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Abstract

We study a combinatorial geometric problem related to the design of wireless networks with
directional antennas. Specifically, we are interested in necessary and sufficient conditions on
such antennas that enable one to build a connected communication network, and in efficient
algorithms for building such networks when possible.

We formulate the problem by a set P of n points in the plane, indicating the positions of
n transceivers. Each point is equipped with an α -degree directional antenna, and one needs to
adjust the antennas (represented as wedges), by specifying their directions, so that the resulting
(undirected) communication graph G is connected. (Two points p, q ∈ P are connected by an
edge in G , if and only if q lies in p ’s wedge and p lies in q ’s wedge.) We prove that if α = 60◦ ,
then it is always possible to adjust the wedges so that G is connected, and that α ≥ 60◦ is
sometimes necessary to achieve this. Our proof is constructive and yields an O(n log k) time
algorithm for adjusting the wedges, where k is the size of the convex hull of P .

Sometimes it is desirable that the communication graph G contain a Hamiltonian path.
By a result of Fekete and Woeginger [8], if α = 90◦ , then it is always possible to adjust the
wedges so that G contains a Hamiltonian path. We give an alternative proof to this, which is
interesting, since it produces paths of a different nature than those produced by the construction
of Fekete and Woeginger. We also show that for any n and ε > 0 , there exist sets of points
such that G cannot contain a Hamiltonian path if α = 90◦ − ε .
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1 Introduction

Most wireless networks use low-gain omni-directional antennas. Such antennas radiate power in
all directions. In contrast, high-gain directional antennas radiate more power in a particular di-
rection. The coverage area of a directional antenna is often modeled by a wedge, whose direction
(and sometimes also angle) can be adjusted. Directional antennas enable energy conservation and
interference reduction, which increases the network’s efficiency, e.g., by increased throughput and
reduced congestion. As in any network, the question of connectivity is fundamental. In wireless
networks with directional antennas, we say that two stations u and v can (directly) communicate
with each other if and only if u lies in the wedge defined by the antenna at v , and v lies in the
wedge defined by the antenna at u (see Section 1.1 for a formal definition).

In this work we are interested in building a wireless network, using directional antennas, such
that the resulting network is connected, i.e., any two stations can communicate with each other
(possibly via other stations). Clearly this can be done using omni-directional antennas (which can
be viewed as the extreme case of directional antennas). Therefore, the problem that arises is what
is the smallest value α , for which a connected network with directional antennas of α degrees can
be built. We prove (in Section 2) that for any set of n points in the plane, a connected network can
be built with antennas of 60 degrees. Furthermore, we give an efficient O(n log k) -time algorithm
for directing these antennas, so that the resulting network is connected, where k is the size of the
convex hull of the underlying set of points. This result is complemented by the (simple) observation
that there exist sets of n points, for which one cannot build a connected network with antennas of
less than 60 degrees, regardless of how one directs them. To the best of our knowledge this is the
first work that deals with questions of connectivity in the present model, which we believe is the
natural one (see Section 1.2). The results of this work are significant both from the combinatorial
and computational geometric perspective, and from the point of view of designing wireless networks.

We also study a related (secondary) problem, in which one has to direct the antennas, so
that the resulting communication graph contains a Hamiltonian path. By a result of Fekete and
Woeginger [8], this is always possible with antennas of 90 degrees, since, as they show, for any
set of n points in the plane, one can draw a (not necessarily simple) polygonal line, whose set
of vertices is the given set of points, such that the (smaller) angle at each internal vertex is less
than 90◦ . We present (in Section 3) an alternative proof of this statement, which is interesting,
since it produces paths of a different nature than those produced by the construction of Fekete
and Woeginger. The paths produced by our construction tend to have shorter edges and fewer self
crossings. We also show that for any ε > 0 , there exists a set of n points, such that any polygonal
line through the points must make a turn of angle greater than 90◦ − ε .

