
DOI: 10.1007/s00453-002-1019-9

Algorithmica (2003) 36: 123–152 Algorithmica
© 2003 Springer-Verlag New York Inc.

Time-Constrained Scheduling of Weighted Packets on
Trees and Meshes1

Micah Adler,2 Sanjeev Khanna,3 Rajmohan Rajaraman,4 and Adi Rosén5

Abstract. The time-constrained packet routing problem is to schedule a set of packets to be transmitted
through a multinode network, where every packet has a source and a destination (as in traditional packet
routing problems) as well as a release time and a deadline. The objective is to schedule the maximum number
of packets subject to deadline constraints. This problem is studied in [1], where it is shown that the problem is
NP-Complete even when the underlying topology is a linear array. Approximation algorithms are also provided
in [1] for the linear array and the unidirectional ring for both the case where packets may be buffered in transit
and the case where they may not be.

In this paper we extend the results of [1] in two directions. First, we consider the more general network
topologies of trees and two-dimensional meshes. Second, we associate with each packet a measure of utility,
called a weight, and study the problem of maximizing the total weight of the packets that are scheduled subject
to their timing constraints. For the bufferless case, we provide constant factor approximation algorithms for the
time-constrained scheduling problem with weighted packets on trees and meshes. We also provide logarithmic
approximations for the same problems in the buffered case. These results are complemented by new lower
bounds, which demonstrate that we cannot hope to achieve the same results for general network topologies.
For example, we show that if k packets are required to follow prescribed paths in an arbitrary graph, then unless
NP = ZPP, there is no polynomial-time k1−ε-approximation, for any ε > 0, to the optimal set of packets that
can be scheduled.

Key Words. Packet routing, Approximation algorithm, Deadline.

1. Introduction. Recent research in communication and interconnection networks
has seen a growing emphasis on networks that are capable of delivering packets with
timing constraints. For communication networks, the shift to this type of routing from
traditional best effort routing is motivated by multimedia applications such as real-
time video and audio [18]. For example, a real-time video packet that does not arrive
within a given window of time serves little or no purpose. For interconnection networks

1 A preliminary version of this paper appeared in the Proceedings of SPAA 99. Portions of this research were
done while the first author was at the Department of Computer Science, University of Toronto. The second
author was supported in part by an Alfred P. Sloan Research Fellowship. The third author was supported in
part by NSF CAREER Award NSF CCR-9983901. Part of this work was done while the fourth author was
with the Department of Computer Science, University of Toronto, Toronto, Canada.
2 Department of Computer Science, University of Massachusetts, Amherst, MA 01002, USA. micah@cs.
umass.edu.
3 Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104,
USA. sanjeev@cis.upenn.edu.
4 College of Computer Science, 161 Cullinane Hall, Northeastern University, Boston, MA 02115, USA.
rraj@ccs.neu.edu.
5 Department of Computer Science, Technion, Haifa 32000, Israel. adiro@cs.technion.ac.il.

Received February 7, 2001; revised October 10, 2002. Communicated by L. Arge.
Online publication March 5, 2003.

124 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

the analogous shift is motivated by emerging real-time applications that rely on time-
constrained communication, such as industrial process control and avionics [25].

Another important aspect of many networks is that different packets may have different
levels of importance or usefulness. For example, video image encodings such as JPEG
and MPEG have the property that the quality of the image produced is very sensitive
to what portion of the encoding is available for decoding, and there is a clear notion of
which packets are the most important. Variation in packet utility can also result from
differences in the importance of packets sent by different applications. For example, on
a network requiring payment for the delivery of packets, some customers may be willing
to pay more for improved quality of service. In such a scenario, the network provider
would want to deliver the packets that provide the most total revenue.

In this paper we consider the time-constrained packet routing problem introduced in
[1]. The objective is to schedule a set of packets with timing constraints to be routed
through a given multinode network. Each packet is specified by its source node, its
destination node, and its routing path, as well as a release time, a deadline, and a weight.
The weight of a packet represents the utility provided by that packet; in [1] all weights
are assumed to be uniform. A packet cannot start its journey from its source node before
its release time, and has to arrive at its destination by the deadline to serve any purpose.
Thus the objective is to maximize the total weight of the packets that arrive by their
deadlines. Note that this means that a packet should be dropped if it will not arrive by
its deadline, since forwarding such a packet wastes network resources.

The network model. We model the network as an undirected graph G = (V, E), where
the set of nodes is the set of processors, and the set of edges is the set of communication
links. We consider a synchronous model, where in each time step each link can transmit
one packet in each direction. There are no other limitations on the number of packets
that each processor can send or receive at each time step.

We distinguish between two cases, depending on the buffering policies at the nodes.
In the buffered case nodes are allowed to store packets that they receive and then transmit
them at a later time. In the bufferless case a packet is not allowed to be buffered at any
node other than the source node. Thus, a packet m that crosses a link to node v at time
step t , has to cross the next link, leaving v, at time step t + 1. This second case, which
is particularly appropriate for optical networks [13], has been studied in [5] and [23].
Furthermore, as is shown in [1], the bufferless case is closely related to the buffered case,
and can provide important insights into buffered routing.

An instance of the buffered (resp., bufferless) problem that we consider consists of a
graph G, and a set of k messages M . Each m ∈ M is defined by a tuple (s, t, π, r, d, w),
where s is the source of the packet, t its destination, π is a simple path that the message
has to follow from s to t , r is the release time, d is the deadline, and w is its weight, i.e.,
the benefit accrued if the packet arrives at t by the deadline d. We refer to the length of
the path π as the span of the message, and we refer to the number of steps that a packet
can sit idle between its release time and deadline as the slack of the packet. We denote the
weight of a packet m by w(m). Given a set S of packets, let w(S) denote

∑
m∈S w(m).

The goal of the buffered problem (resp., bufferless problem) is to determine a maximum
weight subset M ′ ⊆ M that can be scheduled using buffers at the nodes (resp., without
buffers) so that all messages in M ′ arrive by their deadline. The solution also has to
include a valid schedule for the packets in M ′.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 125

Summary of results. The first results in this framework are given in [1], where linear-
array and ring networks were studied and it is assumed that all packets have the same
weight. In this paper we extend the results of [1] in two directions. First, we study
the more general network topologies of the tree and the mesh. Second, we allow the
packets to have different weights, and find an approximate solution to the problem of
maximizing the total weight of packets that arrive by their deadlines. Note that it is
shown in [1] that even in the case of uniform weights on the linear array, finding the
exact solution is NP-Hard, and thus an approximate solution to the problems we consider
is the best we could hope to find efficiently. All algorithms we consider are centralized
and off-line.

For the tree we present an algorithm for the bufferless case that achieves a constant
approximation ratio. For the special case that the packets have uniform weights, this
algorithm is a 3-approximation; otherwise it is a 10-approximation. We also demonstrate
that the use of buffers can only increase the weight of the packets successfully delivered
by a factor of O(log T), where T is the minimum of the number of packets in the optimal
buffered solution, the maximum slack of any packet in the optimal buffered solution,
and the size of the tree. Thus, the bufferless approximation algorithm also provides a
logarithmic approximation ratio for the buffered case. These results appear in Section 2.

We further demonstrate that the techniques developed for the tree can be applied
to the two-dimensional mesh. We here assume that all of the paths π are dimension
order paths. Dimension order routing, which is commonly used on the mesh, requires
that each packet travels along its source row to the correct column and then along that
column to the correct row. All of the results described for the tree also apply to dimension
order routing on the mesh. These results can be extended to higher dimensional meshes,
where the dependence on the dimension d imposes an additional factor of d · 2d in the
approximation ratios. These results are described in Section 3. We further show that in
the case of weighted packets on the linear array (a special case of the tree), the constants
of the approximation ratios can be improved, and they match those that have been shown
in [1] for the case of unweighted packets. These results appear in Section 4.

We complement the above results by showing that on general topologies, the time-
constrained routing problem is hard to approximate to within
(k1−ε) for any ε > 0,
unless NP = ZPP; here k denotes the total number of packets. Furthermore, this result can
be extended to the mesh, provided that the paths defined for the packets are not necessarily
the shortest paths. These results apply to both buffered and bufferless routing, and taken
together they strongly motivate our concentration on specific network topologies of
practical interest such as the tree and the mesh, as well as the focus on dimension order
routing for the mesh. These results appear in Section 5.

For the unweighted case of linear arrays, [1] provides a distributed and on-line algo-
rithm for the buffered case that is guaranteed to achieve within a factor of 2 of the optimal
(off-line and centralized) bufferless schedule. In this paper we also demonstrate that the
analogous result is not possible in the case of a tree, even when all packets have the same
weight. We give a lower bound showing that for any on-line deterministic algorithm for
the problem, the competitive ratio is
(log n), where n is the size of the tree. This lower
bound is achieved on trees of depth �(log n). These results appear in Section 6.

Related work. In [1] the unweighted case of the time-constrained routing problem on
the linear array topology is studied. To the best of our knowledge, this provides the only

126 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

previous rigorous analysis of algorithms for the case of packets with arbitrary release
times and deadlines. They provide a 2-approximation algorithm for the bufferless case,
and show that buffers can increase the number of packets routed by only a logarithmic
factor (and in several important cases by only a small constant factor). Thus, the bufferless
algorithm can also be used to provide a logarithmic approximation algorithm for the
buffered case. In addition, they demonstrate how to simulate the bufferless algorithm,
which is off-line and centralized, in a distributed and on-line fashion that requires the
use of buffers.

Also, [19] considers the problem of routing a set of packets with arbitrary deadlines but
all with the same release time on the linear array without dropping any of the messages.
They show that if there exists a feasible schedule, then the closest-deadline-first greedy
strategy succeeds in routing all the messages.

A number of papers consider the “session model” where packets are introduced at
a fixed rate for each of a number of “sessions.” Each session consists of a given path
from a source to a destination [21], [22], [2]. The aim is to schedule the packets across
different links of the network with guaranteed (small) delays that depend on the rates of
the sessions and the congestion on the links along the paths of the sessions. In a recent
paper [3], sessions with delay requirements are considered, so that packets of a given
session request to be routed with a delay no larger than the requirement. In [3] a distributed
packet scheduling algorithm is described that has the following property: if two necessary
conditions on the set of packets being routed within this delay requirement are met, then
the packets arrive with a delay that is, roughly speaking, at most a logarithmic factor
(in the size of the network) larger than the delay requirement. This is in contrast to our
work where the deadlines must be met.

