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Abstract

A growing amount of work has been invested in recent years in analyzing packet-

switching networks under worst-case scenarios rather than under probabilistic assump-

tion. Most of this work makes use of the model of \adversarial queuing theory" pro-

posed by Borodin et al. [9], under which an adversary is allowed to inject into the

network any sequence of packets as long as { roughly speaking { it does not overload

the network.

We show that the protocol Longest In System, when applied to directed acyclic

graphs, uses bu�ers of only linear size (in the length of the longest path in the network).

Furthermore, we show that any packet incurs only linear delay as well. These are, to

the best of our knowledge, the �rst deterministic polynomial bounds on queue sizes and

packet delays in the framework of adversarial queuing theory (other than on trees and

the cycle). Furthermore these results separate Longest In System from other common

universally stable protocols for which there exist exponential lower bounds that are

obtained on DAGs. Our upper bounds are complemented by matching linear lower

bounds on bu�er sizes and packet delays.
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1 Introduction

The behavior of packet-switching networks, in which packets are injected into the network in

a continuous manner, has been the subject of considerable amount of work in recent years.

See e.g., [10, 8, 16, 17, 19, 18, 11, 9, 3, 7, 13, 15, 2, 5]. In such networks packets are transmitted

between adjacent switches over links, in discrete time steps, a prescribed number of packets

over each link in any time step. New packets are injected into the network dynamically at

any time. Each packet is injected into a source node and has to reach a destination node

over a prescribed path. The packets travel to their destinations in a \store-and-forward"

manner, being stored in bu�ers at intermediate switches.

As the capacity of the links in the network is limited, two important questions arise in

this setting: what are the delays incurred by the packets, and what are the sizes of the bu�ers

used. A crucial question is the question of stability, i.e., whether the maximum bu�er size
grows with time. (In other words, is there a �nite upper bound, which is independent of time,

that bounds the size of the bu�ers in the network). The answers to these questions depend
on the topology of the network, the injection pattern of the packets, and the contention-
resolution protocol (used when more packets than the capacity of an edge attempt to cross
this edge at a given time).

Considerable amount of research has been published on these questions under certain

probabilistic assumptions on the injection of packets [10, 8, 16, 17, 20, 19, 18]. In partic-
ular the assumptions are usually that the packets are generated at the di�erent nodes by
independent Poisson or Bernoulli processes, and are destined to uniformly distributed des-
tinations. More recently, a growing amount of research has been invested in an attempt
to answer the same questions without resorting to probabilistic assumptions. Rather, the

questions of stability, queue size, and packets delay are studied under worst-case scenarios
[9, 3, 7, 15, 13, 14, 2, 5], in an e�ort to prove stability and small queue size even when the
packets are injected by an adversary and not by an oblivious random process. To formulate
this adversary we use the model of \adversarial queuing theory" introduced by Borodin et
al. [9]. Informally, in this model an adversary can inject any sequence of packets, under the
condition that the paths that the packets have to follow do not accumulate on any edge at

a rate higher than the capacity of this edge.1

The question of stability under this model received rather detailed answers. A number
of natural protocols are known to be universally stable (i.e., they are stable on any network
topology), while others are known not to be always stable [9, 3]. Methods for determining

if a network is universally stable (i.e., it is stable with any greedy protocol) have been

developed [13], and the set of universally stable networks is well characterized [15, 14, 1].
While stability ensures that there are some upper bounds, independent of time, on the sizes

1Note that it is necessary to limit the power of the adversary. Otherwise an adversary can inject into the

network a sequence of packet which is beyond the capacity of the network. The formulation above captures

the condition that the adversary can injects packets up to the capacity of the network, but not beyond it,

disallowing sequences for which stability is impossible. For a formal de�nition of the adversary see Section

1.2.
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of the bu�ers, it does not guarantee small bounds on them. In contrast to the question

on stability, the question of good upper bounds on queue sizes (and delays of packets) for

speci�c and universally stable protocols remains rather open. The only known upper bounds

on queue sizes on general networks are exponential in the length of the longest path in the

network [9, 3]. The only known sub-exponential bounds on queue sizes hold only for trees and

the cycle [9, 3]. Moreover, several natural and universally stable protocols have exponential

lower bounds [3]. Thus, determining whether there exists a protocol with polynomial queue

sizes (and packet delays) is an important question in this area [3]. Andrews et al. [4] gave

recently a protocol with polynomial queue sizes for the case where upper bounds on the

parameters of the adversary are known to the protocol. The protocol Longest In System

