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We consider the problem of sampling from a distribution on graphs, specifically when the distribution is

defined by an evolving graph model, and consider the time, space and randomness complexities of such

samplers.

In the standard approach, the whole graph is chosen randomly according to the randomized evolving

process, stored in full, and then queries on the sampled graph are answered by simply accessing the stored

graph. This may require prohibitive amounts of time, space and random bits, especially when only a small

number of queries are actually issued. Instead, we propose a setting where one generates parts of the sampled

graph on-the-fly, in response to queries, and therefore requires amounts of time, space, and random bits which

are a function of the actual number of queries. Yet, the responses to the queries correspond to a graph sampled

from the distribution in question.

Within this framework we focus on two random graph models: the Barabási-Albert Preferential Attachment

model (BA-graphs) (Science, 286(5439):509–512) (for the special case of out-degree 1) and the random recursive

tree model (Theory of Probability and Mathematical Statistics, (51):1–28). We give on-the-fly generation

algorithms for both models. With probability 1 − 1/poly(n), each and every query is answered in polylog(n)
time, and the increase in space and the number of random bits consumed by any single query are both

polylog(n), where n denotes the number of vertices in the graph.

Our work thus proposes a new approach for the access to huge graphs sampled from a given distribution,

and our results show that, although the BA random graph model is defined by a sequential process, efficient

random access to the graph’s nodes is possible. In addition to the conceptual contribution, efficient on-the-fly

generation of random graphs can serve as a tool for the efficient simulation of sublinear algorithms over large

BA-graphs, and the efficient estimation of their performance on such graphs.
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1 INTRODUCTION
Consider a Markov process in which a sequence {St }t of states, St ∈ S, evolves over time t ≥ 1.

Suppose there is a set P of predicates defined over the state space S. Namely, for every predicate

P ∈ P and state S ∈ S, the value of P(S) is well defined. A query is a pair (P , t) and the answer

to the query is P(St ). In the general case, answering a query (P , t) requires letting the Markov

process run for t steps until St is generated. In this paper we are interested in ways to reduce the

dependency, on t , of the computation time, the memory space, and the number of used random

bits, required to answer a query (P , t). We propose an approach to achieve that in the context of

huge random graphs, samples according to some given distribution.

We focus on the case of generative models for random graphs, and in particular, on the Barabási-

Albert Preferential Attachment model [3] with out-degree 1 (which we call BA-graphs), on the

equivalent linear evolving copying model of Kumar et al. [18], and on the random recursive tree

model [34]. The question we address is whether one can design a randomized on-the-fly graph

generator that answers adjacency list queries of BA-graphs (or random recursive trees), without

having to generate the complete graph. Such a generator outputs answers to adjacency list queries

as if it first selected the whole graph at random (according the appropriate distribution) and then

answered the queries based on the sampled graph.

We are interested in the following resources of a graph generator: (1) the number of random

bits consumed per query, (2) the running time per query, and (3) the increase in memory space per

query.

Our main result is a randomized on-the-fly graph generator for BA-graphs over n vertices that

answers adjacency list queries. The generated graph is sampled according to the distribution defined

for BA-graphs over n vertices, and the complexity upper bounds that we prove hold with probability

1−1/poly(n). That is, with probability 1−1/poly(n) each and every query is answered in polylog(n)
time, and the increase in space, and the number of random bits consumed during that query are

polylog(n). Our result refutes (definitely for polylog(n) queries) the recent statement of Kolda et

al. [17] that: “The majority of graph models add edges one at a time in a way that each random edge

influences the formation of future edges, making them inherently serial and therefore unscalable.

The classic example is Preferential Attachment, but there are a variety of related models...”

We remark that the entropy of the edges in BA-graphs is Θ(logn) per edge in the second half of

the graph [33]. Hence it is not possible to consume a sublogarithmic number of random bits per

query in the worst case if one wants to sample according to the BA-graph distribution. Similarly,

to ensure consistency (i.e., answer the same query twice in the same way) one must use Ω(logn)
space per query.