1.1 Model

We consider a set P of points in the Euclidean plane, each point represents a communication station.
Given an angle α , one can place at each node v ∈ P a wedge of angle α , centered at v . We say
that u sees v if u lies in the the wedge centered at v . The communication graph is an undirected
graph that consists of the node set P and the set of edges E = {(u, v) |u sees v and v sees u} .
One seeks to build connected communication graphs with, sometimes, additional properties.
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1.2 Related work

Several previous papers deal with routing and topology control issues in networks of transceivers
equipped with directional antennas, e.g., [15, 16]. These papers consider predominantly ad-hoc
networks, where energy efficiency is an important issue. Several papers address connectivity and
energy efficiency in ad-hoc networks when the network is built using omni-directional antennas,
e.g., [4, 6, 11, 13]. To the best of our knowledge, only Caragiannis et al. [5] and van Nijnatten [14]
address the problem of connectivity (and energy efficiency) in the case of directional antennas.
However, the model used in [5] (as well as in [12, 14]) differs from ours, since it allows station v
to transmit to station u if and only if u lies in the wedge of v . Thus Caragiannis et al. consider
a directed communication graph and the strong connectivity property. We believe that our model
is more natural in that it models the fact that two stations need to hear each other in order to
communicate directly (e.g., to send a message and receive an acknowledgement).

The Hamiltonian path problem that we (and previously Fekete and Woeginger [8]) study, is the
“complement” of a problem posed by Fekete and Woeginger [8] and recently studied by Bárány et
al. [1]. In this latter problem, one has to draw a polygonal line through a given set of points in the
plane, such that the (smaller) angle at each internal vertex is at least some constant θ (independent
of the given set). Bárány et al. proved that this can always be done for θ = 20◦ .

2 60-degree directional antennas

Let P be a set of points in the plane. In this section, we prove that one can place, at each point
p ∈ P , a single 60-degree directional antenna, such that the resulting communication graph is
connected. Our proof consists of two stages. In the first stage we place the antennas, such that
the resulting communication graph might still consist of several connected components, and in the
second stage, we adjust the initial placement, if necessary, to achieve a connected graph.

n − 1

60

60 60

Figure 1: For any α < 60◦ , it is impossible to obtain a connected communication graph for the n
points above with α -degree directional antennas.

Before proving this theorem, observe that 60 degrees is the best one can hope for, since there
exist sets of points for which it is impossible to obtain a connected communication graph using
α -degree directional antennas, for α < 60◦ ; see Figure 1 for an example.
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2.1 Stage I

For each p ∈ P , let f(p) denote the farthest point from p among the points in P . For each
p ∈ P , let Fp = {q ∈ P | f(q) = p} . In this stage, we construct an initial communication graph,
by placing, at each p ∈ P , a 60-degree antenna, such that all points in {f(p)}∪Fp are covered by
it. We next prove that this is possible.

pf(p)

bisector(p, f(p))

pa

pb

pf(p)

pa

pb

l = bisector(pa, p)

z

(a) (b)

c

Figure 2: (a) Fp is contained in the grey region. (b) ∠papz = 60◦ .

Let p ∈ P . W.l.o.g. we draw f(p) on the horizontal line through p and to the left of p ;
see Figure 2(a). Since for each q ∈ Fp (i) d(q, p) ≥ d(q, f(p)) , where d(a, b) is the Euclidean
distance between points a and b , and (ii) d(p, q) ≤ d(p, f(p)) , we conclude that Fp is contained
in the region indicated in Figure 2(a). Let pa be the point in Fp below pf(p) , for which the
angle ∠papf(p) is maximal. Similarly, let pb be the point in Fp above pf(p) , for which the angle
∠f(p)ppb is maximal. If there is no point in Fp below (resp. above) pf(p) , then set pa = f(p)
(resp. pb = f(p) ).

Lemma 2.1. The angle ∠pappb is not greater than 60 degrees.

Proof. Assume, w.l.o.g., that d(pa, p) ≥ d(pb, p) . We show that pb lies in the 60-degree wedge at
p whose left side contains ppa ; see Figure 2(b). Let l be the bisector of pa and p . Then pb lies
to the left of l . Now, draw the circle c of radius d(pa, p) centered at p . By our assumption pb
is in the disk bounded by c . Let z be the intersection point between c and l (above ppa ). The
angle ∠papz is of 60 degrees and pb lies in it; hence, ∠pappb ≤ 60◦ .