(henceforth LIS), in which a packet has the highest priority to cross an edge if its time of

injection is the earliest, has been suggested as a good candidate: no exponential lower bound

is known for it, and there is a centralized polynomial algorithm that works in the spirit of
LIS [3]. Determining the speci�c behavior of LIS was thus also raised as an important open
question [9, 3].

In this paper we show that the protocol LIS, when applied to Directed Acyclic Graphs
(henceforth DAGs) is polynomial. Previously, for DAGs, it was only known that any greedy
protocol is stable, but only with exponential upper bounds. We show that on DAGs, LIS has
linear (in the longest path in the network) bu�er sizes and linear packet delays. This is the
�rst sub-exponential deterministic upper bound on bu�er sizes obtained in the framework

of adversarial queuing theory, other than on trees and the cycle. Moreover, this result
separates LIS from other natural stable protocols (such as Shortest In System), as these
have exponential lower bounds that are obtained on DAGs [3].

In addition to our upper bounds, we show that these bounds are best (or almost best)
possible, up to constant factors. We give a matching linear lower bound on the maximum

delay incurred by the packets. We also give an almost matching linear lower bound on the
maximum bu�er size used by LIS on DAGs. 2 Our results thus establish the behavior of LIS
on DAGs as being linear.

1.1 Related Work

Two papers within the literature on adversarial analysis of packet-switching networks are
particularly close to the present work.

Andrews and Zhang [5] give a lower bound for LIS in the framework of adversarial queuing

theory. They give a lower bound on the maximum delay of packets which is exponential in

d, the length of the longest path followed by any packet. This lower bound is obtained on

a tree of depth exponential in d. Thus, our upper bounds also show that there can be an
exponential gap between a function giving the best possible upper bound on the delay of a

packet in terms of the longest directed path in the network, and a function giving the same
in terms of the longest path followed by any packet.

2This lower bound matches the upper bounds in terms of two of the three parameters involved, and has

a small gap in terms of the third parameter. See Section 1.3 for the exact bounds.
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Scheideler and V�ocking [21] consider layered graphs and a model related to the present

model. In their model each node has bu�ers on incoming edges, and in addition a separate

bu�er for packets injected into the speci�c node. They give a protocol for layered graphs,

which is in the spirit of LIS, but uses also additional control packets. This protocol achieves

for layered graphs linear delay for the packets. Their protocol uses bu�ers of constant size

(on any of the incoming edges), while they do not give upper bounds on the size of the bu�ers

used for injected packets (although such bounds can be inferred from the upper bounds on

the delay of the packets).

1.2 The Model

We model a communication network as a graph G = (V;E), jV j = n, jEj = m. Each node

v 2 V represents a communication switch, and each edge e 2 E represents a link between
two switches. The switches store and forward packets; the packets are stored in the switches

in bu�ers. Every switch has a bu�er for each outgoing link, and stores in this bu�er the
packets to be sent on the corresponding link. We model here the network as a directed graph.
Thus each edge e 2 E is a directed edge, capable of delivering packets in the direction in
which it is oriented. The network is synchronous, and there is a global clock known to all
switches. We number the time steps by t 2 N = f1; 2; 3; : : :g. Each edge can transmit a
single packet in each time step (in the direction it is oriented).3

New packets are injected into the network at any time step. Each packet p is injected
into an arbitrary source node sp, and has to reach an arbitrary destination node dp. To reach
dp from sp, the packet has to follow a prescribed path �p = (sp = v0; v1; : : : ; vk = dp).

Each time step, in each node, is divided into two sub-steps: in the �rst sub-step packets
are sent from the bu�ers in which they are stored (on the edge that corresponds to each

bu�er). At most one packet is sent per edge. In the second sub-step each nodes receives the
packets sent to it over its incoming edges, and the packets injected into it from the outside.
Those packets that reach their destination are absorbed. The other packets are placed in
the bu�ers that correspond to the next edge on their path.