From a conceptual point of view, the main ingredient of our result are techniques to “invert” the

sequential process where each new vertex randomly selects its “parent” in the graph among the

previous vertices. Instead, vertices randomly select their “children” among the “future” vertices,

while maintaining the same probability distribution as if each child picked “in the future” its parent.

We apply these techniques in the related model of random recursive trees [34] (also used within the

evolving copying model [18]), and use them as a building block for our main result for BA-graphs.

We next define the various random graph models we refer to.

1.1 Random Graph Models
Let Vn ≜ {v1, . . . ,vn}. Let G = (Vn ,E) denote a directed graph on n nodes.

1
We refer to the

endpoints of a directed edge (u,v) as the head v and the tail u. Let deg(vi ,G) denote the degree of

1
Preferential attachment graphs are usually presented as undirected graphs. For convenience of discussion we orient each

edge from the high index vertex to the low index vertex, but the graphs we consider remain undirected graphs.
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the vertex vi in G (both incoming and outgoing edges). Similarly, let degin(vi ,G) and degout(vi ,G)
denote the in-degree and out-degree, respectively, of the vertex vi in G.

Preferential attachment [3]. We restrict our attention to the case in which each vertex is connected

to the previous vertices by a single edge (i.e.,m = 1 in the terminology of [3]).
2
We thus denote the

random process that generates a graph over Vn according to the preferential attachment model by

BAn . The random process BAn generates a sequence of n directed edges En ≜ {e1, . . . , en}, where
the tail of ei is vi , for every i ∈ {1, . . . ,n}. (We abuse notation and let BAn = (Vn ,En) also denote

the graph generated by the random process.) We refer to the head of ei as the parent of vi .
The process BAn draws the edges sequentially starting with the self-loop e1 = (v1,v1). Suppose

we have selected BAj−1, namely, we have drawn the edges e1, . . . , ej−1, for j > 1. The edge ej is

drawn such its head is node vi with probability
deg(vi ,BAj−1)

2(j−1)
.

Note that the out-degree of every vertex in (the directed graph representation of) BAn is exactly

one, with only one self-loop in v1. Hence BAn (without the self-loop) is an in-tree rooted at v1.

Evolving copying model [18]. Let Zn denote the evolving copying model with out-degree d = 1

and copy factor α = 1/2. As in the case of BAn , the process Zn selects the edges E ′n = {e
′
1
, . . . , e ′n}

one-by-one starting with a self-loop e ′
1
= (v1,v1). Given the graph Zn−1 = (Vn ,E

′
n), the next edge e

′
n

emanates from vn . The head of edge e
′
n is chosen as follows. Let bn ∈ {0, 1} be an unbiased random

bit. Let u(n) ∈ {1, . . . ,n − 1} be a uniformly distributed random variable (the random variables

b1, . . . ,bn and u(1), . . . ,u(n) are fully independent.) The head vi of e
′
n is determined as follows:

head(e ′n) ≜

{
u(n) if bn = 1

head(e ′u(n)) if bn = 0

. (1)

Random recursive tree model [34]. If we eliminate from the evolving copying model the bits bi
and define head(e ′n) ≜ u(n), we get a model where each new node n is connected to one of the

previous nodes, chosen uniformly at random. This is the extensively studied (random) recursive

tree model [34].

1.2 Results
Our main results are stated in the following theorems (which are informal versions of Theorem 19

and Lemma 16, respectively).

Theorem 1. (Informal) There exists an algorithm that provides query access to the adjacency-lists
of a graph G over n nodes, where n is a parameter and G is drawn according to the random process
BAn . With high probability, the complexities of executing each query are as follows.
(1) The increase, during that query, of the space used by our algorithm is O(log

3 n).
(2) The number of random bits used during that query is O(log

5 n).
(3) The time complexity of that query is O(log

6 n).