2.2 Stage II

Consider the communication graph obtained in the first stage, and let C1, . . . , Ck be its connected
components. If k = 1, then we are done. Assume therefore that k ≥ 2 . For i = 1, . . . , k ,
let ei = (ui, vi) be the longest edge in Ci , and set ri = d(ui, vi) . Notice that f(ui) = vi and
f(vi) = ui (since, if, e.g., f(ui) ̸= vi , then we would have the edge (ui, f(ui)) which is longer than
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ei ). We say that ei is the representative of component Ci . Let lune(ui, vi) denote the region
Dui(ri) ∩Dvi(ri) , where Dp(r) is the disk centered at p of radius r . Then P ⊆ lune(ui, vi) , for
i = 1, . . . , k .

Claim 2.2. Let C,C ′ be two connected components (of the communication graph obtained in the
first stage), and let e = (x, y) and e′ = (u, v) be their representative edges. Then e and e′ cross
each other.

Proof. Assume, e.g., that u lies in the upper half of lune(x, y) . If v also lies in the upper half
of lune(x, y) , then at least one of the four distances d(u, x), d(u, y), d(v, x), d(v, y) is greater than
d(u, v) . But, this is impossible, since f(u) = v and f(v) = u .

An angle α is considered good if α ≤ 60◦ . Let C,C ′ be two connected components and consider
their representative edges e = (x, y) and e′ = (u, v) . Assume, e.g., that u lies above e and that
v lies below e . Consider the quadrilateral x, v, y, u ; see Figure 3. The edges e and e′ divide the
quadrilateral into four triangles. The next lemma states that at least one of these triangles is good,
in the sense that both its angles opposite e and e′ are good.

α1

α2

α3

α4

β3

β2

β1

β4o xy

u

v

Figure 3: At least one of the triangles is good.

Lemma 2.3. Consider Figure 3, and let o denote the intersection point between e and e′ . Then,
at least one of the four triangles sharing o as a corner is good.

Proof. Assume that all four triangles are bad. Consider the triangle ∆uxo and assume, e.g., that
∠oux (marked as α1 in Figure 3) is bad. Then ∠ovx (marked as β1 ) is necessarily good. To
see this consider the triangle ∆uxv . Since f(v) = u , the angle opposite the edge uv is greater
than α1 (which is assumed to be bad), therefore β1 must be good. Now, since β1 is good, α2

must be bad (otherwise, we are done). This implies that β2 is good, etc. Eventually, we get that
α1, α2, α3, α4 are bad and β1, β2, β3, β4 are good.

Next, we show that this is impossible. Since α1 > β4 , we have |ox| > |ou| . Similarly, we have
|ou| > |oy| , |oy| > |ov| , and |ov| > |ox| . Writing the four inequalities as a chain of inequalities,
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we get that |ox| > |ox| , which is of course impossible. We conclude that there exists a good
triangle.

We are ready to show how to readjust the wedges at the points in P in order to obtain a
single connected component. Notice that P ⊆ lune(x, y) ∩ lune(u, v) (since, as mentioned above,
P ⊆ lune(ui, vi) , for each connected component Ci ). Set D = lune(x, y) ∩ lune(u, v) .

By Lemma 2.3, at least one of the four triangles formed by x, v, y, u is good. Assume, w.l.o.g.
that the upper right triangle is good, i.e., ∠uxy ≤ 60◦ and ∠xuv ≤ 60◦ . Then, at least one of the
two angles ∠uvy and ∠xyv is not greater than 60◦ (since ∠voy = ∠uox ≥ 60◦ ). Assume, w.l.o.g.
that ∠uvy ≤ 60◦ .

Wv

Wx

Wu

Wy

xy

u

v

D

o

Zux

Zvy

Figure 4: Initial placement of wedges Wu,Wx,Wv,Wy .

