
On the Additive Constant of the k-Server
Work Function Algorithm∗

Yuval Emek† Pierre Fraigniaud‡ Amos Korman§

Adi Rosén¶

Abstract

We consider the Work Function Algorithm for the k-server problem
[2, 4]. We show that if the Work Function Algorithm is c-competitive,
then it is also strictly (2c)-competitive. As a consequence of [4] this
also shows that the Work Function Algorithm is strictly (4k − 2)-
competitive.

∗A preliminary version of this paper appeared in the Proceedings of WAOA 2009, pp.
128–134.
†Microsoft Israel R&D Center, Herzelia, Israel and School of Electrical Engineering, Tel

Aviv University, Tel Aviv, Israel, yuvale@eng.tau.ac.il. This work was partially done
during this author’s visit at LIAFA, CNRS and University Paris Diderot, supported by
Action COST 295 DYNAMO. Also partially supported by the Israel Science Foundation,
grants 664/05 and 221/07.
‡CNRS and University Paris Diderot, France, pierre.fraigniaud@liafa.jussieu.fr.

Additional support from the ANR project ALADDIN, by the INRIA project GANG, and
by COST Action 295 DYNAMO.
§CNRS and University Paris Diderot, France, amos.korman@liafa.jussieu.fr. Ad-

ditional support from the ANR project ALADDIN, by the INRIA project GANG, and by
COST Action 295 DYNAMO.
¶CNRS and University of Paris 11, France, adiro@lri.fr. Research partially sup-

ported by ANR projects AlgoQP, QRAC, and ALADDIN.

1

1 Introduction

A (deterministic) online algorithm Alg (for a minimization problem) is said
to be c-competitive if for all finite request sequences ρ, it holds that Alg(ρ) ≤
c ·OPT (ρ) +β, where Alg(ρ) and OPT (ρ) are the costs incurred by Alg and
the optimal algorithm, respectively, on σ, and β is a constant independent
of ρ. When this condition holds for β = 0, then Alg is said to be strictly
c-competitive.

The k-server problem is one of the most extensively studied online prob-
lems (cf. [1]). To date, the best known competitive ratio for the k-server
problem on general metric spaces is 2k−1 [4], which is achieved by the Work
Function Algorithm [2]. A lower bound of k for any metric space with at least
k + 1 nodes is also known [5]. In this paper we are interested in the ques-
tion of the existence of strictly competitive online algorithms for the k-server
problem. The question whether online algorithms are strictly competitive,
and in particular if there is a strictly competitive k-server algorithm, is of
interest for two reasons. First, as a purely theoretical question. Second, at
times one attempts to build a competitive online algorithm by repeatedly
applying another online algorithm as a subroutine. In that case, if the online
algorithm applied as a subroutine is not strictly competitive, the resulting
online algorithm may not be competitive at all due to the growth of the ad-
ditive constant with the length of the request sequence. In the context of the
k-server Work Function Algorithm this idea, and the results of the present
paper, have already proved fruitful in at least one case [3].

In this paper we show that there exists a strictly competitive k-server
algorithm for general metric spaces. In fact, we show that if the Work Func-
tion Algorithm is c-competitive, then it is also strictly (2c)-competitive. As
a consequence of [4], we thus also show that the Work Function Algorithm
is strictly (4k − 2)-competitive.

2 Preliminaries

We first define the k-server problem. Let M = (V, δ) be a metric space.
We consider instances of the k-server problem on M, and when clear from
the context, omit the mention of the metric space. At any given time, the
k servers reside on a subset X ⊆ V , |X| = k, one server on each of the
points of X; the subset X is called a configuration. The distance between

2

two configurations X and Y , denoted by D(X, Y), is defined as the weight
of a minimum weight matching between X and Y . In every round, a new
request r ∈ V is presented and should be served by ensuring that a server
resides on the request r. The servers can move from node to node, and the
movement of a server from node x to node y incurs a cost of δ(x, y).