Theorem 2. (Informal) There exists an algorithm that provides query access to the adjacency-lists
of a graphG over n nodes, where n is a parameter andG is drawn according to the random process Zn .
With high probability, the complexities of executing each query are as follows.
(1) The increase, during that query, of the space used by our algorithm is O(log

2 n).
(2) The number of random bits used during that query is O(log

4 n).
(3) The time complexity of that query is O(log

5 n).
2
As mentioned-above, while the process generates an undirected graph, for ease of discussion we consider each edge as

directed from its higher-numbered adjacent node to its lower-numbered adjacent node.
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1.3 Related work
A linear time randomized algorithm for efficiently generating BA-graphs is given in Batagelj and

Brandes [4]. See also Kumar et al. [18] and Nobari et al. [27]. A parallel algorithm is given in Alam

et al. [1]. See also Yoo and Henderson [35]. An external memory algorithm was presented by Meyer

and Peneschuck [24].

Efficient generation of other graph models was also studied. Miller and Hagberg [25] introduced

a randomized algorithm that generates a graph with a given sequence of expected degrees (also

called the Chung and Lu model) with expected running time ofO(n +m), where n is the number of

vertices andm is the number of edges of the generated graph. Additional efficient random graph

generation algorithms for other graph models (e.g., Kronecker and the Stochastic block model) are

provided in Ramani, Eikmeier, and Gleich [30].

Goldreich, Goldwasser and Nussboim initiate the study of the generation of huge random

objects [15] while using a “small” amount of randomness. They provide an efficient stateless query

access to an object modeled as a function, when the object has a predetermined property, for

example graphs which are connected. They guarantee that these objects are indistinguishable from

random objects that have the same property. This refers to the setting where the size of the object

is exponential in the number of queries to the function modeling the object. In a followup paper by

Bogdanov and Wee [6] stateful implementations of huge random objects were considered. They

showed how to generate in an “on the fly” fashion a random Boolean function that supports XOR

queries over sub-cubes of the function’s domain hypercube. We note that our stateful generator

provides access to graphs which are random BA-graphs and not just indistinguishable from random

BA-graphs.

Mansour, Rubinstein, Vardi and Xie [22] consider local generation of bipartite graphs for local

simulation of Balls into Bins online algorithms. They assume that the balls arrive one by one and

that each ball picks d bins independently, and is then assigned to one of them. The local simulation

of the algorithm locally generates a bipartite graph. Mansour et al. show that with high probability

one needs to inspect only a small portion of the the bipartite graph in order to run the simulation

and hence a random seed of logarithmic size is sufficient.

Our work has inspired subsequent work in the setting that we propose here, i.e., on-the-fly

local generation of graphs according to a given distribution. In fact, subsequent to the initial

publication of the present work [11], Biswas, Rubinfeld, and Yodpinyanee [5] have devised local

graph generators for, most notably, the Erdös-Rényi model (with next-neighbor, and other, queries).

1.4 Applications
One reason for generating large BA-graphs is to simulate algorithms over them, or to experimentally

estimate some of their properties (cf. [9]). Such algorithms often access only small portions of the

graphs. In such instances, it is wasteful to generate the whole graph. An interesting example is

sublinear approximation algorithms [26, 28, 29, 36] which probe a constant number of neighbors.
3

In addition, local computation algorithms probe a small number of neighbors to provide answers to

optimization problems such as maximal independent sets and approximate maximum matchings [2,

12, 13, 19–23, 31, 32]. Support of adjacency list queries is especially useful for simulating (partial)

DFS and BFS over graphs.