Consider the following four 60-degree wedges; see Figure 4. Wedge Wu with apex u and x
on its left border (when looking from u into the wedge). By assumption Wu covers v . Wedge
Wx with apex x and u on its right border. By assumption Wx covers y . Wedge Wv with
apex v and y on its left border. By assumption Wv covers u . Wedge Wy with apex y and v
on its right border. (Wy covers x if and only if ∠xyv ≤ 60◦ .) Notice that the communication
graph induced by x, y, u, v with wedges Wx,Wy,Wu,Wv is connected, since it includes the edges
(u, v), (u, x), (v, y) . Thus, if P is contained in the union of these four wedges, then we are done,
since any point in P \ {x, y, u, v} can transmit to an apex of a wedge in which it lies.

Assume therefore that there exists at least one point that is not covered by the union of the
wedges Wx,Wy,Wu,Wv , and let p be such a point. Let Rux, Ruy, Rvx, Rvy denote the wedges
corresponding to the angles ∠uox,∠uoy,∠vox,∠voy , respectively. Then, p cannot lie in wedge
Ruy or in wedge Rvx . (Notice that D ∩ Ruy ⊆ Wx and D ∩ Rvx ⊆ Wu .) Thus, p is either
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between the wedges Wx,Wu (and in the wedge Rvy ), or p is between the wedges Wy,Wv (and in
the wedge Rux ). (Notice that although the intersection point between wedges Wy,Wv might lie
in wedge Rvx , any point between these wedges and in wedge Rvx is already covered by Wu .) Let
Zux ⊂ P be the subset of points of P that are not covered and lie between Wx,Wu (and in Rvy ),
and let Zvy ⊂ P be the subset of points of P that are not covered and lie between Wy,Wv (and
in Rux ); see Figure 4. We distinguish between two cases.

Case 1: ∠xyv ≤ 60◦ .
In this case, the lower left triangle is also good, and the wedge Wy covers x . Let z be a point
that is not covered by the union of the four wedges Wx,Wy,Wu,Wv . W.l.o.g., assume z belongs
to Zvy . Consider triangle ∆yzv . In ∆yzv the angle ∠yzv < 60◦ (since, the other two angles in
this triangle are greater than 60◦ , otherwise z would be covered by Wy ∪Wv ). Thus, a 60-degree
wedge with apex z can cover all the points in Zux , including y and v (since D∩Rvy is contained
in the wedge corresponding to ∠yzv ). We now claim that at least one of the two angles ∠xyz
and ∠uvz is not greater than 60◦ . Assume this is true (see Lemma 2.5 below), then the following
setting of 60-degree wedges consists of a solution to our problem. Wedge Wu with apex u and x
on its left border. Wedge Wx with apex x and u on its right border. Wedge W ∗

v with apex v
and u on its left border. Wedge W ∗

y with apex y and x on its right border. Wedge Wz with
apex z and v on its left border.

Claim 2.4. P is contained in the union of the five wedges Wx,W
∗
y ,Wu,W

∗
v ,Wz .

Proof. First notice that the communication graph induced by x, y, u, v, z with wedges Wx ,W
∗
y ,Wu ,

W ∗
v ,Wz is connected. (By Lemma 2.5, at least one of the edges (y, z) and (v, z) is present.) Now

let p ∈ P \ {x, y, u, v, z} . Then, if p lies in the wedge Rvy , then it is covered by Wz . If p lies in
the wedge Rvx , then it is covered by Wu . If p lies in the wedge Ruy , then it is covered by Wx .
Finally, if p lies in the wedge Rux , then we distinguish between two subcases. If p ̸∈ Zvy , then it
is clearly covered by both Wx and Wu , and if p ∈ Zvy , then we may apply Lemma 2.5 (replacing
z by p ) and conclude that p is covered either by W ∗

y or by W ∗
v .

Lemma 2.5. At least one of the angles ∠xyz and ∠uvz is not greater than 60 degrees.

