spanning tree construction in o(log

log n) communication rounds. SIAM J. Comput., 35(1):120–131, 2005.

[12] N. Nisan and A. Wigderson. Rounds in communication complexity revisited. SIAM J. Comput., 22(1):211–

219, Feb. 1993.

[13] B. Patt-Shamir and M. Teplitsky. The round complexity of distributed sorting. In Proc. 30th ACM Symp.

On Principles of Distributed Computing (PODC), pages 249–256, 2011.

[14] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2000.

[15] S. J. Ponzio, J. Radhakrishnan, and S. Venkatesh. The communication complexity of pointer chasing.

Journal of Computer and System Sciences, 62(2):323 – 355, 2001.

[16] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. J. Algorithms, 3(1):57–67, 1982.

[17] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33:103–111, August 1990.

10


	Introduction
	Related work

	The Model
	Lower Bound
	Protocol for Pointer Chasing
	The problem
	Routing Primitives
	An O(logn / loglogn)-round protocol
	Analysis