A number of empirical studies have examined routing with timing constraints. In
[25] a router architecture is given for messages with deadlines. A minimum-laxity-first
protocol is proposed in [29] for transmitting messages with deadlines in a multi-access
shared-bus network. Some scheduling policies, such as Virtual Clock [28], Stop-and-
Go [8], Rotating Combined Queuing [12], do not explicitly use message deadlines, but
just attempt to keep the worst-case message delay small and bounded. Other relevant
experimental work includes [20], [27], [17], [26], and [7].

Of course, routing without timing constraints has been the subject of a large number
of works; see [15] and [16] for a survey. These studies usually attack the problem under
a best effort model, and thus focus on optimizing global performance measures such as
the overall completion time of a routing problem, or the maximum or expected delay
experienced by any packet.

2. Routing on the Tree. In this section we present an approximation algorithm for the
problem of time-constrained routing of weighted packets on the tree. We consider both
bufferless and buffered schedules. In Section 2.1 we present an O(1)-approximation
algorithm WT for bufferless schedules. In Section 2.2 we show that for any problem
instance, the total weight of the packets routed in the optimal bufferless solution is within
a logarithmic factor of the weight of the packets in any optimal buffered schedule. Thus,
WT also provides a logarithmic approximation algorithm for the buffered case.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 127

Root

5

4

3

2

4

2

Root

5

4

32

11

3 3

44

3

2

Uptree 5Uptree 4

Fig. 1. Two examples of up-trees for a tree with ten nodes.

2.1. Bufferless Schedules. We begin by introducing some notation that is needed to
describe the algorithm. Choose any node of the tree to be the root. We divide the path of
each packet into a rootward direction (where the packet is moving towards the root) and
a leafward direction. Note that some packets may consist of only a rootward or only a
leafward direction. A packet will be scheduled to travel in the rootward direction along an
up-tree. An up-tree is a copy of the given tree with a label t (e) on each edge e that satisfies
the following condition: if d(e) denotes the number of edges between e and the root,
then the quantity d(e) + t (e) is the same for every edge e in the up-tree. Two examples
of up-trees are given in Figure 1. The preceding definition of an up-tree is motivated by
the following observation: for any packet that is routed in a bufferless schedule, there
exists a unique up-tree in which the label of every edge of the rootward path of the packet
equals the time step at which the packet crosses that edge in the schedule.

We sort the up-trees in terms of their value of d(e) + t (e), where we say that the
up-tree with the smallest value of d(e)+ t (e) is the earliest up-tree and the largest value
of d(e)+ t (e) is the latest up-tree. For each packet, the release time and deadline for that
packet define a set of up-trees such that the packet obeys its constraints if and only if it
is routed on one of the up-trees in this set. The up-trees in this set form a contiguous set
in the sorted order of up-trees from earliest to latest. We say that the packet is eligible
to be routed on these up-trees. We can also assign packets that only travel in a leafward
direction to up-trees. In this case we associate a schedule for such a packet with an
up-tree U , such that if e′ is the first leafward edge from the source of the packet, and it
traverses it at time t , then the value of d(e)+ t (e) for U is d(e′)+ t − 1. This means that
a packet that has e′ as its first leafward edge and traverses it at time t will be associated
with the same up-tree regardless of whether it has a rootward component or not.

Algorithm WT

Let S be the empty set.
Let N be the set of all packets.

128 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

Let U (1) · · · U (k) be the set of all possible up-trees in order from latest to
earliest.

For i = 1 to k:
Let E(i) be the set of packets in N − S that are eligible for routing on

U (i).
Repeat until E(i) is empty.

Let p be a packet in E(i) with the last rootward edge that is furthest
from the root.

Remove p from E(i).
Let S′ be the set of packets in S that conflict with p if p were routed

on U (i).
If w(S′) < w(p)/2

Remove all packets in S′ from S and add p to S.
Assign the packet p to U (i).
Remove the packet p from N .

Return S.

As described above, WT sequentially processes all of the up-trees in order from the
latest to the earliest. Each iteration may add new packets to and may delete old packets
from the solution set S that is maintained during the algorithm. After all of the up-trees
are processed, S is returned as the set of packets that are routed. Within each iteration
the packets that are eligible for the up tree, and have not been scheduled, are considered
in a specific order. Observe that once a packet is scheduled, it is never considered again,
even if it is later deleted from the solution.

Figure 2 depicts a sample input on the tree that appears in Figure 1. Note that these
packets only have a rootward direction. We describe the execution of WT on this set
of packets, where we refer to the packets by their weight. Note that packets 1 and 3
are eligible for up-trees 4 and 5, but packet 2 is only eligible for up-tree 5. During the
execution of WT we first consider up-tree 5. Packet 1 is first assigned to this up-tree,
but then removed when packet 3 is assigned to it. Packet 2 is not assigned to this up-tree,
since it does not have sufficient weight to remove packet 3. No packets are assigned to

d=3

d=4

r=1r=1

31

2

d=5

r=3

Fig. 2. A sample problem instance with three packets, one each of weights 1, 2, and 3. These packets have
release times 1, 3, and 1, respectively, as well as deadlines 3, 5, and 4, respectively.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 129

up-tree 4, since packet 1 is removed from the set N when it is temporarily assigned to
up-tree 5. Note that in the optimal solution, packets 1 and 2 are assigned to up-tree 5 and
packet 3 is assigned to up-tree 4.

We show below that the total weight of the solution returned by WT is within a
constant factor of the weight of the optimal solution. For any instance I , let ALG(I) and
OPT(I) denote the set of packets routed by WT and in the optimal bufferless schedule,
respectively. We prove the following theorem.

THEOREM 1. For any weighted problem instance I for the tree, w(ALG(I)) ≥
w(OPT(I))/10.

For the purpose of the proof we will define a blame graph, which will formulate a
“blame” for each packet in OPT(I)−ALG(I) in terms of packets in ALG(I). Each node
in the blame graph is colored red, blue, or green, and has an associated weight. We first
describe the set of blue and green nodes and the edges between them.

Blue and green nodes. Every time WT schedules a packet p, a new node is added to
the graph. This node is associated with the packet p, and is colored green at the time of
its addition to the graph. We denote it 〈p〉. When p is scheduled and added to S, if some
other packets are dropped from S, then the nodes corresponding to these packets change
their color from green to blue. At such an event we also add an edge from each of the
nodes that turned blue, to the new, green, node 〈p〉.

It follows that at any time, we have a green node for every packet in S, and a blue node
for every packet that was previously in S, and was later dropped from S. In addition, for
any blue node there is a single outgoing edge, while there is no outgoing edge from a
green node. The graph is then a forest, consisting of trees with green roots, and all other
nodes being blue. The edges in each tree represent, for each blue node, the packet to be
“blamed” for its removal from S.

Red nodes. When the algorithm terminates we may have a number of packets in
OPT(I) − ALG(I) that do not have any corresponding node in the blame graph. For
each such packet we add a single or several red nodes to the graph. Let q be a packet
in OPT(I) − ALG(I), and let U (i) be the up-tree along which packet q is scheduled in
the optimal solution OPT(I). Since q has no blue or green node, it follows that it was
never scheduled by the algorithm. In particular, it was not scheduled when up-tree U (i)
was considered. It follows that at that time there was a set S′ ⊆ S of scheduled packets
that conflicted with scheduling q on U (i), such that w(S′) ≥ w(q)/2. Clearly, for every
x ∈ S′ there is a (green or blue) node in the blame graph since at the time U (i) was
considered there was a green node for every x ∈ S′. We now add a red node 〈q, x〉 for
every x ∈ S′. We also add an edge from 〈q, x〉 to the node 〈x〉. Observe that after adding
the red nodes the graph is still a forest, all the roots are still green, and all the red nodes
are leaves.

Assigning weights. We now assign weights to the nodes in the blame graph. Any green
or blue node 〈p〉 is assigned the weight w(p) of the packet p. As to the red nodes,
we group them according to the nonscheduled packet that they represent. That is, for
every packet q in OPT(I) − ALG(I) that was never scheduled we consider the set of

130 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

Fig. 3. The blame graph for the instance in Figure 2. First, packet 1 is scheduled on up-tree 5; in the blame
graph, we add a node labeled 1 with color green. Then we schedule packet 3 on up-tree 5, dropping packet 1
in the process; in the blame graph, we add a new node 3 with color green, change the color of node 1 to blue
and add an edge from 1 to 3. Finally, when the algorithm terminates, we add a red node 〈2, 3〉 in the blame
graph for packet 2 with an edge to node 3 indicating that 2 is not scheduled along up-tree 5 since 3 is scheduled
along the up-tree and has higher weight. Note that packet 2 has only one associated red node since it can only
be assigned along up-tree 5.

nodes 〈q, x〉, for x ∈ S′, where S′ is as defined above. Node 〈q, x〉 is assigned weight
w(q) ·w(x)/w(S′). Observe that the total weight assigned to the nodes 〈q, x〉 for a given
q is w(q), and that the weight of a node 〈q, x〉 is at most 2w(x). The blame graph for
the execution resulting from the instance in Figure 2 is depicted in Figure 3.

Note now that the weight of the optimal solution OPT(I) is upper bounded by the
total weight of all the nodes in the blame graph, and that the weight of the solution of
WT is equal to the total weight of the green nodes. In the following claims and lemmas
we will show that the total weight of the green nodes is at least one-tenth of the total
weight of all the nodes in the blame graph.

CLAIM 1. The total weight of the red children of any (blue or green) node 〈x〉 is at most
4w(x).

PROOF. We have already seen that the weight of any red node is at most twice the
weight of its parent. Thus we only need to show that every node has at most two red
children.

Consider a blue or green node 〈x〉 with a red child, say 〈q, x〉. Let U (i) be the up-tree
along which packet x was scheduled by WT (when the blue or green node was added to
the blame graph). Let e1 be the last rootward edge traversed by x , and let e2 be the first
leafward edge traversed by x , and let t1 and t2 be the times at which packet x traverses
e1 and e2, respectively, when routed along U (i). We will show that if a schedule for
packet q conflicts with the schedule of x along U (i), then either q traverses e1 at t1, or
q traverses e2 at t2. Any red node represents a packet whose schedule according to the
optimal solution conflicts with the schedule selected by WT for its parent. Since in the
optimal solution only one packet can traverse any edge at any given time, we have that
the node corresponding to x can have at most two red children.