Fix some initial configuration A0 and some finite request sequence ρ. The
work function wρ(X) of the configuration X with respect to ρ is the optimal
cost of serving ρ starting in A0 and ending up in configuration X. The
collection of work function values wρ(·) = {(X,wρ(X)) | X ⊆ V, |X| = k} is
referred to as the work vector of ρ (and initial configuration A0).

A move of some server from node x to node y in round t is called forced if
a request was presented at y in round t. (An empty move, in case that x = y,
is also considered to be forced.) An algorithm for the k-server problem is
said to be lazy if it makes only forced moves. Given some configuration X,
an offline algorithm for the k-server problem is said to be X-lazy if in every
round other than the last round, it only makes forced moves, while in the last
round, it makes a forced move and it is also allowed to move servers to nodes
in X from nodes not in X. Since unforced moves can always be postponed, it
follows that wρ(X) can be realized by an X-lazy (offline) algorithm for every
choice of configuration X.

Given an initial configuration A0 and a request sequence ρ, we denote the
total cost incurred by an online algorithm Alg for serving ρ when it starts in
A0 by Alg(A0, ρ). The optimal cost for serving ρ starting in A0 is denoted by
Opt(A0, ρ) = minX{wρ(X)}. The optimal cost for serving ρ starting in A0

and ending in configuration X is denoted by Opt(A0, ρ,X) = wρ(X). (This
seemingly redundant notation is found useful in the sequel.) In the sequel
we also use the notation Opt(Y, ρ,X), with arbitrary configurations X and
Y , to denote the optimal cost for serving ρ starting in configuration Y and
ending in configuration X.

Consider some metric space M. In the context of the k-server problem,
an algorithm Alg is said to be c-competitive if for any initial configuration
A0, and any finite request sequence ρ, Alg(A0, ρ) ≤ c·Opt(A0, ρ)+β, where β
may depend on the initial configuration A0, but not on the request sequence
ρ. Alg is said to be strictly c-competitive if it is c-competitive with additive
constant β = 0, that is, if for any initial configuration A0 and any finite
request sequence ρ, Alg(A0, ρ) ≤ c · Opt(A0, ρ). As common in other works,
we assume that the online algorithm and the optimal algorithm have the
same initial configuration.

3

The k-server Work Function Algorithm (WFA) For completeness we
define the k-server Work Function Algorithm (WFA) [2, 4]. Given an initial
configuration A0, the work function wρ(X) is as defined above. Let ρi be
the request sequence composed of the first i requests, and let Xi be the
configuration of WFA after serving ρi, where X0 = A0 (and ρ0 = φ, where
φ denotes the empty request sequence). Let r be the (i + 1)’th request. If
r ∈ Xi WFA does not move any server. Otherwise WFA serves r using the
server at the point x ∈ Xi that satisfies

x = arg min
y∈Xi

{wρi
(Xi − y + r) + δ(y, r)} ,

where Xi − y + r is the configuration composed of the points of Xi, except
y, and the point r.

3 Strictly Competitive Analysis

In this section we prove the following theorem.

Theorem 1. If the Work Function Algorithm is c-competitive, then it is also
strictly (2c)-competitive.

In fact, we prove Theorem 1 for a (somewhat) larger class of k-server on-
line algorithms, that we refer to as robust algorithms (this class will be defined
soon). We say that an online algorithm for the k-server problem is request-
sequence-oblivious if for every initial configuration A0, request sequence ρ,
current configuration X, and request r, the action of that algorithm on r after
it served ρ (starting in A0) is fully determined by X, r, and the work vec-
tor wρ(·). In other words, a request-sequence-oblivious online algorithm can
replace the explicit knowledge of A0 and ρ with the knowledge of wρ(·). An
online algorithm is said to be robust if it is lazy, request-sequence-oblivious,
and its behavior does not change if one adds to all entries of the work vector
any given value d. We prove that if a robust algorithm is c-competitive, then
it is also strictly (2c)-competitive. Theorem 1 follows since the work function
algorithm is robust.