3
Strictly speaking, sublinear approximation algorithms apply to constant degree graphs and BA-graphs are not constant

degree. However, thanks to the power-law distribution of BA-graphs, one can “omit” high degree vertices and maintain the

approximation. See also [31].
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1.5 Techniques
The main difficulty in providing the on-the-fly generator is in “inverting” the random choices of

the BA process. That is, we need to be able to randomly choose the next “child” of a given node x ,
although it will only “arrive in the future” and its choice of a parent in the BA-graph will depend

on what will have happened until it arrives (i.e., on the node degrees in the BA-graph when that

node arrives). One possibility to do so is to maintain, for any future node which does not yet have

a parent, how many potential parents it still has, and then go sequentially over the future nodes

and randomly decide if its parent will indeed be x . This is too costly because (1) we will need to go

sequentially over the nodes, and (2) it may be too costly in computation time to calculate what is

the probability that the parent of a node y that does not have yet a parent, will be node x (given

the random choices already done in response to previous queries).

To overcome this difficulty we define for any node, even if it has already a parent, its probability

to be a candidate to be a child of x . We show how these probabilities can be calculated efficiently

given the previous choices taken in response to previous queries, and show how, based on these

probabilities, we can define an efficient process to chose the next candidate. The candidate node
may however already have a parent, and thus cannot be a child of x . If this is the case we repeat the
process and choose another candidate, until we chose an eligible candidate which then is chosen to

be the actual next child of x . We show that with high probability this process terminates quickly and

finds an eligible candidate, so that with high probability we have an efficient process to find “into

the future” the next child of x . This is done while sampling exactly according to the distribution

defined by the BA-graphs process.

In addition to the above technique, which is arguably the crux of our result, we use a number

of data structures, based on known constructions, to be able to run the on-the-fly generator with

polylogarithmic time and space complexities. In the sequel we give, in addition to the formal

definitions of the algorithms, some supplementary intuitive explanations into our techniques.

2 PRELIMINARIES
The normalized degree distribution of G is a vector ∆(G) with n coordinates, one for each vertex in

G. The coordinate corresponding to vi is defined by

∆(G)i ≜
deg(vi ,G)

2 · |E |
.

Note that

∑n
i=1

∆(G)i = 1.

We also define the in-degree distribution ∆in(G) by

∆in(G)i ≜
degin(vi ,G)
|E |

.

In the sequel, when we say that an event occurs with high probability (or w.h.p) we mean that it

occurs with probability at least 1 − 1

nc , for some constant c > 0. We state the complexities of our

algorithm (and our subroutines) with the guarantee of high probability. Therefore, there is some

negligible probability that our algorithm will require more resources
4
.

For ease of presentation, define the algorithm making use of arrays of size n. However, in order

to give the desired upper bounds on the space complexity, we implement these arrays by means of

balanced search trees, where the keys are in {1, . . . ,n}. To access item i in the virtual array, key i
is searched in the tree and the value in that node is returned; if the key is not found, then nil is

4
We note that in any case the resources consumed by the algorithm can be bounded by the resources consumed by the

sequential standard algorithm since one can easily abort and implement a sequential algorithm in the unlikely event that

the on-the fly generator consumes too much resources.
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returned. Thus, the space used by the virtual arrays is the number of keys stored, and the time

complexity of our algorithms is multiplied by a factor of O(logn) compared to the time complexity

that it would have with a standard random-access implementation of the arrays. When we state

upper bounds on time, we take into account these O(logn) factors. As common, we analyze the

space complexity in terms of words of size O(logn).

3 QUERIES
Consider an undirected graph G = (Vn ,E), where Vn = {v1, . . . ,vn}. Slightly abusing notation, we

sometimes consider and denote nodevi as the integer number i and sowe have a natural order on the
nodes. The access to the graph is done by means of a user-query BA-next-neighbor : {1, . . . ,n} →
{1, . . . ,n+1}, which outputs entries of the adjacency list in increasing order (wheren+1 denotes “no

additional neighbor”). For example, consider the node 3 (namely the node that arrived third) whose

parent is 1 and its children are 7, 10 and 50.When the user executes the query BA-next-neighbor(3)
for the first time, 1 is returned. The next time the query BA-next-neighbor(3) is executed 7 is