Let U (j) be the up-tree along which a packet q is routed in the optimal schedule.
We know that in iteration j packet q was considered for scheduling on U (j), but was
rejected because of a set S′ which includes packet x , scheduled on U (i). This means that
the schedule of x on U (i) conflicts with the schedule of q on U (j). We now distinguish
between two cases. The first one is when i = j , and the second one is when i �= j .

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 131

If i = j , then by the ordering in which we consider the packets in iteration i , the
packet x must have a last rootward edge that is no closer to the root than the last rootward
edge of the packet q . Since the routing of packet x along U (i) conflicts with the routing
of packet q along U (i), one of the following two claims hold: either packets q and x
conflict on the up-tree, in which case q must contain the last rootward edge of the packet
x , or they conflict during the leafward portion of their routing, which in this case (i = j)
can only happen if they have the same first leafward edge. It follows that according to
the optimal solution, packet q either crosses e1 at t1, or crosses e2 at t2.

We now consider the case where i �= j . Since packet x was already scheduled on U (i),
when packet q was considered for U (j), we have that i < j . Since the up-trees U (j) and
U (i) are different, it follows that the routing of q along U (j) and the routing of x along
U (i) can conflict only during the leafward portion. However, for two leafward portions to
overlap, one must contain the first leafward edge of the other. If the schedulings conflict,
then both packets attempt to traverse this edge at the same time. If those two packets
traverse that edge at the same time, then the packet that starts its leafward journey at an
earlier time must contain the first leafward edge of the other packet. Since we process
the up-trees from latest to earliest, and i < j , it follows that packet x starts its leafward
journey at a later time than packet q, and thus the routing of packet q along U (j) contains
the first leafward edge of the routing of x along U (i). That is, packet q, when scheduled
on U (j), traverses e2 at time t2.

CLAIM 2. The total weight of the blue children of any (green or blue) node 〈x〉 is at
most w(x)/2.

PROOF. The children of every blue or green node correspond to the packets in the set
S′ that were dropped from the solution when packet x was added to the solution. By the
definition of the algorithm, the weight of the packets in S′ is less than half the weight of
the packet x .

CLAIM 3. For any (green or blue) node 〈x〉, the total weight of the green and blue nodes
in the subtree rooted at 〈x〉 is at most 2w(x).

PROOF. We prove the claim by induction on the height of node 〈x〉. If 〈x〉 is a leaf (or has
no blue children) the claim is obvious. By Claim 2 the total weight of the blue children of
〈x〉 is at most 1

2w(x). Applying the induction hypothesis to the subtrees rooted at the blue
children of 〈x〉 we have that the total weight of the blue (and green) nodes in the subtrees
rooted in all the blue children of 〈x〉 is at most 2 · 1

2w(x). Therefore the total weight of
the blue and green nodes in the subtree rooted at 〈x〉 is at most w(x) + 2 · 1

2w(x) =
2w(x).

LEMMA 1. The total weight of all the nodes in the subtree rooted at a green or blue
node 〈x〉 is at most 10 · w(x).

PROOF. By Claim 3 the total weight of the green and blue nodes in the tree rooted at 〈x〉
is at most 2w(x). Any red node is a child of a green or blue node. By Claim 1 the total

132 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

weight of the red children of a green or blue node 〈p〉 is at most 4w(p). It follows that
the total weight of the red nodes in the tree rooted at 〈x〉 is at most 8w(x). The weight
of all the nodes in the tree rooted at 〈x〉 is therefore at most 10w(x).

Proof of Theorem 1. The theorem now follows from Lemma 1. The weight of the op-
timal solution is upper bounded by the total weight of the nodes in the blame graph. The
total weight of the solution of WT is equal to the weight of the green nodes. The blame
graph is a forest, where the root of every tree in the forest is a green node, and every
green node is the root of a tree. Thus using Lemma 1, we have that the weight of the
optimal solution is at most ten times the weight of the solution of WT.

We can also show better constants for the unweighted case on the tree.

THEOREM 2. For any problem instance I for the tree where all packets have the same
weight, w(ALG(I)) ≥ w(OPT(I))/3.

PROOF. We build almost the same blame graph as for the weighted case. The difference
is in the introduction of red nodes. When we add red nodes, we add only one red node
per packet q in OPT(I) − ALG(I), choosing arbitrarily one of the packets in S′ as its
parent.

We make a number of observations about the blame graph in this case. First, there are
no blue nodes, since any packet that is scheduled is never discarded. This is because the
weight of any packet is never larger than the weight of a scheduled packet with which it
conflicts. Second, the weight of any red node is equal to the weight of its parent, since
all packets have the same weight, and we add a single red node for every packet in
OPT(I)− ALG(I). The bounds relating the weight of the optimal solution to the weight
of the blame graph, and the weight of WT’s solution to the weight of the green nodes,
remain the same.

Now observe that the blame graph consists of a forest, where each tree consists of a
green node that possibly has red children. We have already seen that each green node can
have at most two red children. Therefore each tree consists of a green root and at most
two red children. Since the weight of all nodes is the same, it follows that the weight of
the solution of WT is at least a third of the weight of the optimal solution.

We note that the algorithm can be slightly improved by optimizing the factor used in
the replacement decision. If c is the factor for the replacement decision (c = 2 in the
algorithm WT described above), then by repeating the proofs with the parameter c (rather
than with the constant 2) one obtains an approximation ratio of (1+2c)(c/(c −1)). This
is minimized when c = 1 + √

24/4 ≈ 2.22, which results in an approximation ratio of
5 + √

24 ≈ 9.89.

2.2. Buffered Schedules. We now turn to the question of how much buffering can
help on the tree. We demonstrate that it is limited, and thus algorithm WT can also
serve as a buffered approximation algorithm. We show that for any set of packets IB

that can be transmitted in its entirety using a buffered schedule on a tree, there is a

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 133

subset IBL of IB, which can be transmitted in its entirety using a bufferless schedule,
such that the total weight of the packets of IBL is not much smaller than the total
weight of the packets of IB. Let n be the number of nodes in the tree. Recall that
the slack of a packet is the number of steps that it can sit idle between its release
time and its deadline. For a set of packets I , let σ(I) be the maximum slack in I , let
R(I) = min(|I |, σ (I)+1), and let T (I) = min(n, |I |, σ (I)+1). We prove the following
theorem.

THEOREM 3. For any nonempty set of packets IB which can be wholly scheduled on the
tree by a buffered schedule, there is a subset IBL ⊆ IB, which can be wholly scheduled
by a bufferless schedule and satisfies the following condition:

• If T (IB) = 1, then w(IBL) = w(IB).
• If T (IB) > 1, then w(IBL) =
(1/log T (IB))w(IB).

PROOF. If T (I) = 1 we either have a tree of size 1, a single packet, or packets all with
zero slack. In the first two cases IB = IBL since either there are no edges in the tree or
there is a single packet. In the latter case the fact that all packets have zero slack means
that the buffered schedule does not use buffers. Therefore the same schedule is also a
bufferless schedule.

We now consider the case where T (I) > 1. The claim for this case follows from the
following two lemmas that we prove below.

LEMMA 2. For any nonempty set of packets IB which can be wholly scheduled on the
tree by a buffered schedule, there is a subset IBL ⊆ IB such that IBL can be wholly
scheduled by a bufferless schedule and w(IBL) =
(1/log n)w(IB) (assuming n > 1).

LEMMA 3. For any nonempty set of packets IB which can be wholly scheduled on the tree
by a buffered schedule, there is a subset IBL ⊆ IB such that IBL can be wholly scheduled
by a bufferless schedule and w(IBL) =
(1/log R(IB))w(IB) (assuming R(IB) > 1).

Proof of Lemma 2. To prove the lemma we partition the set of packets in IB into L =
O(log n) classes based on the paths of the packets. For each packet p ∈ IB let πp =
(v1, . . . , vk) be the sequence of nodes into which packet p arrives while traveling in the
network (i.e., the full path of the packet is (s = v0, v1, . . . , vk = t)). We call πp the
in-path of p. The assignment of the packets to classes is done in such a way that the
set of packets assigned to each class satisfies the following properties: the packets in
this class can be further partitioned into subclasses such that if two packets belong to
different subclasses, then their paths do not intersect; and for each subclass C there is a
node v in the tree such that v ∈ πp for each p ∈ C.

Using such partition, we can choose the class that has the largest total weight of
packets, incurring a penalty of a factor of L . Then we consider the chosen packets by
their subclasses. Since any two packets belonging to two different subclasses cannot
conflict, we can consider each subclass separately, determining the heaviest subset that
can be scheduled without buffers. If we are guaranteed that the heaviest subset has a
weight within a constant fraction of the weight of the original set, we can conclude that

134 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

there is a bufferless schedule for a subset of IB, with weight that is at least an O(log n)

fraction of the weight of IB. We now formally prove these claims.
We first prove that there is always a partition as defined above. Partitions similar to

the one used in the following lemma already appeared in the literature in similar contexts
(see, for example, [4] and [11])

LEMMA 4. Any set of packets on a tree of n nodes can be partitioned into L = O(log n)

classes such that the packets of any one class can be further partitioned into a number
of subclasses with the following properties:

1. Two packets that belong to different subclasses have (directed) paths that do not
intersect.

2. For each subclass there is a node in the tree which is included in all the in-paths of
the packets in the subclass.

PROOF. We first partition the nodes of the trees into classes. The partition is based on
the fact that for any tree of n nodes, there is a node v, such that if v is removed, the tree
becomes a set of subtrees, each with at most 2

3 n nodes (see [14]). We first pick one such
node, v, in the original tree of n nodes, and assign it to class 1. Then we apply the same
procedure recursively on all the trees created by the removal of v from the tree. All the
nodes picked up in the second phase are assigned to class 2. We continue recursively,
assigning the nodes to classes of increasing level (the base of the recursion is the case of
a tree of a single node which is picked). We thus assign all the nodes to L = O(log n)

classes.
Now we create L classes for the packets. For each packet p we consider its in-path as

defined above. We assign packet p to the class that corresponds to the node in πp having
the lowest-numbered class.