In what follows, we consider a robust online algorithm Alg and a lazy
optimal (offline) algorithm Opt for the k-server problem. (In some cases,
Opt will be assumed to be X-lazy for some configuration X. This will be
explicitly stated.) We also consider some underlying metricM = (V, δ) that

4

we do not explicitly specify. Suppose that Alg is c-competitive and given
the initial configuration A0, let β = β(A0) be the additive constant in the
performance guarantee.

Subsequently, we fix some arbitrary initial configuration A0 and request
sequence ρ. We will prove that Alg(A0, ρ) ≤ 2cOpt(A0, ρ). A key ingredient
in our proof is a designated request sequence σ referred to as the anchor of A0

and ρ. Let ` = min{δ(x, y) | x, y ∈ A0, x 6= y}. Given thatA0 = {x1, . . . , xk},
the anchor is defined to be

σ = (x1 · · · xk)m ,

where

m =

⌈
max

{
2kOpt(A0, ρ)

`
+ k2,

2cOpt(A0, ρ) + β(A0)

`

}⌉
+ 1 .

That is, the anchor consists of m cycles of requests presented at the nodes
of A0 in a round-robin fashion.

Informally, the idea behind our proof is as follows. We shall append σ
to ρ in order to ensure that both Alg and Opt return to the initial con-
figuration A0. This will allow us to analyze request sequences of the form
(ρσ)q as a concatenation of q separate executions on the request sequence ρσ,
thus preventing any possibility to “hide” an additive constant in the perfor-
mance guarantee of Alg(A0, ρ). Before we do this, we have to establish some
preliminary properties.

Proposition 2. For every initial configuration A0 and request sequence ρ,
we have Opt(A0, ρ, A0) ≤ 2 · Opt(A0, ρ).

Proof. Consider an execution η that (i) starts in configuration A0; (ii) serves
ρ optimally; and (iii) moves (optimally) to configuration A0 at the end of
round |ρ|. The cost of step (iii) cannot exceed that of step (ii) since we
can always retrace the moves of η in step (ii), and arrive back to the initial
configuration A0. The assertion follows since η is a candidate to realize
Opt(A0, ρ, A0).

Since no moves are needed in order to serve the anchor σ from configu-
ration A0, it follows that

Opt(A0, ρσ) ≤ Opt(A0, ρ, A0) ≤ 2 · Opt(A0, ρ) . (1)

Proposition 2 is also employed to establish the following lemma.

5

Lemma 3. Given some configuration X, consider an X-lazy execution η
that realizes Opt(A0, ρσ,X). Then η must be in configuration A0 at the end
of round t for some |ρ| ≤ t < |ρσ|.

Proof. Assume by way of contradiction that η’s configuration at the end of
round t differs from A0 for every |ρ| ≤ t < |ρσ|. The cost Opt(A0, ρσ,X)
paid by η is at most 2 · Opt(A0, ρ) + D(A0, X) as Proposition 2 guarantees
that this is an upper bound on the total cost paid by an execution that (i)
realizes Opt(A0, ρ, A0); (ii) stays in configuration A0 until (and including)
round |ρσ|; and (iii) moves (optimally) to configuration X.

Let Y be the configuration of η at the end of round |ρ|. We can rewrite
the total cost paid by η as Opt(A0, ρσ,X) = Opt(A0, ρ, Y) + Opt(Y, σ,X).
Clearly, the former term Opt(A0, ρ, Y) is not smaller than D(A0, Y) which
lower bounds the cost paid by any execution that starts in configuration A0

and ends in configuration Y . We will soon prove (under the assumption that
η’s configuration at the end of round t differs from A0 for every |ρ| ≤ t < |ρσ|)
that the latter term Opt(Y, σ,X) is (strictly) greater than 2 · Opt(A0, ρ) +
D(Y,X). Therefore D(A0, Y) + 2 · Opt(A0, ρ) + D(Y,X) < Opt(A0, ρ, Y) +
Opt(Y, σ,X) = Opt(A0, ρσ,X). The inequality Opt(A0, ρσ,X) ≤ 2·Opt(A0, ρ)+
D(A0, X) then implies that D(A0, X) > D(A0, Y) + D(Y,X), in contradic-
tion to the triangle inequality.