The injection of packets into the network is controlled by an adversary. We use the model

of Adversarial Queuing Theory introduced by Borodin et al. [9].

De�nition 1: We say that the adversary injecting packets is an A(w; ") adversary, for some

" � 0 and some integer w > 1, if the following holds: for any time t 2 N , let I t be the set
of packets injected during the w time steps from t to t+w � 1, inclusive. Let �t be the set

of paths that the packets in I t have to follow: �t = f�p : p 2 I tg. Then, every edge e 2 E

is used by the paths of �t at most b(1� ")wc times.

3In the literature, networks are many times modeled as undirected graphs, with edges capable of transmit-

ting packets in both directions. However, the results in this paper hold in the case when the paths followed

by the packets induce a DAG on the graph. We therefore simplify the presentation by de�ning in advance

the graph as directed graph.
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A protocol is a set of n algorithms, one algorithm corresponding to each switch, that

control the sending of the packets from the bu�ers on the corresponding outgoing links.

Each algorithm corresponding to a switch is run locally in it. In particular each algorithm

uses only information available in its speci�c switch and decides if a packet is to be sent over

an outgoing link and which packet it will be. A greedy protocol is a protocol that always

sends a packet over an outgoing edge e from node v, if there is at least one packet in v that

has e on its path. We consider here only greedy protocols.

1.3 Our Results

Our results concentrate on the performance of the Longest In System (LIS) protocol, run on

networks which are DAGs. We show tight (or almost tight), up to constant factors, linear

bounds on both the delay incurred by the packets, and the size of the bu�ers used by the
protocol.

In particular, we show that the size of the bu�ers used by LIS on DAGs, when the packets
are injected by an A(w; ") adversary, is bounded from above by O(`w(1� ")), where ` is the
length of the longest path in the network. More precisely, let the level of a node in a DAG be
the length of the longest path that leads to it. We show that the bu�ers in a node v of level
i never exceed O(iw(1� ")). As mentioned above this to the best of our knowledge the �rst
polynomial upper bound on bu�er sizes in the adversarial queuing theory model, other than

on trees and the cycle. Moreover, this upper bound separates LIS from other universally
stable protocols such as Shortest In System, for which there are known exponential lower
bounds on DAGs [3]. Our upper bound is complemented by a lower bound of 
(iw(1� ")2)
on the size of the bu�ers of LIS in a level-i node of a DAG. We observe that for a �xed
adversary this lower bound matches our upper bound (up to constant factors), and is close

to our upper bound in general. We also provide a linear upper bound of O(iw(1� ")) on the
delay incurred by any packet destined to a node of level i, and give matching lower bounds.
We thus show that the maximum delay incurred by a packet destined to a node v of level i
is �(iw(1� ")).

2 Upper Bounds for LIS on DAGs

We �rst give linear upper bounds on the maximum delay incurred by the packets, and the
maximum size of the bu�ers in the nodes.

For the purpose of the proofs we order the nodes in the graph by their topological order

as induced by the DAG, assigning each node a level, starting with level 0, and ending at

level `. A node of level i is a node such that the longest path leading to it is of length i.

The property that will be useful for the proofs below is that for any edge leading from node
u to node v, it holds that the level of u is smaller than the level of v.

The main theorem of this section is the following.

Theorem 1: When LIS is used on a DAG, and packets are injected by a A(w; ") adversary,
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every packet is delivered to its destination within `w(1� ") time steps, where ` is the length

of the longest path in the network.

This theorem immediately follows from the slightly stronger lemma below.

Lemma 2: Let p be a packet injected at time t, and let v be a node on its path, which

is not the destination node. If node v is of level i, then p clears node v by time step

t+ b(i+ 1)w(1� ")c.

Proof: We prove the lemma by double induction, on i (the level of the node), and on t

(the time of the injection of the packet). Let e = (v; u) be the edge on which p has to leave

v.

For i = 0, any packet that has a node v of level 0 on its path, must be injected into node

v, since no edge leads into this node. This includes the packet p under consideration, and
any other packet. Thus, if p is injected into v at time t, it can be delayed in v only by other
packets injected into v at times t0 � t.