Observe now that for any packet p in a class �, there is exactly one node of class � in
πp. This is because any path that connects two nodes of class � passes through a node of a
lower-numbered class. Now partition the packets in any class � into subclasses according
to the single number-� node in which they pass. Figure 4 illustrates the partitioning of
nodes and packets for a particular instance.

Property number 2 of the claim is directly satisfied by our partitioning of packets
within a class. As to property number 1 consider two packets p and q that belong
to different subclasses of the same class �. Assume towards a contradiction that their
(directed) paths (considering the whole paths, including the nodes v0 = s) intersect in
edges. Then the union of the two paths creates a (undirected) path between two distinct
nodes of the same level �. This means that this path includes a node of a level lower than
�. Observe now that this node cannot be the source node (s = v0) of both packets, and
therefore at least one of the packets would have been classified into a class lower than �.
This is a contradiction.

We now consider the packets of a single subclass.

LEMMA 5. Let v be a node on a tree, and let JB be a set of packets all having node
v on their in-path. If there is a buffered schedule for all the packets in JB, then there

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 135

3

class 1

class 2

class 2

class 1

4

3

3 3

33

2

2

1

Fig. 4. A partitioning of nodes and packets for the instance in Figure 2, with a fourth packet as shown. The
label on a node is the class of the node obtained by a recursive partitioning. We first partition the tree at the
node of class 1, then partition the two subtrees at the two nodes of class 2, yielding five 1-node subtrees each of
which is assigned to class 3, and one subtree with two nodes which are assigned to classes 3 and 4 arbitrarily.
The class of a packet is simply the class of the node on its path that has the lowest-numbered class. We thus
have two packets in class 1 and two packets in class 2. The two packets in class 1 are in the same subclass since
they have the same class-1 node on their paths. On the other hand, the two packets in class 2 are in different
subclasses since the class-2 nodes on their paths are different.

is a subset JBL ⊆ JB, and a bufferless schedule for all the packets in JBL, such that
w(JBL) ≥ w(JB)/2.

PROOF. We first build an intermediate buffered schedule for all the packets in JB.
Consider the original buffered schedule. For any packet p ∈ JB, let pin be the time
at which it crosses into v, and let pout be the time at which it leaves v. If the packet
never leaves v (i.e., v is its destination), then we define pout to be ∞. Now consider
the following buffered schedule for JB: any packet p is buffered only in v (traveling in
a bufferless fashion until it reaches v, and after it leaves v), crossing into v at pin and
crossing out of v at pout (unless pout = ∞). We further modify this schedule so that a
packet does not wait in v “unnecessarily” (i.e., if a packet is in v, it will be sent out of v

at the earliest possible time). To that end, we still make any packet p arrive at v at pin,
but at any time t , and for each outgoing edge e, we send out along e the packet p with the
earliest pout, among the packets currently at v (and having e on their path). Observe that
no two such packets can have the same pout, and each packet p leaves v no later than pout.

To see that the above schedule is a feasible schedule for JB we use the fact that the
network is a tree. Note that any two packets, p and p′, that cross into v on the same edge
e, must have pin �= p′

in, since the original schedule is feasible. Since the network is a tree,
the paths of p and p′ intersect only in one continuous path that includes e. Therefore in
the schedule we defined above, p and p′ do not interfere while traveling towards v. As
any two packets that leave v on the same edge do that at different time steps, by similar
arguments it follows that they do not interfere with each other while traveling away from
v. Clearly, two packets that do not cross into v on the same edge do not interfere while
traveling towards v, and two packets that leave v on different edges do not interfere with
each other while traveling away from v (since the network is a tree). Observe that since

136 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

each packet p arrives at v at time pin, and travels towards v in a bufferless fashion, then
it leaves its source not earlier than its release time. Similarly, since every packet p leaves
v no later than pout, and proceeds in a bufferless fashion, then it arrives at its destination
by its deadline.

We now prove the existence of a subset JBL ⊆ JB and modify the above schedule
for the packets in JBL, so that the schedule is wholly bufferless. We show below that
we have such a subset with total weight that satisfies w(JBL) ≥ w(JB)/2. Each packet
p ∈ JBL will cross into v at time t such that pin ≤ t ≤ pout − 1, and will leave v at time
t + 1 (if it has to leave v). For each edge of v at most one packet will cross into v and at
most one packet will cross out of v, at any time. Since the schedule will be bufferless this
guarantees that the schedule is feasible in that each packet leaves its source no earlier
than its release time, and arrives by its deadline, and no two packets interfere.

To do the above we consider the situation at hand in a somewhat different way. Let δ

be the degree of v. Consider a switch with δ input ports and δ output ports. An equivalent
scenario to the one we have is the scenario where each packet p ∈ IB arrives at the
input port of the switch at time pin, and is placed at that time at an appropriate buffer
for its output port. The packet is inserted into the buffer according to its time pout, such
that these times are increasing going from the head of the buffer to its tail. At each time
unit the packet at the head of each buffer is extracted and sent to the output port. This
type of switch is called “Output Queuing” (OQ) in the literature (see [24] and [6]). Note
that in each time unit several packets may be placed on the same output buffer. We now
consider another type of switch that is closely related to the bufferless setting that we
need. This type of switch is called “Combined Input Output Queuing” (CIOQ). In such a
switch there are buffers at both the input ports and the output ports. Arriving packets are
placed in the input buffer of the port they arrive at, and packets leave from the buffers of
the output ports. Packets can be transferred from the input buffers to the output buffers
in the following way only. Packets are transferred in cycles. In each cycle packets are
transferred between buffers according to a matching between the input buffers and the
output buffers (i.e., in each cycle, at most a single packet is extracted from each input
buffer, and at most a single packet is received by each output buffer.) We now use a
result by Chuang et al. [6]. They proved the following result on the relation between OQ
switches and CIOQ switches.

THEOREM 4 [6, Theorem 4]. Consider a sequence of packets that travel through an OQ
switch that adheres to a Push-In First-Out policy.6 Replace the OQ switch by a CIOQ
switch that has two cycles in each time unit. If the same sequence of packets arrive at the
CIOQ switch at the same times as they arrive at the OQ switch, then there is a feasible
schedule for the CIOQ switch such that it delivers the packets over its output ports at
the same times as they are delivered by the OQ switch.

We note that the schedule that we defined can indeed be a schedule of an OQ with
a PIFO policy, and therefore the above theorem applies. We now consider the schedule

6 A policy for an OQ is called PIFO if it operates by extracting in each time step the packet at the head of
each output queue, while the insertion of the packets into the queue is arbitrary at the time of the insertion.
The relative order of two packets in a queue cannot however be changed after their insertion.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 137

guaranteed by the above theorem for a CIOQ. For each time unit we consider the two
cycles, the two matchings, and the two sets of packets transferred in them. We take the
heavier of the two sets (in term of the weight of the packets). Thus, for each time t we
have a matching Mt and a set of packets Pt that are transferred between input buffers and
output buffers at time t . We now define the set JBL to be

⋃
t Pt . We set the (bufferless)

schedule for each packet p ∈ JBL as follows: if p ∈ Pt , then p crosses into v at time
t and leaves v at time t + 1. The departure time of p from its source is set so that it
travels in a bufferless fashion and arrives at v at time t . Since according to the schedule
guaranteed by the above theorem, each packet p of JB arrives at the CIOQ switch at
time pin and leaves it by time pout, we have that for all packets in Pt , pin ≤ t ≤ pout − 1.
This is because the packet must be transferred from its input buffer to its output buffer
not earlier than its arrival time at the switch, and before it leaves the switch. Therefore
each packet p ∈ JBL arrives at v at time t such that pin ≤ t ≤ pout − 1. Since we take at
each time t the heavier of the two sets of packets we lose at most half of the total weight
of the packets of JB, and thus w(JBL) ≥ w(JB)/2, as required.

The claim of Lemma 2 now follows by combining Lemmas 4 and 5.

Proof of Lemma 3. We will show below that algorithm WT, applied to the set IB selects
and schedules a subset of packets as required. We prove this using similar techniques to
those used for the analysis in Section 2.1, as well as techniques developed for comparing
bufferless schedules to buffered schedules in [1]. We build a blame graph similar to the
one used in the previous section.

The blame graph. The green and the blue nodes of the blame graph as well as the
edges between them are defined exactly as in Section 2.1. The definition of red nodes
is somewhat different. In the proof of Theorem 1, all the red nodes associated with a
packet were defined on the basis of a single up-tree, which is the up-tree along which
the packet is routed in the optimal bufferless schedule. When comparing with a buffered
schedule, we will consider all the up-trees on which the packet is eligible. Thus, for any
packet q in the buffered schedule that does not have a green or a blue node, and for each
up-tree along which it is eligible, the blame graph has a collection of red nodes.

We now precisely define the red nodes. Consider a packet q ∈ IB for which there is
no green or blue node in the blame graph. Let k be the number of up-trees on which q
is eligible, and let U (i) be any such up-tree. Since, when applying WT, q is not routed
on U (i) it follows that when iteration i of WT occurred, there was a set S′ of scheduled
packets that conflicted with scheduling q on U (i), such that w(S′) ≥ w(q)/2. For each
packet x ∈ S′ we define a red node 〈q, x〉 and an edge from 〈q, x〉 to 〈x〉. Note that we
add such nodes for each of the k up-trees U (i) on which packet q is eligible.

We assign weights to the nodes in the blame graph as follows. Green and blue nodes
〈p〉 have weight w(p) as in Section 2.1. The weight of red nodes is slightly different.
Let q be a packet for which there are red nodes, and let k be the number of up-trees
on which it is eligible. For each such up-tree U (i), let Si be the set (S′) that prevented
WT to schedule q on U (i). Let x ∈ Si and 〈q, x〉 be a red node. The weight of 〈x, q〉
is set to 1/k · w(q) · w(x)/w(Si) (i.e., we equally partition the weight of q between all
the up-trees on which it is eligible, and within each up-tree we assign weight to the red

138 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

nodes as in the previous section). Observe that the total weight of all the red nodes 〈q, x〉
for a given q is w(q), and that the weight of a red node 〈q, x〉 is at most 2w(x)/k.

Let H(n) denote the harmonic sum
∑n

i=1(1/ i). We prove the following claim.

CLAIM 4. The total weight of the red children of any (green or blue) node 〈p〉 is at most
8H(R(IB))w(p).