returned, and then 10 and 50. After that, BA-next-neighbor(3) always returns n + 1 since 3 does

not have any additional neighbors. More formally, we number the queries according to the order

they are issued, and call this number the time of the query. Let q(t) be the node on which the query

at time t was issued, i.e, at time t the query BA-next-neighbor(q(t)) is issued by the user. For each
node j ∈ V and any time t , let lastt (j) be the largest numbered node which was previously returned

as the value of BA-next-neighbor(j), or 0 if no such query was issued before time t . That is,

lastt (j) = max{0,max

t ′<t
{BA-next-neighbor(q(t ′))|q(t ′) = j}} .

At time t the query BA-next-neighbor(j) returns arg mini>lastt (j){(i, j) ∈ E}, or n + 1 if no such i
exists. When the implementation of the query has access to a data structure holding the whole of

E, then the implementation of BA-next-neighbor is straightforward just by accessing this data

structure. Figure 1 illustrates a “traditional” randomized graph generation algorithm that generates

the whole graph, stores it, and then can answers queries by accessing the data structure that encodes

the whole generated graph.

4 ON-THE-FLY GRAPH GENERATORS
An on-the-fly graph generator is an algorithm that gives access to a graph by means of the

BA-next-neighbor query defined above, but itself does not have access to a data structure that

encodes the whole graph. Instead, in response to the queries issued by the user, the generator

modifies its internal data structure (a.k.a state), which is initially some empty (constant) state. The

generator must ensure however that its answers are consistent with some graph G. An on-the-fly

graph generator for a given distribution on a family of graphs (such as the family of Preferential

Attachment graphs on n nodes) must in addition ensure that it samples the graphs according to the

required distribution. That is, its answers to a sequence of queries must be distributed identically
to those returned when a graph was first sampled (according to the desired distribution), stored,

and then accessed (See Definition 20 and Theorem 21). Figure 2 illustrates an on-the-fly graph

generation algorithm as the one we build in the present paper.

We now relate the various models defined in Section 1.1. The following relation is crucial for our

implementation of the on-the-fly generator for BA-graphs.

Claim 3 ([1]). The random graphs BAn and Zn are identically distributed.

Proof. The proof is by induction on n. The basis (n = 1) is trivial. To prove the induction step,

assume that BAn−1 and Zn−1 are identically distributed. We need to prove that the next edges en
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user

memory

(graph)

Graph

Generator

random

bits

queryanswer

Fig. 1. A “traditional” sequential random graph generator

user

on-the-fly

Graph

Generator

random

bits

memory

(state)

queryanswer

Fig. 2. An on-the-fly random graph generator

and e ′n in the two processes are also identically distributed, given a graph G as the realization of

BAn−1 and Zn−1, respectively.

The head of en is chosen according to the degree distribution ∆(BAn−1) = ∆(G). Since the

out-degree of every vertex is one,

deg(vi ,BAn−1)

2(n − 1)
=

1

2

·

(
1

n − 1

+
degin(vi ,BAn−1)

n − 1

)
.

Thus, an equivalent way of choosing the head of en is as follows: (1) with probability 1/2, choose a

random vertex uniformly (this corresponds to the
1

2
· 1

n−1
term), and (2) with probability 1/2 toss a

∆in(BAn−1)-dice (this corresponds to the
1

2
·
degin(vi ,BAn−1)

n−1
term).

Hence, case (1) above corresponds to the case when bn = 1, in the process of Zn . To complete

the proof, we observe that, conditioned on the event that bn = 0, the choice of the head of e ′n in

Zn can be defined as choosing according to the in-degree distribution of the nodes in Zn−1 = G:
indeed, choosing according to the in-degree distribution ∆in(G) is identical to choosing a uniformly

distributed random edge inG and then taking its head. But, since the out-degrees of all the vertices

in Vn−1 are all the same (and equal one), this is equivalent to choosing a uniformly distributed

random node in Vn−1. □
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1 2 3 4 5 6 7 8 9 10

imm

11 . . .

imm

imm rec

rec

immimm

imm

Fig. 3. The pointers tree. The parent of node 5 is node 3 and the children of node 5 are nodes 7, 8, and 10

(since 10 has a recursive pointer to node 8). Node 11 is a child of node 3 since it has a recursive pointer to
node 5 (in particular, it is not a child of node 5).