We prove the lemma for a node v of level 0 by induction on t. For t = 1 packet p can
be delayed only by packets injected at time 1 and use e on their path. By the de�nition

of the adversary there are at most bw(1 � ")c such packets (including p itself). It follows
that p will leave v by time step 1 + bw(1� ")c. For t > 1, consider any packet injected into
v at time t0 � t � w. By the induction hypothesis any such packet clears node v by time
step t0 + bw(1 � ")c � t � w + bw(1 � ")c � t. Thus, packet p can be delayed in v only by
packets injected in the time interval [t�w+1; t]. There are at most bw(1� ")c such packets

(including p itself). It follows that p will leave v by time step t+ bw(1 � ")c.
For i > 0 we will use the induction hypothesis that for k < i, every packet injected at time

t0 � 1, and has a node of level k on its path, clears this node by time step t0+b(k+1)w(1�")c.
We now prove the claim for i > 0, and any t � 1, by induction on t. If a packet p is

injected at time t = 1, then it can be delayed at v only by packets injected at time 1 (and
that have e on their path). We distinguish between two cases. The �rst one is when p is

injected into v and the other one is when p arrives to v over an edge. In the �rst case, p

is clearly at v at the end of time step 1. Since there are at most bw(1 � ")c packets that
use e and are injected at time 1, packet p will clear v by time step 1 + bw(1 � ")c. If
p has to arrive to v over an edge, then it has to arrive over some edge e0 = (x; v), for a

node x of level k < i. By the induction hypothesis (on i) packet p clears node x by time

1 + b(k + 1)w(1� ")c. This means that it is in node v by the end of this time step. Since it
can be delayed in v only by packets injected at time 1, it follows that packet p will clear v by

time step 1+ b(k+1)w(1� ")c+ bw(1� ")c � 1+ b(k+2)w(1� ")c � 1+ b(i+1)w(1� ")c.
For packets injected at time t > 1, we again distinguish between the case where the

packet is injected into node v, and the case where it has to arrive into v over an edge. If the

packet is injected into node v, then clearly it is in v by the end of time step t. Otherwise it
has to arrive into v over an edge e0 = (x; v), for a node x of level k < i. By the induction

hypothesis (on i) packet p clears node x by time step t + b(k + 1)w(1 � ")c, i.e., it arrives
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into v by the end of this time step. In any case we know that packet p arrives in v by the

end of time step T = t+ biw(1� ")c.
Now consider any packet that uses edge e and is injected at time step t0 � t � w. By

the induction hypothesis on t, we have that any such packet clears node v by time step

t0+ b(i+1)w(1� ")c � t�w+ b(i+1)w(1� ")c � t+ biw(1� ")c = T . Therefore, if packet

p does not clear node v by time T , it must be at v at this time, and can further be delayed

in v only by packets injected in time interval [t� w + 1; t] (and use e). By the de�nition of

the adversary there are at most w(1� ") such packets (including p). It follows that p clears

v by time T + bw(1 � ")c = t+ biw(1� ")c+ bw(1 � ")c � t+ b(i+ 1)w(1 � ")c.

Proof of Theorem 1. Any packet injected at t with destination v of level i, has to arrive to

v over an edge e0 = (x; v) for a node x of level k < i. Therefore, by Lemma 2 such packet clears
node x (and arrives at v) by time step t+b(k+1)w(1�")c � t+biw(1�")c � t+b`w(1�")c.

Lemma 2 also provides upper bounds on the sizes of the bu�ers used by LIS on DAGs.
We have the following corollary.

Corollary 3: Consider LIS when run on a DAG, where the packets are injected by a
A(w; ") adversary. Then the bu�er at the tail of any edge e = (v; u), for node v of level i,

stores at most (i+ 1)w(1 � ") packets at any time.

Proof: Assume by way of contradiction that there is a time when the bu�er at the tail of
an edge e = (v; u), for a node v of level i stores more than (i + 1)w(1 � ") packets. Then
there is at least one packet that will clear node v (of level i) more than (i+1)w(1� ") time
steps after its injection. A contradiction.

3 Lower Bounds

We now give lower bounds on the maximum delay incurred by the packets when LIS is run
on DAGs, and the maximum bu�er size used by the nodes. We begin with a lower bound
on the delay of the packets.