Proof. First notice that x, y, u, v are vertices of the convex hull of P . (This is true, since for any
p ∈ P , the point f(p) is a vertex of CH(P) .) Assume, w.l.o.g., that |uv| ≥ |xy| . If ∠xyz ≤ 60◦ ,
then we are done. Otherwise, consider the upper half of lune(x, y) and draw the equilateral
triangle xyoxy , where oxy is the top point of the upper lune; see Figure 5. z necessarily lies in
the left shoulder of the upper lune (i.e., in the left part of the region obtained by subtracting the
equilateral triangle from the upper lune). Since z lies D ∩ Rux , we know that u must also lie in
the left shoulder of the upper lune, to the left of yz .

Now consider the right half of lune(u, v) and its corresponding equilateral triangle uvouv . We
have |uouv| = |uv| ≥ |xy| = |yoxy| . Therefore, ouv lies outside the left shoulder of lune(x, y) to
the right of yoxy (since v is below xy ). This implies that the left shoulder of lune(x, y) and the
right shoulder of lune(u, v) are disjoint. Thus, z cannot lie in the right shoulder of lune(u, v)
and therefore ∠uvz ≤ 60◦ (since ∠uvz > 60◦ implies that z must lie in the right shoulder of
lune(u, v) ).
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z
u

xy

oxy

ouv

v

Figure 5: Proof of Lemma 2.5. The left shoulder of (the upper half of) lune(x, y) and the right
shoulder of (the right half of) lune(u, v) are shown in grey.

Case 2: ∠xyv > 60◦ .
We distinguish between two subcases. If Zvy ̸= ∅ , then consider Case 2.1; otherwise consider
Case 2.2.

Case 2.1: Zvy ̸= ∅ .
Let z ∈ Zvy , and consider triangle ∆yzv . As above, in ∆yzv the angle ∠yzv ≤ 60◦ . Thus, a
60-degree wedge with apex z can cover all points in Zux , including y and v . Moreover, observe
that ∠xyz ≤ 60◦ . Indeed, consider the triangle ∆yzv . In this triangle, the angle at v is at least
60◦ (since z is not in Wv ), and so is ∠xyv (by assumption). Therefore, the sum of the angles
∠yzv and ∠xyz is at most 60◦ , and, in particular, ∠xyz ≤ 60◦ . The following placement of
60-degree wedges covers P . Wedge Wu with apex u and x on its left border. Wedge Wx with
apex x and u on its right border. Wedge Wv with apex v and y on its left border. Wedge W ∗

y

with apex y and x on its right border. Wedge Wz with apex z and v on its left border.

Claim 2.6. P is contained in the union of the five wedges Wx,W
∗
y ,Wu,Wv,Wz .

Proof. First notice that the communication graph induced by x, y, u, v, z with wedges Wx ,W
∗
y ,Wu ,

Wv ,Wz is connected. (In particular, it includes the edge (y, z) .) Now let p ∈ P \ {x, y, u, v, z} .
If p lies in the wedge Rux and p ̸∈ Zvy , then it is covered by Wx and Wu , if p lies in ∆uox ,
and by Wv , otherwise. If p lies in the wedge Rux and p ∈ Zvy , then it is covered by W ∗

y since
∠xyp ≤ 60◦ (replacing z by p in the argument above). If p lies in the wedge Ruy , then it is
covered by Wv . If p lies in the wedge Rvx , then it is covered by Wu . If p lies in the wedge Rvy ,
then it is covered by Wz .

Case 2.2: Zvy = ∅ .
The following placement of 60-degree wedges covers P . Wedge Wu with apex u and x on its left
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border. Wedge Wx with apex x and u on its right border. Wedge Wv with apex v and y on its
left border. Wedge W ∗

y with apex y that has v on its left border.

Claim 2.7. P is contained in the union of the four wedges Wx,W
∗
y ,Wu,Wv .

Proof. First notice that the communication graph induced by x, y, u, v with wedges Wx,W
∗
y ,Wu,Wv

is connected. Also notice that Zvy remains empty, since we readjusted only the wedge at y . Now
let p ∈ P \{x, y, u, v} . If p lies in the wedge Rvy , then it is covered by either Wv or by W ∗

y , since
the ∠xyp cannot exceed 90◦ . (Recall that we are assuming ∠xyv > 60◦ .)