PROOF. Let U (i) be the up-tree along which packet p was scheduled by WT (packet
p may have later been discarded from the solution). Let Sk ⊆ IB be the set of packets q
of slack at most k − 1 such that 〈q, p〉 is a red child of 〈p〉. Consider a packet q in Sk .
It follows that there exists an up-tree U (j), on which packet q is eligible, such that the
scheduling of q along U (j) (in a bufferless schedule) conflicts with the scheduling of p
along U (i). Moreover, following the reasoning of Claim 1, we can show that a conflict
between these two schedulings occurs either on the last rootward edge traversed by p or
on the first leafward edge traversed by p.

Let e1 and e2 be the last rootward and the first leafward edges, respectively, of p’s
path. Let t be the time step at which p will cross e1 when scheduled along U (i). For any
q in Sk , the aforementioned conflict with p implies that there is an eligible bufferless
schedule of q such that either q crosses e1 at time t or q crosses e2 at time t + 1 (both
events occur in this schedule if the path of q includes both e1 and e2). Since q has
slack at most k − 1, and uses at least one of e1 and e2 at the above times, it follows
that in the buffered schedule of IB, q must either traverse e1 at a time in the interval
[t − k + 1, t + k − 1] or e2 at a time in the interval [t − k + 2, t + k] (or both, if it uses
both edges). Since only one packet can cross any edge at any given time in any schedule,
it follows that there are at most 4k packets in Sk (2k for the last rootward edge and 2k
for the first leafward edge).

A packet with slack exactly k − 1 is eligible on exactly k distinct up-trees. Therefore,
the weight of any red node 〈q, p〉 (of a packet q), where q has slack k − 1, is at most
2w(p)/k. Define S0 to be the empty set; the packets in Sk − Sk−1 are the packets with
slack k − 1. The total weight of the red children of 〈p〉 is therefore at most

σ(I)+1∑
k=1

(|Sk |−|Sk−1|)2w(p)

k
≤

σ(I)+1∑
k=1

4· 2w(p)

k
= 8w(p)

σ(I)+1∑
k=1

1

k
= 8H(σ (I)+1)w(p).

At the same time, since the total number of the packets in the sets Sk is at most |IB|,
we can also write

σ(I)+1∑
k=1

(|Sk | − |Sk−1|)2w(p)

k
≤

�|IB|/4�∑
k=1

4 · 2w(p)

k

= 8w(p)

�|IB|/4�∑
k=1

1

k
= 8H

(⌈ |IB|
4

⌉)
w(p).

Since the definition of the green and blue nodes has not changed, Claim 3 still holds,
and thus we can prove the following.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 139

LEMMA 6. For any (green or blue) node 〈x〉 in a blame graph, the total weight of the
nodes in the subtree rooted at 〈x〉 is (2 + 16H(R(IB))) · w(x).

PROOF. We repeat the proof of Lemma 1, replacing Claim 1 by Claim 4. The total weight
of the green and blue nodes in the tree rooted at 〈x〉 is 2w(x). Any red node is a child of a
blue or green node. Using Claim 4 we therefore have that the total weight of all the nodes
in the tree rooted at 〈x〉 is 2w(x)+ 2w(x) · (8H(R(IB))) = (2 + 16H(R(IB))) ·w(x).

Lemma 3 now follows from Lemma 6, using the same arguments as in the proof of
Theorem 1.

We can conclude that algorithm WT also serves as an approximation algorithm for
the buffered version of the problem. The following theorem follows from Theorem 3
using the substitution OPT(I) for IB.

THEOREM 5. For any weighted buffered problem instance I for the tree, we have

w(ALG(I)) ≥ w(OPT(I))/O(log T (OPT(I))).

We note that we can replace the notion of “slack” by the alternative notion of “effective
slack.” Given a schedule for a set of packets, the effective slack of a packet is defined to
be the time the packet spends waiting in the buffers after leaving its source and before
arriving at its destination. Thus, the difference between the arrival time at the destination
and the departure time at the source equals the sum of the effective slack of the packet
and the distance traversed by the packet.

In other words, we can change the specification of a packet to have its release time
at the time it leaves its source, and its deadline to be the time it arrives at its destination.
Thus, we may be able to reduce the maximum slack without reducing the total weight
of the packets being scheduled, obtaining a possibly better bound.

Note also that in [1] a problem instance I is presented for the linear array (a special
case of the tree), such that buffers do increase the number of packets that can be routed
by a factor of
(log T (I)). This instance is of the form that log T (I) = �(log n) =
�(log σ(I)) = �(log|I |). Thus, the result of Theorem 3 is asymptotically optimal in
terms of the measures that we consider here.

3. Dimension Order Routing on the Mesh. In this section we consider the problem
of dimension order routing on the mesh subject to deadline and capacity constraints.
In dimension order routing, every packet is routed first along the row edges to the
correct column and then routed along the column edges to the correct row. We present a
dimension order routing algorithm WM, which achieves a constant factor approximation
ratio for the bufferless case. We also analyze the performance of this algorithm for the
buffered case. In both scenarios, with only a factor of 2 penalty in the performance ratio,
the dimension order routing algorithm can be converted into an algorithm for routing on
the mesh where the packets are allowed to use either dimension order paths or reverse
dimension order paths, i.e., paths that travel first along a column and then along a row.

140 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

To do so, we run the algorithm first using dimension order paths, and then on the reverse
dimension order paths, and take the better of the two solutions.

All of the results described for dimension order routing on the mesh can also be
extended to higher dimensional meshes, where the dependence on the dimension d
imposes an additional factor of O(d · 2d) in each of the results. In order to do so, we
first partition the packets into 2d sets based on the direction traveled in each of the
dimensions. We then run a generalization of the algorithm described in this section on
each of these sets, and return the best solution found. The additional degradation of
a factor of d in the quality of the solution comes from the fact that in the following
analysis, we show for the mesh that for two conflicting packets, one must conflict on
either the last horizontal edge traveled by the other packet or the first vertical edge
traveled by the other packet. In the appropriate extension to d-dimensions, one of the
packets must conflict on the first edge traveled by the other packet along one of the d
possible dimensions.

In the following we consider dimension order routing on the two-dimensional mesh.
We partition the set of packets into two groups: one consisting of packets that either
travel rightward and then upward or travel leftward and then downward, and the other
group consisting of the remaining packets. (A packet that travels along a row only or
a column only is placed in the two groups.) We run algorithm WM for the two groups
separately and pick the better of the two solutions. We thus incur a penalty of at most
a factor of 2. In our description and analysis of WM below, we assume without loss of
generality that every packet either travels rightward and then upward or travels leftward
and then downward. A packet of the first type is called an lr-packet, and a packet of the
second type is called an rl-packet.

The basic idea underlying WM is the same as that underlying WT. The main technical
difficulty to overcome is the fact that on the mesh there are no longer clear “rootward”
and “leafward” directions. For the tree, we defined the notion of up-trees that capture the
rootward portions of the paths in any bufferless schedule. Similarly, we introduce here
the notions of lr-mesh and rl-mesh. An lr-mesh is a copy of the set of the row edges of
the given mesh with a label t (e) on each edge e that satisfies the following property: if
d(e) denotes the number of edges between e and the rightmost node on the row in which
e lies, then the quantity d(e) + t (e) is the same for all row edges. Similarly, an rl-mesh
is a copy of the set of the row edges of the given mesh with a label t (e) on each edge
e that satisfies the following property: if d∗(e) denotes the number of edges between e
and the leftmost node on the row in which e lies, then the quantity d∗(e) + t (e) is the
same for all row edges.

The definitions of an lr-mesh and an rl-mesh are motivated by the following observa-
tion: for any packet that is dimension order routed in a bufferless schedule, there exists
a unique lr-mesh or rl-mesh in which the label of every row edge of the packet’s path
equals the time step at which the packet crosses that edge in the schedule. For an lr-packet
it is an lr-mesh, and for an rl-packet it is an rl-mesh.

We sort the set of all lr-meshes and the set of all rl-meshes separately, in terms of
their value of d(e) + t (e) (resp., d∗(e) + t (e)), where we say that the lr-mesh (resp.,
rl-mesh) with the smallest value of d(e)+ t (e) is the earliest lr-mesh (resp., d∗(e)+ t (e)
and rl-mesh) and the one with the largest value of d(e) + t (e) is the latest lr-mesh
(resp., d∗(e) + t (e) and rl-mesh). For each packet, the release time and deadline con-

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 141

straints for that packet define a set of lr-meshes or rl-meshes such that the packet obeys
its constraints if and only if it is routed on one of the lr-meshes or rl-meshes in this
set. The lr-meshes (resp., rl-meshes) in this set form a contiguous set in the sorted
order of lr-meshes (resp., rl-meshes) from earliest to latest. We say that the packet
is eligible to be routed on these lr-meshes (resp., rl-meshes). We also assign packets
that only travel in a vertical direction to lr-meshes or rl-meshes (depending on the di-
rection in which they travel vertically). As in the tree algorithm, we do this in such
a way that a packet that traverses at time t its first vertical edge e′ will be associ-
ated with the same lr-mesh (or rl-mesh), regardless of whether it travels horizontally
beforehand.

In the following we describe algorithm WM. It calls two algorithms, lr-WM and rl-
WM, that separately schedule lr-packets and rl-packets, respectively. We give a formal
description of lr-WM. Algorithm rl-WM is analogous with the appropriate changes to
deal with rl-packets (i.e, exchanging any mentions of “right” and “left”).

Algorithm WM

S1 =lr-WM.
S2 =rl-WM.
Return S1 ∪ S2.

Algorithm lr-WM

Let S be the empty set.
Let N be the set of all lr-packets.
Let L(1) · · · L(k) be the set of all possible lr-meshes in order from latest to

earliest.
For i = 1 to k:

Let E(i) be the set of packets in N − S eligible for routing on L(i).
Repeat until E(i) is empty.

Let p be the packet in E(i) for which the rightmost horizontal edge
is furthest left.

Remove p from E(i).
Let S′ be the set of packets in S that conflict with p if p were routed

on L(i).
If w(S′) < w(p)/2

Remove all packets in S′ from S and add p to S.
Assign the packet p to L(i).
Remove the packet p from N .

Return S.

As is evident from the definition of the algorithm, the basic approach of WM is the same
as the approach of WT. The primary difference is that while WT considers only one
class of up-trees, WM considers two different classes of mesh subgraphs, the lr-meshes
and the rl-meshes. We can still use the analysis framework used in Section 2 for each
one of lr-WM and rl-WM. Therefore, we only present an outline of our proof for the
mesh, indicating the primary differences between the analyses.