It remains to prove that Opt(Y, σ,X) > 2 · Opt(A0, ρ) + D(Y,X) (under
the assumption that η’s configuration at the end of round t differs from A0 for
every |ρ| ≤ t < |ρσ|). For that purpose, we consider the suffix ψ of η which
corresponds to the execution on the subsequence σ (ψ is an X-lazy execution
that realizes Opt(Y, σ,X)). Clearly, ψ must shift from configuration Y to
configuration X, paying cost of at least D(Y,X). Moreover, since ψ is X-
lazy, and by the assumption that ψ does not reside in configuration A0, it
follows that in each of the m cycles of which σ consists, at least one server
must move between two different nodes in A0 (To see this, recall that each
server’s move of the lazy execution ends up in a node of A0. On the other
hand, A0 is never the configuration of all k servers.).

We thus have that the k servers make at least m moves between two
different nodes in A0 when ψ serves the subsequence σ, hence there exists
some server s that makes at least m/k such moves as part of ψ. The total cost
paid by all other servers in ψ is bounded from below by their contribution to
D(Y,X). As there are k nodes in A0, at most k out of the m/k moves made
by s arrive at a new node, i.e., a node which was not previously reached

6

by s in ψ. Therefore at least m/k − k moves of s cannot be charged on
its shift from Y to X. It follows that the cost paid by s in ψ is at least
(m/k − k)` plus the contribution of s to D(Y,X). By the definition of
m we have that (m/k − k)` > 2 · Opt(A0, ρ), and hence Opt(Y, σ,X) >
2 · Opt(A0, ρ) + D(Y,X).

Since the optimal algorithm Opt is assumed to be lazy, Lemma 3 implies
the following corollary.

Corollary 4. If the optimal algorithm Opt serves a request sequence of the
form ρστ (for any choice of suffix τ) starting from the initial configuration
A0, then at the end of round |ρσ| it must be in configuration A0.

To continue the proof consider an arbitrary configuration X. We want
to prove that wρσ(X) ≥ wρσ(A0) + D(A0, X). To this end, assume by way
of contradiction that wρσ(X) < wρσ(A0) + D(A0, X). Fix w0 = wρσ(A0).
Lemma 3 guarantees that an X-lazy execution η that realizes wρσ(X) =
Opt(A0, ρσ,X) must be in configuration A0 at the end of some round |ρ| ≤
t < |ρσ|. Let wt be the cost paid by η up to the end of round t. The
cost paid by η in order to move from A0 to X is at least D(A0, X), hence
wρσ(X) ≥ wt + D(A0, X). Therefore wt < w0, which derives a contradiction,
since w0 can be realized by an execution that reaches A0 at the end of round
t, and stays in A0 until it completes serving σ without paying any additional
cost. As wρσ(X) ≤ wρσ(A0) + D(A0, X), we can establish the following
corollary.

Corollary 5. For every configuration X, we have wρσ(X) = wρσ(A0) +
D(A0, X).

Recall that we have fixed the initial configuration A0 and the request
sequence ρ, and that σ is their anchor. We now turn to analyze the request
sequence χ = (ρσ)q, where q is a sufficiently large integer that will be de-
termined later. We will show that Opt(A0, χ) = q · Opt(A0, ρσ) and that
Alg(A0, χ) = q · Alg(A0, ρσ).