Theorem 4: For any i; w; and ", there is a DAG and an A(w; ") adversary, such that some
packet, destined to a node v of level i, is delayed 
(iw(1� ")) time steps.

Proof: Consider the following network: start with a complete binary tree of height k, with

all edges directed towards the root. We assign a binary string s(v) to every node v of this

network, where the mth node in the left to right ordering at distance j from the root receives
the j-bit binary representation of the number m � 1. Thus, every internal node receives

the longest common pre�x of its children, and the root is assigned the empty string. We

also modify the network as follows: for every internal node v of the tree, remove the edge
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Figure 1: The tree network used for the lower bound.

pointing to v from its left child vl, (vl; v), and add a node v0l and edges (vl; v
0

l) and (v0l; v).
The resulting network N is a subnetwork of the complete binary tree of height 2k.

For any node v, let Z(v) be the number of 0's in the string s(v). Note that the distance

in N of node v from the root of the tree is js(v)j+ Z(v). Also, for any leaf node v, let D(v)
be the node on the path from v to the root such that s(D(v)) is obtained by removing least
signi�cant bits from s(v) until either the empty string is obtained, or one bit after the �rst
0 is removed. Note that in the original binary tree, D(v) is the �rst node for which v is
a descendant of, or equal to, the left child of a child of D(v), or the root, if no such node

exists. (See Figure 1.)

We can now describe the adversary. The adversary injects w(1��)

2
packets to each leaf

node v at time k � Z(v). For simplicity, we assume here that w(1��)

2
is an integer, but this

assumption is easy to remove.4 Each such packet has a destination of D(v). We now see that
this is in fact a valid adversary. Note that for a leaf v to send a packet that, for nodes u1 and

u2 of the original tree, traverses the edge (u1; u2), or the two edges (u1; u
0

1) and (u0

1; u2), the

k � js(u1)j � 1 least signi�cant bits of s(v) must all be 1's, and the js(u1)j most signi�cant

bits of s(v) must all match the corresponding bits of s(u1). Thus, at most two leaves send
packets that traverse any edge, and therefore any edge is used by at most w(1� ") packets.

Claim 1: For any node v from the original tree such that js(v)j � k � 2, all packets that

pass through v on their way to another node arrive between time (k � js(v)j � 1)w(1�")

2
+

2k � Z(v) � js(v)j + 1 and time (k � js(v)j)w(1�")

2
+ 2k � Z(v) � js(v)j. During this time

interval, exactly one packet arrives at v from each child of v during each time step.

4Without the assumption, the adversary injects bw(1�")

2
c packets to each leaf and the lower bound becomes


(ibw(1�")

2
c).
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Proof: We prove the claim by induction on k � js(v)j, i.e., on the height of the node v.

For the base case, let v be any node such that js(v)j = k � 2, let vr be the right child of

v, and let v` be the node other than v that is adjacent to the left child of v (i.e., the left

child of v in the original tree). Note that s(v`) = s(v)0. Let v00` be the right child of v`, and

let v0` be the node other than v` that is adjacent to the left child of v`. We see that w(1�")

2

packets are injected by the adversary to v0` at time k � Z(v0`). These packets arrive, one per

time step, to v` starting at time k � Z(v0`) + 2. Since s(v0`) = s(v`)0, Z(v
0

`) = Z(v`) + 1,

and so k � Z(v0`) + 2 = k � Z(v`) + 1. The packets that v` receives from v00` are injected by

the adversary to v00` at time k � Z(v00` ) = k � Z(v`), and thus the packets from v00` arrive to

v` at exactly the same time steps as the packets from v0`. However, since the packets from

v0` have been in the system longer, when being sent on to v, they will all have priority over

the packets from v00` . All of the packets from v0` have v as a �nal destination. Thus, the

�rst of the packets that v receives from v` that will be forwarded on arrives at v at time
[k�Z(v`)+1]+ w(1�")

2
+2, and the remainder arrive one per time step for the next w(1�")

2
�1

time steps. Since Z(v`) = Z(v) + 1 and js(v)j = k � 2, this means that exactly one of those

packets arrives at every time step between (k � js(v)j � 1)w(1�")

2
+ 2k � Z(v) � js(v)j + 1,

and time (k � js(v)j)w(1�")

2
+ 2k � Z(v) � js(v)j. A similar argument shows the analogous

fact for the packets that arrive to v from vr and are forwarded onward by v.