142 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

For any instance I , let OPT(I) and ALG(I) denote the total weight of the optimal
bufferless solution and the solution computed by WM, respectively. Our main result for
bufferless dimension order routing on the mesh is the following.

THEOREM 6. For any weighted problem instance I for the mesh, the total weight of the
packets routed by algorithm WM is
(w(OPT(I))).

Since lr-packets and rl-packets do not interfere with each other and form a partition
of all packets, we can prove the above theorem by proving the following theorem for
lr-packets and lr-WM, and rl-packets and rl-WM, separately.

LEMMA 7. For any weighted problem instance I of lr-packets (resp. rl-packets) for
the mesh, the total weight of the packets routed by algorithm lr-WM (resp. rl-WM) is

(w(OPT(I))).

PROOF. We prove the theorem for lr-packets and lr-WM. The proof for rl-packets and
rl-WM is analogous.

As in the proof in Section 2 we create a blame graph. The blame graph for the present
proof will also have green, blue, and red nodes, which are the same as those used in the
blame graph of Section 2. Weights are assigned to the nodes in the blame graph in the
same way as is done in Section 2.

We now prove a claim analogous to Claim 1.

CLAIM 5. The total weight of the red children of any (blue or green) node 〈x〉 is at most
4w(x).

PROOF. The proof is almost identical to the proof of Claim 1, with the appropriate
changes required to deal with rl-meshes instead of up-trees.

As shown in the discussion in Section 2, the weight of any red node is at most twice
the weight of its parent. Thus we only need to show that every node has at most two red
children.

Consider a blue or green node 〈x〉 with a red child, say 〈q, x〉. Let L(i) be the lr-mesh
along which packet x was scheduled by lr-WM (when the blue or green node was added
to the blame graph).

Let e1 be the last horizontal edge traversed by x , and let e2 be the first vertical edge
traversed by x , and let t1 and t2 be the times at which packet x traverses e1 and e2,
respectively, when routed along L(i). We will show that if a schedule for packet q
conflicts with the schedule of x along L(i), then either q traverses e1 at t1, or q traverses
e2 at t2. Any red node represents a packet whose schedule according to the optimal
solution conflicts with the schedule selected by WM for its parent. Since in the optimal
solution only one packet can traverse any edge at any given time, we have that the node
corresponding to x can have at most two red children.

Let L(j) be the lr-mesh along which a packet q is routed in the optimal schedule.
We know that in iteration j packet q was considered for scheduling on L(j), but was
rejected because of a set S′ which includes packet x , scheduled on L(i). This means that

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 143

the schedule of x on L(i) conflicts with the schedule of q on L(j). We now distinguish
between two cases. The first one is when i = j , and the second one is when i �= j .

If i = j , then by the ordering in which we consider the packets in iteration i , the
packet x must have a rightmost edge that is not to the right of the rightmost edge of the
packet q . Since the routing of packet x along L(i) conflicts with the routing of packet q
along L(i), one of the following two claims hold: either packets q and x conflict on the
horizontal portion of their path, in which case q must contain the rightmost edge of the
packet x , or they conflict on the vertical portion of their path, which in this case (i = j)
can only happen if they have the same first horizontal edge. It follows that according to
the optimal solution, packet q either crosses e1 at t1, or crosses e2 at t2.

We now consider the case where i �= j . Since packet x was already scheduled on
L(i), when packet q was considered for L(j), we have that i < j . Since the lr-meshes
L(j) and L(i) are different, it follows that the routing of q along L(j) and the routing
of x along L(i) can conflict only in the vertical portion of their paths. However, for two
vertical portions to overlap, one must contain the first vertical edge of the other. If the
schedulings conflict, then both packets attempt to traverse this edge at the same time.
If those two packets traverse that edge at the same time, then the packet that starts its
vertical journey at an earlier time must contain the first vertical edge of the other packet.
Since we process the lr-meshes from latest to earliest, and i < j , it follows that packet
x starts its vertical journey at a later time than packet q, and thus the routing of packet q
along L(j) contains the first vertical edge of the routing of x along L(i). That is, packet
q , when scheduled on L(j), traverses e2 at time t2.

Claims 2 and 3 hold for the case of the mesh with no change. Using these claims,
and Claim 5 above, Lemma 1 holds for the mesh as well. The proof of Theorem 7 now
follows by the same arguments as those used in the proof of Theorem 1.

We also have a 6-approximation algorithm for dimension order routing in the case
where all packets have the same weight. This follows from the statement of Theorem 2,
applied to the mesh, where the penalty in the approximation ratio (of a factor of 2) is due to
the partitioning of the packets on the mesh into two disjoint sets based on the orientation
of the paths. Furthermore, we can place an upper bound on the approximation ratio of
WM with respect to buffered schedules using an analysis similar to the one given in
Lemma 3 in Section 2.2. Recall that for any set of packets I , R(I) = min(|I |, σ (I)+1);
let OPT(I) be the set of packets scheduled in an optimal buffered solution; and let
ALG(I) be the set of packets scheduled by WM.

THEOREM 7. For any weighted buffered problem instance I for the mesh, we have

w(ALG(I)) ≥ w(OPT(I)/O(log R(OPT(I))).

PROOF. To prove the theorem we use a proof analogous to the proof of Lemma 3. The
only difference is the proof of Claim 4, where we make the analogous changes to those
done to prove Claim 5 on the basis of the proof of Claim 1.

144 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

4. Routing Weighted Packets on the Linear Array. Since a linear array is a special
case of the tree, the algorithm of Section 2 also provides constant factor and logarithmic
approximations for bufferless routing and buffered routing, respectively, for the linear
array. The constants involved in the results, however, are significantly larger than the
constants established in the results for routing unweighted packets on the linear array [1].
In this section we prove that the approximation ratios that have been achieved for un-
weighted packets on the linear array can also be achieved for the problem of routing
weighted packets on the linear array. In addition, for the case of the linear array, we can
show an upper bound on the ratio between the optimal buffered solution and the optimal
bufferless solution in terms of the maximum span of the packets. This gives us a stronger
result for the buffered case of weighted packets on the linear array.

4.1. Bufferless Scheduling. Our algorithm WA for bufferless scheduling is analogous
to the algorithm of [1] for unweighted packets. Before we present the algorithm, we
review some notation.

Let the n nodes of the array be numbered 1 through n from left to right. Since the
edges are bidirectional, we will assume that all of the packets are moving left to right
on the array. As in [1], we define a scan line. A scan line is a copy of the original linear
array in which each edge (i, i + 1) is given a label t (i) such that t (i) − i is independent
of i . The primary motivation behind the concept of a scan line is the following: for any
packet that is routed in a bufferless schedule, there exists a unique scan line in which the
label of every edge of the packet’s path equals the time step at which the packet crosses
that edge in the schedule.

Let L denote the set of scan lines. For a given scan line, any packet p that is eligible
to be routed along � defines a segment p� in � corresponding to the path taken by p. If
the scan line � is clear from the context, we will drop the subscript � from p� and thus
identify the packet and the associated segment.

Algorithm WA

Let S be the empty set.
Let M be the set of all packets.
For each scan line �;

Let M� be the set of packets remaining in M eligible to be routed along �.
Find a maximum-weight set N� ⊆ M� of packets whose segments with

respect to � do not intersect.
Add N� to S and set M to M − N�.

Return S.

A crucial step in the processing of every scan line in algorithm WA is the computa-
tion of a maximum-weight set of nonintersecting segments from a given collection of
segments. This problem is identical to the problem of finding a maximum weighted
independent set in interval graphs and can be solved in polynomial time by a simple
dynamic programming algorithm.

We now prove that WA is a 2-approximation algorithm. For problem instance I , let
ALG(I) and OPT(I) denote the total weight of the packets selected by WA and in the
optimal bufferless schedule, respectively.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 145

THEOREM 8. For any I , w(ALG(I)) ≥ w(OPT(I))/2.

PROOF. Let OPT�(I) denote the subset of packets in OPT(I)− ALG(I) that are sched-
uled along scan line � by the optimal solution. Note that any packet in OPT�(I) was
presented as input to the algorithm that computed the maximum weight set N�. Suppose
w(ALG(I)) < w(OPT(I))/2, then w(

⋃
� OPT�(I)) > w(ALG(I)). Then for some �,

w(OPT�(I)) > w(N�), contradicting the optimality of N�.

4.2. Buffered Scheduling. In this section we extend a result of [1] to establish that WA
serves as a useful buffered approximation algorithm as well. In particular, we show that
for any set of packets IB that can be transmitted in its entirety using a buffered schedule
on the array, there is a subset IBL of IB, which can be transmitted in its entirety using a
bufferless schedule, such that the total weight of the packets of IBL is not much smaller
than the total weight of the packets of IB. As in [1], we express the comparison in terms of
the parameter �(IB) = min{σ(IB) + 1, δ(IB), |IB|}, where σ(IB) is the maximum slack
in IB and δ(IB) is the maximum span in IB. In the following we assume that �(IB) > 1.
For �(IB) = 1 it is straightforward to see that the set IBL can be the set IB itself (see
also Section 2.2).

THEOREM 9. For any nonempty set of packets IB which can be wholly scheduled on the
array by a buffered schedule, there is a subset IBL ⊆ IB, which can be wholly scheduled
by a bufferless schedule and satisfies the following conditions:

• If �(IB) = 1, then w(IBL) = w(IB).
• If �(IB) > 1, then w(IBL) =
(1/log �(IB))w(IB).

PROOF. For �(IB) = 1 it is straightforward to see that the set IBL can be the set IB

itself (see also Section 2.2).
For �(IB) > 1 we will show that w(IB) ≤ 4(�log x� + 1) · w(IBL) for each x ∈

{σ(IB) + 1, δ(IB), |IB|}. We start with x = σ(IB) + 1. In this case we will show that the
set IBL can be the set obtained by applying WA to the set IB. More precisely, we will show
that w(IB) ≤ 4�log(σ (IB)+1)�w(ALG(IB)). We divide the set IB into �log(σ (IB)+1)�
sets such that the i th set Ii , i ≥ 0, consists of the packets in IB that have slack at least
2i − 1 and less than 2i+1 − 1. We now prove that, for every i , w(Ii − ALG(IB)) is at
most 4w(ALG(IB)).