Corollary 4 guarantees that the optimal algorithm Opt, when starting at
A0 and serving χ, is in the initial configuration A0 at the end of round |ρσ|.
By induction on i, it follows that Opt is in A0 at the end of round i · |ρσ| for
every 1 ≤ i ≤ q. Therefore the total cost paid by Opt on χ is merely

Opt(A0, χ) = q · Opt(A0, ρσ) . (2)

7

We now turn to consider Alg. We first show that Alg, when invoked on the
request sequence ρσ from initial configuration A0, ends up in A0. Suppose by
way of contradiction that this is not the case. Since Alg is lazy, we conclude
that Alg is not in configuration A0 at the end of round t for any |ρ| ≤ t < |ρσ|.
Therefore, in each of the m cycles of σ, Alg moves at least once between two
different nodes in A0, paying cost of at least `. By the definition of m (the
number of cycles), this sums up to Alg(A0, ρσ) ≥ m` > 2cOpt(A0, ρ)+β(A0).
By inequality (1), we conclude that Alg(A0, ρσ) > cOpt(A0, ρσ) + β(A0),
in contradiction to the performance guarantee of Alg. It follows that Alg

returns to the initial configuration A0 after serving the request sequence ρσ.
Consider two request sequences τ and τ ′. We say that the work vector

wτ (·) is d-equivalent to the work vector wτ ′(·), where d is some real, if wτ (X)−
wτ ′(X) = d for every X ⊆ V , |X| = k. It is easy to verify that if wτ (·) is
d-equivalent to wτ ′(·), then wτr(·) is d-equivalent to wτ ′r(·) for any choice
of request r ∈ V (this follows from the inductive definition of the work
function. See, e.g., [1].) Corollary 5 guarantees that the work vector wρσ(·)
is d-equivalent to the work vector wφ(·), for d = wρσ(A0), where φ denotes
the empty request sequence. By induction on j, we have that for every prefix
π of ρσ and for every 1 ≤ i < q such that |(ρσ)iπ| = j, the work vector
w(ρσ)iπ(·) is d-equivalent to the work vector wπ(·) for some real d. Therefore
the behavior of the robust online algorithm Alg on χ is merely a repetition
(q times) of its behavior on ρσ and

Alg(A0, χ) = q · Alg(A0, ρσ) . (3)

We are now ready to establish the following inequality:

Alg(A0, ρ) ≤ Alg(A0, ρσ)

=
Alg(A0, χ)

q
(4)

≤ cOpt(A0, χ) + β(A0)

q
(5)

=
cqOpt(A0, ρσ) + β(A0)

q
(6)

≤ 2cqOpt(A0, ρ) + β(A0)

q
(7)

= 2cOpt(A0, ρ) +
β(A0)

q
,

8

where equality (4) follows by equality (3), inequality (5) follows by the
performance guarantee of Alg, equality (6) follows by equality (2), and
inequality (7) follows by inequality (1). For any real ε > 0, we can fix
q = dβ(A0)/εe + 1 and conclude that Alg(A0, ρ) < 2cOpt(A0, ρ) + ε. Theo-
rem 1 follows.

As the Work Function Algorithm is known to be (2k−1)-competitive [4],
we also get the following corollary.

Corollary 6. The Work Function Algorithm is strictly (4k−2)-competitive.

Acknowledgments We thank Elias Koutsoupias for useful discussions.

References

[1] A. Borodin and R. El-Yaniv, Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[2] M. Chrobak and L.L. Larmore. The server problem and on-line games. In
On-line algorithms: Proc. of a DIMACS Workshop. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 7, pages
11–64, 1991.

[3] Y.Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation
with advice. In Proc. of the 36th International Colloquium on Automata,
Languages and Programming (ICALP), pp. 427–438, 2009.

[4] E. Koutsoupias and C.H. Papadimitriou. On the k-server conjecture. J.
ACM, 42(5):971–983, 1995.

[5] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11:208–230, 1990.

9