For the inductive step, we assume the claim for all v0 such that k�js(v0)j � j. Choose any
v such that k�js(v)j = j+1, let vr be the right child of v, and let v` be the node other than
v that is adjacent to the left child of v. By induction, the packets that v` forwards to v arrive
at v` between time (j�1)w(1�")

2
+2k�Z(v`)�js(v`)j+1 and time j w(1�")

2
+2k�Z(v`)�js(v`)j.

Of these packets, the packets that v` receives from its left child originated at a node v0` such

that s(v0`) = s(v`)01
j�1, and the packets that v` receives from its right child originated at a

node v00` such that s(v00` ) = s(v`)1
j. Since Z(v0`) = Z(v00` ) + 1, all the packets that v` receives

from its left child have been in the system longer than the packets that v` receives from its
right child.

Thus, all the packets that v` receives from its left child and passes on to v (which must

also have v as their �nal destination) have priority over any packet that v` receives from its

right child and passes on to v. Since v` receives one packet to forward per time step from
each of its children, the e�ect of this is that all of the packets destined for v are forwarded
before any packet that has a further destination. There are w(1�")

2
packets that v` forwards

to v that have v as a �nal destination, and thus the packets that v receives from v` that v will

forward arrive between times j w(1�")

2
+2k�Z(v`)�js(v`)j+3, and time (j+1)w(1�")

2
+2k�

Z(v`)� js(v`)j+ 2. Since js(v`)j = js(v)j+ 1 and Z(v`) = Z(v) + 1, these steps are between

(k�js(v)j�1)w(1�")

2
+2k�Z(v)�js(v)j+1 and time (k�js(v)j)w(1�")

2
+2k�Z(v)�js(v)j.

It is easy to see that exactly one of those packets arrives at v at each time step. A similar

argument shows that at each time step where v receives a packet from v` that v will forward
onward, v also receives a packet from vr that it will forward.

We can now conclude the proof of the theorem. Observe that the longest path that leads

to any node v is i = 2(k � js(v)j). To conclude the proof of the theorem we identify for any
node v a packet destined to v that is delayed 
(iw(1� �)) time steps. This will be one of the
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packets destined to v that arrive to v from its right child vr. By claim 1, packets destined

for v reach vr no earlier than time (k � js(vr)j � 1)w(1�")

2
+ 2k � Z(vr) � js(vr)j + 1. The

last of these packets will reach v at time (k� js(vr)j)
w(1�")

2
+2k�Z(vr)� js(vr)j+2. These

packets are inserted at a leaf v0 such that s(v0) = s(vr)01
k�js(vr )j�1, and thus are inserted at

time step k�Z(v0) = k�Z(vr)� 1. Thus, the total time spent in the system by the last of

these packets is (k � js(vr)j)
w(1�")

2
+ k � js(vr)j+ 3. Substituting js(v)j+ 1 for js(vr)j, this

is (k � js(v)j � 1)(w(1�")

2
+ 1) + 3 = 
(iw(1� �)).

For the adversary described in the above proof, the largest queue required is w(1�")

2
.

However, we can also demonstrate the following:

Theorem 5: For any w; ", and i = 
( 1
1��

), there is a DAG and an A(w; ") adversary, such

that LIS requires queues of size 
(iw(1� ")2), in nodes of level i.

Proof: Call the network N constructed in the previous proof an adversary tree of height
k. Let s be the largest power of two such that 2sd 1

1��
e+ log s� 1 � i. For the lower bound

on queue size, we shall use s adversary trees, one for each height that is a multiple of d 1
1�"

e

between 1 and m = d 1
1�"

es. Each of the roots of these adversary trees also serves as a leaf

of a complete binary tree of height log s. Call this binary tree the root tree. As before, the
adversary will inject w(1�")

2
packets to each leaf of every adversary tree.5 Each such packet

is destined for the same node in its respective adversary tree as before, unless that packet
is injected at a leaf v for which s(v) = 1�, in which case the packet is now destined for the
root of the root tree (instead of the root of the adversary tree). All the packets that are

injected into a given leaf are injected at the same time step. Let v be a leaf in an adversary
tree of height k and with Z(v) = h in its adversary tree. Then the packets injected into v

are injected at time step m� h+ (m� k)(w(1�")

2
+ 2).