Consider any scan line �. Let X� be the set of packets in Ii − ALG(IB) that are
individually eligible to be scheduled on �. Since the slack of each packet in X� is
less than 2i+1 − 1, the number of packets in X� that intersect a given point on the
scan line is less than 2i+2. Thus the set of packets X� can be partitioned into 2i+2

groups such that each group forms a set of nonintersecting segments on the scan
line �.

Since X� ⊆ M� and N� is a set of packets corresponding to a maximum-weight set
of nonintersecting segments on �, we have the following inequality for each scan line �:

w(X�) < 2i+2w(N�).(1)

146 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

Since each packet in Ii − ALG(IB) contributes to at least 2i scan lines, we obtain the
following inequality by adding (1) over all scan lines:

w(Ii − ALG(IB)) ≤ 4w(ALG(IB)).(2)

Equation (2) now yields

w(IB − ALG(I)B) ≤
�log(σ (IB)+1)�−1∑

i=0

w(IB − ALG(IB))

≤ 4�log(σ (IB) + 1)�w(ALG(IB)).

We next show the desired claim for x = δ(I). Again, we will show that the set IBL can
be the set obtained by applying WA to the set IB. Divide the set IB into �log(δ(IB))� sets
such that the i th set Ii consists of the packets in IB that have span at least 2i and less
than 2i+1. We now prove that w((Ii − ALG(IB))) is at most 4w(ALG(IB)).

Consider any scan line �. Let X� be the set of packets in Ii −ALG(IB) that are partially
routed along scan line � in the optimal solution. Let Y� denote the multiset of packets in
which each packet in X� occurs a number of times equal to the number of edges traversed
by the packet along � in the optimal solution. Since the span of each packet in Ii is less
than 2i+1, the number of packets in Y� that intersect a given point on the scan line is less
than 2i+2. Thus the multiset Y� can be partitioned into 2i+2 groups such that each group
forms a set of nonintersecting segments on the scan line �. Since X� ⊆ M� and N� is a
set of packets corresponding to a maximum-weight set of nonintersecting segments on
�, we obtain the following inequality:

w(Y�) < 2i+2w(N�).(3)

Since each packet in Ii − ALG(IB) has a multiplicity of at least 2i in the union of
the multisets Y�, we obtain the following inequality on adding (3) over all scan lines:
w(Ii − ALG(IB)) ≤ 4w(ALG(IB)). We now prove the desired claim as follows:

w(IB) ≤
�log(δ(IB))�∑

i=1

w(Ii − ALG(IB)) + w(ALG(IB))

≤ (4�log δ(I)� + 1)w(ALG(IB)).

Finally, consider the case x = |IB|. We first observe that all of the packets that have slack
at least |IB| + 1 can always be routed irrespective of how the other packets are routed.
This is because for any packet with slack at least |IB| + 1, there is at least one scan line
along which it can be routed and no other packet will be routed since there are only |IB|
packets. Therefore, it remains to consider only those packets in IB that have slack at most
|IB|. Let I ′

B denote the subset of packets in IB that have slack at most |IB|. By our earlier
argument concerning slack, it follows that w(I ′

B) is at most 4�log(|IB|+1)�w(ALG(I ′
B)).

By letting IBL = ALG(I ′
B) ∪ (IB − I ′

B), the desired claim follows.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 147

5. Hardness of Off-Line Approximations. In this section we establish lower bounds
on the approximability of the time-constrained routing problem. All of the results de-
scribed involve instances in which none of the packets has any slack, and thus apply both
to the buffered and bufferless case. Furthermore, the lower bounds apply to the special
case where all packets have the same weight.

We first provide strong evidence that there does not exist a polynomial-time k1−ε-
approximation, for any ε > 0, for the time-constrained routing problem with k packets
on arbitrary topologies.

THEOREM 10. For any ε > 0, there is no k1−ε-approximate algorithm for the time-
constrained problem, unless NP = ZPP, where k is the number of packets in the instance
of the routing problem.

PROOF. We give a reduction from the independent set problem which is known to be
n1−ε-hard to approximate, unless NP = ZPP, where n is the number of nodes in the given
graph [10]. Our starting point is input G = (V, E) to the independent set problem. We
use a mesh-like network for the time-constrained routing problem, and specify packets
and routes through a reduction from G; see Figure 5. Our construction here is similar to
the one used in [9] for showing the hardness of the bounded delay disjoint paths problem.

For each i ∈ [1..n], the packet pi with source si and destination ti is included in the
problem instance. In other words, there is a packet for each vertex in G. Assume the
nodes of the mesh are labeled as in the Cartesian plane with s1 located at (0, 1) and
tn at (n, n + 1). Then the path πi that packet pi must follow is given by the sequence

nt

n-1t

a

b

c d c
d

a

b

The gadget replacing any internal node

sssss

t

t

t

3

2

1

123n-1n

Fig. 5. Graph used in the proof of Theorem 10.

148 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

si = (0, i), (1, i), . . . , (i, i), (i, i + 1), . . . , ti = (i, n + 1). It is easy to see that for
any i �= j , the paths πi and πj intersect exactly once, at location (i, j). To complete
our construction, we complete the description of the mesh-like graph. Specifically, we
replace each mesh node by a suitable gadget graph. Each gadget graph has the property
that the path of a packet will take exactly two units of time in traversing through it.
All nodes along the diagonal of the mesh are simply replaced by a path of length two.
All other nodes of the form (i, j) inside the mesh are replaced by the gadget as shown
in Figure 5. Now, to complete the specification of the path of any packet, we do the
following: If (i, j) ∈ E , πi and πj are required to use the central portion of the gadget,
so that they share the same length-two path while passing through the node (i, j). If
(i, j) /∈ E, then these paths use different portions of the gadget, and thus have no shared
edges in their paths. It is easy to verify that each path πi has length (3n + 1). Finally, we
set the release time ri of the i th packet to be 3(i −1) and the deadline di to be ri +(3n+1)

(i.e., no slack is given).
Our main claim now is that for any i < j , packets starting at si and sj at their respective

release times, arrive at the node (i, j) simultaneously. To see this, notice that the packet
from si arrives at (i, j) at time ri + 3 j − 2 = 3i + 3 j − 5. The arrival time of the packet
from sj on the other hand is given by rj + 3i − 2 = 3i + 3 j − 5.

It follows from our construction above that if (i, j) ∈ E , then any such pair of packets
must collide while passing through (i, j). Therefore, any subset of packets chosen to be
routed must correspond to an independent set in G. Moreover, it is easy to see that every
independent set in G corresponds to a set of packets that can be routed without conflicts.
The claimed result now follows from the hardness of the independent set problem.

We observe that the reduction in Theorem 10 uses the same network, illustrated in
Figure 5, for every instance of the independent set problem. Thus, the inapproximability
result holds even if the routing algorithm for the time-constrained routing problem is
allowed to preprocess the given network “for free.” That is, Theorem 10 also holds in
a model where each network has a specific algorithm, and the input is only the set of
packets and their paths.

In the instances generated in the proof of Theorem 10 above, all paths are shortest
paths. We next show that if the specified paths are not required to be shortest paths, then
the preceding lower bound on the approximation ratio holds even when the underlying
graph is a mesh. This result uses specified paths that are not dimension order paths, and
thus complements the constant-factor and logarithmic-factor upper bounds established
in Section 3 under the assumption that the routing is along dimension order paths.

THEOREM 11. For any ε > 0, there is no n1−ε-approximate algorithm for the time-
constrained problem even when the underlying graph is an n-node mesh, unless
NP = ZPP.

PROOF. The mesh-like graph constructed for Theorem 10 loses its mesh structure once
we replace the nodes with the gadgets. In order to establish the hardness result for the
mesh, we suitably modify the gadgets, as shown in Figure 6. The rest of the proof is
similar to the proof of Theorem 10.

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 149

PiP

P

P

i

j

j

P

Pi

i

P

P

P

iPi

j

j

If i and j are adjacent in G The diagonal gadgetIf i and j are non-ajacent in G

Fig. 6. Gadgets used in the proof of Theorem 11.

As before, we are given an instance of the maximum independent set problem; that is,
we are given a graph G with n nodes. We consider a 4n × 4n mesh, with rows numbered
0 through 4n − 1 from the bottom to the top and columns labeled 0 through 4n − 1 from
the right to the left. The entire mesh is divided into n × n blocks of 4 × 4 submeshes. All
of the source nodes s1 through sn are located on row 0. More specifically, the coordinates
of si are given by (0, 4i − 3). Similarly, all of the destination nodes t1 through tn are on
column 0. The coordinates of ti are given by (4i − 3, 0).

We now specify the paths of the time-constrained routing problem. The path πi from
source si to destination ti represents vertex i of G and its “interaction” with other paths
represents the adjacency of i in G. The path passes through i − 1 blocks vertically, then
takes the form of the diagonal gadget, and then passes through n − i blocks horizontally.
While going through a block vertically (resp., horizontally), it may interact with a path
πj for j < i (resp., j > i). In this case the path will take the form as described in Figure 6
depending on whether i and j are adjacent in G. It is easy to verify that each path has
length 6n. We set the release time ri of the i th packet to be 6(i − 1) and the deadline to
be ri + 6n (i.e., no slack is given).

As in the proof of Theorem 10, it is easy to see that for any i < j , packets starting at
si and sj at their respective release times arrive simultaneously at the vertex where the
paths πi and πj intersect. It now follows from the construction of the gadgets that the
pair of packets collide if and only if i and j are adjacent in G. The claimed result now
follows from the hardness of the independent set problem.

6. On-Line Lower Bound for Trees. For the unweighted case of linear arrays, [1]
provided a distributed and on-line algorithm for the buffered case that is guaranteed to
achieve within a factor of 2 of the optimal (off-line and centralized) bufferless schedule.
We show here that the analogous result is not possible in the case of trees, even when
all packets have the same weight. We derive this lower bound by giving a family of tree
networks, parameterized by the parameter h ≥ 1, and showing that for any deterministic
on-line algorithm, there is a sequence of packets on these networks such that the on-line
algorithm will schedule at most a single packet, while an off-line algorithm can schedule
h packets, where h is the height of the tree. In this sequence of packets, each packet
has zero slack, and thus the buffered and bufferless cases are identical. Furthermore, our

150 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

p

p

q
i

i

(a) (b)

h - i

Fig. 7. (a) Lower bound tree for h = 4. (b) Time step i : p is a packet currently scheduled by the on-line
algorithm, pi and qi are new packets injected at time step i .

lower bound applies to the class of preemptive on-line algorithms, i.e., algorithms that
are allowed to drop a packet that has already been scheduled.