The following theorem summarizes the main result of this section.

Theorem 2.8. Given a set P of n points in the plane, one can position a 60-degree wedge at each
of the points in P , so that the resulting communication graph is connected. This can be done in
O(n log k) time, where k is the number of vertices of CH(P) .

Proof. It remains to establish the upper bound on the running time. It is easy to see that for each
p ∈ P , the point f(p) is a vertex of CH(P) . Thus, we first compute CH(P) in O(n log k) time,
where k is the number of vertices of CH(P) (see [7,10]). Next, we compute the farthest-neighbor
Voronoi diagram of the set of vertices of CH(P) and preprocess it for efficient (O(log k) -time)
point location queries in O(k log k) time (see [2]).

Consider the graph G in which there is an edge between p ∈ P and q ∈ P if and only
if q = f(p) or p = f(q) . Notice that the communication graph obtained in Stage I contains
G . (This follows from Lemma 2.1.) One can construct G , in O(n log k) time, by performing n
point location queries in the farthest-neighbor Voronoi diagram. We now determine whether G is
connected or not. Observe that G is connected if and only if the subgraph of G induced by the
k vertices of the convex hull is connected. This is true, since each point that is not a vertex of
CH(P) is connected by a single edge to a point that is a vertex of CH(P) , and since the edge
(p, q) is not in G , if both p and q are not vertices of CH(P) . Thus, one can determine whether
G is connected in O(k log k) time.

If G is connected, compute the placement of antennas as described in Stage I in O(n log k)
time. If G consists of two or more connected components, compute the placement of antennas as
described in Stage II in O(n) time. Notice that in the latter case, it is possible that the graph
computed in Stage I is connected, but we still may apply Stage II; we obtain edges xy and uv as
required, by simply picking the longest edge of any two components of G , respectively.

3 Paths with no obtuse angles

Let P be a set of n points in the plane. In this section we prove that one can draw a (not
necessarily simple) polygonal path π whose set of vertices is P , such that the (smaller) angle at
each internal vertex of π is at most 90◦ . Thus, if we place at each vertex v of π a transceiver
equipped with a 90-degree directional antenna, and adjust the antenna so that v ’s two neighbors
(or only one if v is an extreme vertex) lie in the corresponding wedge, then π is a Hamiltonian
path in the resulting communication graph. As mentioned above, this statement has been proven
by Fekete and Woeginger [8]. We present an alternative construction that produces paths that tend
to have shorter edges and fewer self crossings; see Figure 6 for an extreme example, and remark at
the end of this section for a possible explanation.
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p2

(a) (b)

Figure 6: (a) The path obtained by the algorithm of Fekete and Woeginger, starting at p1 . (b)
The path obtained by Algorithm NoObtuse below.

a

x y

ε

90 − ε/2

Figure 7: Any polygonal line has an internal vertex with angle at least 90◦ − ε .
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We first show that for any n ≥ 4 and ε > 0 , there exists a set of n points, for which any
polygonal path has an internal vertex with angle greater than 90◦ − ε . Consider Figure 7. In this
figure, points x, a, y define an isosceles triangle, such that the angle near a is of size ε . It is easy to
see that any polygonal path through the points has an internal vertex with angle at least 90◦ − ε .

Algorithm NoObtuse below, computes a polygonal path with no obtuse angles for a given set
of points P . A polygonal path obtained by this algorithm is depicted in Figure 8.