We �rst demonstrate that this is a valid adversary. We saw in the proof of Theorem 4
that this adversary does not inject more than w(1 � ") packets that cross any edge of any
adversary tree. As to edges of the root tree, observe that for every adversary tree, only

packets from one leaf travel into the root tree. The adversary injects into each leaf w(1�")

2

packets. Moreover, the injection times of packets into two leaves belonging to two di�erent

adversary trees are more than d 1
1�"

ew(1�")

2
� w=2 time steps apart. It follows that for any

edge of the root tree, and any consecutive w time steps, at most w(1�") packets are injected.

We now consider an arbitrary leaf of the root tree, denoted x. This node is also a root

of an adversary tree; denote the height of that adversary tree by k. We consider the packets
that arrive to x and are forwarded to the root of the root tree. By construction, these

packets arrive to x from the right child of the right child of x. Denote by y the right child of
x and by yr and y` the right child and left child of y, respectively. By construction, packets

start to be injected into the adversary tree rooted at x at time m � k + (m � k)(w(1�")

2
+

2). Therefore, by applying Claim 1, we have that for w(1�")

2
time steps starting at time

(k � 2)w(1�")

2
+ 2k +m� k + (m� k)(w(1�")

2
+ 2) = (m� 2)w(1�")

2
+ 3m, one packet arrives

5We assume again that
w(1�")

2
is an integer; otherwise we use the value bw(1�")

2
c instead.
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to y from each of yr and y` in each time step. All these packets are to be forwarded to

x. By the same arguments as those used in the proof of Claim 1, the packets arriving

from y` have priority over the packets arriving from yr. It follows that starting at time

(m � 2)w(1�")

2
+ 3m + w(1�")

2
+ 1 = (m � 1)w(1�")

2
+ 3m + 1, w(1�")

2
packets destined to the

root of the root tree arrive at x, one packet in each time step.

Observe that the arrival time of these packets to x is independent of the identity of the

particular leaf, i.e., all leaves of the root tree start receiving such packets at the same time.

Denote this time by T , i.e., T = (m� 1)w(1�")

2
+ 3m+ 1. It is easy to see that any node at

distance d from the leaves of the root tree will then forward one packet per time step starting

at time T +d+1, and continue doing so until time T +d+
w(1�")

2
2d. Let c be the child of the

root of the root tree that has as a descendant the adversary tree of largest height. The node

c is forwarded w(1�")

2
2log s�2 = w(1�")s

8
packets destined for the root from each of its children.

Thus, it receives w(1�")s

4
packets in an interval of time of length w(1�")s

8
. Since c can only

forward one packet per time step, there is a time step where it has a queue of size w(1�")s

8
.

The level of node c is ` = 2sd 1
1��

e+ log s� 1. Since s = 
(`(1� ")), in terms of `, the lower

bound of w(1�")s

8
on the bu�er size of c is �(`w(1� ")2). Using i = 
( 1

1��
) and the de�nition

of s, we have that i=3 � ` � i. If ` < i, we can add dummy nodes until the level of c is i,
and thus, we obtain a node with level exactly i with queue size of 
(iw(1 � ")2).

4 Conclusions

We considered in this paper the protocol Longest In System when run on DAGs. We obtained
linear upper and lower bounds on the queue sizes and maximum delay of packets, when the
packets are injected according to the adversarial queuing model. We thus prove the �rst
polynomial bounds (other than on trees and the cycle) in the context of this model, and

establish the behavior of LIS on DAGs to be linear. Furthermore, these results separate
LIS from other universally stable protocols for which there are exponential lower bounds
on DAGs. Comparing our results to the results in [5] also demonstrates that there is an
exponential gap between measuring the performance of protocols in terms of the longest

path in the network and in terms of the longest path followed by any packet.

As mentioned above, we obtain that LIS is linear on DAGs. It remains however open if

LIS is polynomial on general networks.
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