THEOREM 12. The competitive ratio of any on-line algorithm for time-constrained rout-
ing on an n-node tree is
(log n).

PROOF. We establish the claim by first defining the tree used in the argument and then
defining the set of packets that form the input provided to the on-line algorithm.

The lower bound tree. For any n = 2h , h ≥ 1, we build a tree Tn of height h. For any
nonnegative integer i , let T (i) denote a complete binary tree of height i . The tree Tn

employed in our lower bound consists of a root r with a single child that forms the root of
the complete binary tree T (h −1). Thus, for each i in the range 0 ≤ i < h, every node of
Tn at height i is the root of a tree T (i). The lower bound tree is illustrated in Figure 7(a).

The set of packets. The lower bound instance consists of 2h packets that are determined
according to the actions of the given on-line algorithm OL. For each time step i in the
range 0 ≤ i < h, we introduce two new packets at a node at height h − i +1. Each packet
is destined to a leaf node and has deadline time h + 1. It thus follows that every packet
has zero slack. Since all packets are traveling in a leafward direction, it also follows
that if the paths of two packets intersect along an edge, then at most one of them can
be scheduled in any valid schedule. While presenting the lower bound instance, we will
also develop the argument that leads to the lower bound of h on the competitive ratio. In
particular, we show that any on-line algorithm OL can schedule at most one of the 2h
packets, while there exists an optimal solution that schedules at least one packet among
the two introduced in each of the h time steps.

At time step 0, we introduce two new packets p0 and q0. The source of each packet is
the root r of T and the destinations are the leftmost and the rightmost leaves, respectively,
of the tree. Since the packets p0 and q0 collide on the sole edge descending from r , only
one of the packets may be scheduled in any valid schedule. We let the off-line schedule
select the packet that is not selected by the on-line algorithm OL; if OL does not schedule
any of the packets, the off-line schedule selects an arbitrary packet. Thus, at the start of
time step 1, the following two properties hold. First, at most one packet p is scheduled
by OL. Second, if p exists, then it is destined to either the leftmost leaf or the rightmost

Time-Constrained Scheduling of Weighted Packets on Trees and Meshes 151

leaf of the subtree T (h −1) rooted at the child of r . Furthermore, the particular leafward
edge traversed by p while leaving the root of T (h − 1) is not traversed by the packet
selected in the off-line schedule.

In general, at the start of time step i > 0, we will maintain the following two invariants:
(i) at most one packet p has been scheduled by OL, and (ii) if p exists, then it is destined
to either the leftmost leaf or the rightmost leaf of a subtree T (h − i), and the particular
leafward edge traversed by p while leaving the root of this subtree T (h − i) is not
traversed by any of the packets selected in the off-line schedule. At time step i , we
introduce two new packets pi and qi . If p exists, then without loss of generality we may
assume that p is destined to the leftmost leaf of T (h − i). We set the source of both pi

and qi to be the root of T (h − i) and the destinations to be the leftmost and rightmost
leaves, respectively, of the left subtree of T (h − i). Figure 7(b) illustrates the packets p,
qi , and pi . It follows that the three packets p, pi , and qi all collide on the edge between
the root of T (h − i) and its left child. Therefore, the on-line algorithm can schedule at
most one of the three packets. If the on-line algorithm continues to schedule p or drops
p in favor of pi , then we include qi in the off-line schedule; otherwise, we include pi in
the off-line schedule.

We now verify that the two invariants hold at the start of time step i + 1. Clearly in-
variant (i) holds since, as mentioned above, all of the three packets currently available for
scheduling, i.e., p, pi , and qi , collide on an edge. For the first part of invariant (ii), we note
that p and pi are destined to the leftmost leaf of a subtree T (h−i −1), while qi is destined
to the rightmost leaf of this subtree. The second part of invariant (ii) follows directly from
invariant (ii) of time step i and the choice made in the off-line schedule at time step i .

We note that in the above construction, exactly one of packets pi and qi , for each
i , is included in the off-line schedule. Thus, the total number of packets in the off-line
schedule is h. On the other hand, it follows from invariant (i) at the start of time step h
that the on-line algorithm schedules at most one packet. Therefore, the competitive ratio
of the on-line algorithm is at least h. This completes the proof of Theorem 12.

Acknowledgments. We thank Thomas Erlebach for pointing out an error in the analysis
of the dimension order routing algorithm for meshes in an earlier version of this paper.
We also thank Boaz Patt-Shamir for pointing out to us the paper by Chuang et al. [6].

References

[1] M. Adler, A.L. Rosenberg, R.K. Sitaraman, and W. Unger (1998): Scheduling time-constrained commu-
nication in linear networks. Proc. 10th ACM Symp. on Parallel Algorithms and Architectures, pp. 269–
278.

[2] M. Andrews, A. Fernandez, M. Harchol-Balter, F.T. Leighton, and L. Zhang (1997): General dynamic
routing with per-packet delay guarantees of O(distance + 1/session rate). Proc. 38th IEEE Symp. on
Foundations of Computer Science, pp. 294–302.

[3] M. Andrews and L. Zhang (1999): Packet routing with arbitrary end-to-end delay requirements. Proc.
31st ACM Symp. on Theory of Computing, pp. 557–565.

[4] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call control. Proc. 5th Ann.
ACM–SIAM Symp. on Discrete Algorithms, pp. 312–320.

152 M. Adler, S. Khanna, R. Rajaraman, and A. Rosén

[5] S.N. Bhatt, G. Bilardi, G. Pucci, A.G. Ranade, A.L. Rosenberg, and E.J. Schwabe (1996): On bufferless
routing of variable-length messages in leveled networks. IEEE Trans. Comput., 45, 714–729.

[6] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar (1999): Matching Output Queueing with a Com-
bined Input Output Queued switch. J. Selected Areas Commun., 17(6), 1030–1039. Also in Proc.
INFOCOM 99.

[7] R. Games, A. Kevsky, P. Krupp, and L. Monk (1995): Real-time communications scheduling for mas-
sively parallel processors. Proc. Real-Time Technology and Applications Symp., pp. 76–85.

[8] S.J. Golestani (1991): Congestion-free communication in high-speed packet networks. IEEE Trans.
Comm., 39, 1802–1812.

[9] V. Guruswami, S. Khanna, B. Shepherd, R. Rajaraman, and M. Yannakakis (1999): Near-optimal hard-
ness results and approximation algorithms for edge-disjoint paths and related problems. Proc. 31st ACM
Symp. on Theory of Computing, pp. 19–28.

[10] J. Håstad (1996): Clique is hard to approximate within n1−ε . Proc. 37th IEEE Symp. on Foundations of
Computer Science, pp. 627–636.

[11] M.R. Henzingerm, and S. Leonardi, Scheduling multicasts on unit-capacity trees and meshes, Proc.
10th Ann. ACM–SIAM Symp. on Discrete Algorithms, pp. 438–447.

[12] J.H. Kim and A.A. Chien (1996): Rotating Combined Queuing (RCQ): bandwidth and latency guarantees
in low-cost, high-performance networks. Proc. 23rd Internat. Symp. on Computer Architecture, pp. 226–
236.

[13] C. Lam, H. Jiang, and V.C. Hamacher (1995): Design and analysis of hierarchical ring networks for
shared-memory multiprocessors. Proc. Internat. Conf. on Parallel Processing, vol. I, pp. 46–50.

[14] J. Van Leeuwen, Editor. Handbook of Theoretical Computer Science, Vol. A. The MIT Press, Cambridge,
MA, 1990.

[15] F.T. Leighton (1992): Methods for message routing in parallel machines (invited survey). Proc. 24th
ACM Symp. on Theory of Computing, pp. 77–96.

[16] F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays • Trees • Hyper-
cubes. Morgan Kaufmann, San Mateo, CA.

[17] J.-P. Li and M.W. Mutka (1994): Priority based real-time communication for large scale wormhole
networks. Proc. Internat. Parallel Process. Symp., pp. 433–438.

[18] J. Liebeherr (1995): Multimedia networks: issues and challenges. IEEE Computer, 28(4), 68–69.
[19] K.-S. Lui and S. Zaks (1999): Scheduling in synchronous networks and the greedy algorithm. Theoret.

Comput. Sci., 220, 157–183.
[20] M.W. Mutka (1994): Using rate monotonic scheduling technology to support real-time communications

in wormhole networks. Proc. Workshop on Parallel and Distributed and Parallel Real-Time Systems,
pp. 194–199.

[21] A.K. Parekh and R.G. Gallager (1993): A generalized processor sharing approach to flow control in
integrated services networks: the single-node case. IEEE/ACM Trans. Networking, 1, 344–357.

[22] A.K. Parekh and R.G. Gallager (1994): A generalized processor sharing approach to flow control in
integrated services networks: the multiple-node case. IEEE/ACM Trans. Networking 2, 137–150.

[23] A. Pietracaprina and F.P. Preparata (1995): Bufferless packet routing in high-speed networks. Typescript,
Brown University.

[24] B. Prabhakar, and N. McKeown, On the speedup required for combined input and output queued
switching. Computer Systems Technical Report CSL-TR-97-738, Stanford University.

[25] J. Rexford, J. Hall, and K.G. Shin. (1996): A router architecture for real-time point-to-point networks.
Proc. 23rd Internat. Symp. on Computer Architecture, pp. 203–212.

[26] A. Saha (1995): Simulator for real-time parallel processing architectures. Proc. IEEE Ann. Simulation
Symp., 74–83.

[27] L.R. Welch and K. Toda (1994): Architectural support for real-time systems: issues and trade-offs. Proc.
Internat. Workshop on Real-Time Computing System and Applications, pp. 145–152.

[28] L. Zhang (1990): Virtual clock: a new traffic control algorithm for packet switching networks. Proc.
ACM SIGCOMM, pp. 19–29.

[29] W. Zhao, J.A. Stankovic, and K. Ramamritham (1990): A window protocol for transmission of time-
constrained messages. IEEE Trans. Comput., 39, 1186–1203.