NoObtuse(P)
1 Let p1 be the rightmost point in P
2 Let a be the next vertex of CH(P) when moving counterclockwise from p1
3 flag ← counterclockwise
4 for i← 1 to n− 2
5 b← NextPoint(pi, a,flag)
6 if ∠piab ≤ 90◦

7 pi+1 ← a
8 a← b
9 else
10 pi+1 ← b

11 flag← flag
12 P ← P \ {pi}
13 pn ← a
14 output π = p1p2 . . . pn

NextPoint(pi, a,flag)
Let ρ be a ray attached to a and continuing the directed segment pia
Let b be the first point encountered by ρ when rotating it around a
in the direction indicated by flag

return b

We now prove that the polygonal paths computed by the algorithm above have no obtuse angles.
First observe that at the beginning of the i ’th iteration, the segment pia is an edge of the convex
hull of the current set P , and the point b returned by NextPoint is the next vertex of the convex
hull, when moving in the direction from pi to a .

Lemma 3.1. Let π = p1p2 . . . pn be a polygonal path computed by the algorithm above. Then
∠pi−1pipi+1 ≤ 90◦ , for i = 2, . . . , n− 1 .

Proof. We prove that at the end of the i ’th iteration ∠pipi+1a ≤ 90◦ . This is clearly true for
the first iteration. Assume it is true for iteration i − 1 , that is, at the end of iteration i − 1 ,
∠pi−1pia ≤ 90◦ . Consider the i ’th iteration. At the beginning of this iteration b is found. Now, if
∠piab ≤ 90◦ , then we may add the edge pia = pipi+1 (since by our assumption 90◦ ≥ ∠pi−1pia =
∠pi−1pipi+1 ), and at the end of the iteration, ∠pipi+1a = ∠pipi+1b ≤ 90◦ . If, on the other hand,
∠piab > 90◦ , then we may add the edge pib = pipi+1 (since, by the observation just above the
lemma, ∠pi−1pipi+1 = ∠pi−1pib ≤ ∠pi−1pia ≤ 90◦ ). Moreover, since the angle ∠piab > 90◦ , the
angle ∠piba = ∠pipi+1a ≤ 90◦ .
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p1

p2

p3

p4

p5

p6

Figure 8: The polygonal line obtained by applying the algorithm to the 6 points above. In the first
call to NextPoint p5 is returned, in the second call p3 , then p4 , and finally p6 .

Theorem 3.2. Given a set P of n points in the plane, one can position a 90-degree wedge at each
of the points in P , so that the resulting communication graph contains a Hamiltonian path. This
can be done in O(n log n) time.

Proof. The time bound follows from the observation just above Lemma 3.1. At the very beginning,
we compute the convex hull of P in O(n log n) time (see [2]). Afterwards, whenever a point is
removed from P (i.e., immediately after line 12), we update the convex hull in O(log n) time,
using the dynamic convex hull algorithm of Brodal and Jacob [3] (or the semi-dynamic algorithm
of Hershberger and Suri [9]).

Remark. As mentioned above, the paths produced by Algorithm NoObtuse tend to have shorter
edges and fewer self crossings than the corresponding paths produced by the algorithm of Fekete
and Woeginger [8]. A possible explanation of this tendency is that while the latter algorithm is
based on repeatedly picking the farthest point among the remaining points, Algorithm NoObtuse
picks the next vertex of the convex hull of the remaining points, if possible.

4 Conclusions and open problems

In this work we adopt the non-directed graph model to address problems in the design of wireless
networks with directional antennas. This model is based on the approach that two stations need
to hear each other in order to (directly) communicate. We then address the problem of designing a
connected communication network for an arbitrary set of points in the plane, and the problem of
designing such a network which also contains a Hamiltonian path. For both problems we give tight
bounds on the angle required (for the directional antennas) to build the corresponding network for
any set of points. We further give efficient algorithms to build such networks. (As mentioned, a
completely different upper bound construction for the latter problem has been given by Fekete and
Woeginger [8].)

The problem of computing the minimum required angle to achieve connectivity (or connectivity
with a Hamiltonian path) for a given set of points is interesting and remains open. Also, for a given
set of points, the problem of computing the minimum required range r to achieve connectivity

12



using 60-degree antennas of range at most r is interesting. Finally, the problem of assigning both
an angle and a range to each of the points to achieve connectivity, while minimizing the total power
consumption (measured, e.g., as the sum of the areas of the n sectors) is intriguing. We leave these
optimization problems for future research.
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