We use the following claim in the sequel.

Claim 4 (cf. [14], Thm. 1 and Thm. 6.32 [10]). Let T be a rooted directed tree on n nodes denoted
1, . . . ,n, and where node 1 is the root of the tree. If the head of the edge emanating from node j > 1

is uniformly distributed among the nodes in [1, j − 1], then, with high probability, the following two
properties hold:

(1) The maximum in-degree of a node in the tree is O(logn).
(2) The height of the tree is O(logn).

Note that the claim still holds if we add to the tree a self loop on node 1.

5 THE POINTERS TREE
We now consider a graph inspired by the random recursive tree model [34] and the evolving

copying model [18]. Each vertex i has a variable u(i) that is uniformly distributed over [1, i − 1], and

can be viewed as a directed edge (or pointer) from i to u(i). We denote this random rooted directed

in-tree (namely, a tree such that all its edges point towards the root) by UT . Let u−1(j) denote the
set {i : u(i) = j}. We refer to the set u−1(i) as the u-children of i and to u(i) as the u-parent of i .

In conjunction with each pointer, we keep a flag indicating whether this pointer is to be used as

an imm (immediate) pointer, that is, whether it points to the head, or as a rec (recursive) pointer (as

defined in Equation 1). We thus use the directed pointer tree to represent a graph in the evolving

copying model (which is equivalent, when the flag of each pointer is equally distributed between

rec and imm, to the BA model). See Figure 3 for an illustrative example.

In this section we consider the subtask of giving access to a random UT , together with the flags

of each pointer. Ignoring the flags, this section thus gives an on-the-fly random access generator

for the extensively studied model of random recursive trees (cf. [34]).

We define the following queries.

• (i, f laд) ← parent(j): i is the parent of j in the tree, and f laд is the associated flag.

• i ← next-child-flag(j,k, f laд), where k ≥ j: i is the least numbered node i > k such that

the parent of i is j and the flag of that pointer is of type f laд. If no such node exists then i is
n + 1.

Given a query next-child-flag(j,k, ·), we assume that k is bounded above by the largest value

returned by next-child-flag(j, ·, ·) thus-far (and j if it is the first time next-child-flag(j, ·, ·)
is executed). Clearly, even under this assumption the neighbors of every node can be revealed

one by one by repeated calls to next-child-flag (by setting k to be the returned value of the

former execution of next-child-flag). In this case the output of the queries is the entries of the

adjacency list, in increasing order (where the entries with the wrong flag are filtered).
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The “ideal” way to implement next-child-flag is to go over all n nodes, and for each node j
(1) uniformly at random choose its parent in [1, j − 1], (2) uniformly at random chose the associated

flag in {imm, rec}. Then store the pointers and flags, and answer the queries by accessing this data

structure.

In this section we give an on-the-fly generator that answers the above queries. As explained in

more detail in the sequel, randomly selecting the parent of a node, to answer a parent query, is a

rather easy task (even if the generator already has a state). The challenge is in randomly selecting

the children of a node which corresponds to next-child queries. In this case we need to randomly

select (according to the appropriate distribution) the first child of j between {j+1, . . . , n} and then

the second child and so on. In what follows, we start with a naïve, non-efficient implementation

that illustrates the task to be done. Then we give our efficient implementation.

5.1 Notations
We say that j is exposed if u(j) , nil (initially all pointers u(j) are set to nil). We denote the set of

all exposed vertices by F . As a result of answering and processing next-child-flag and parent
queries, the on-the-fly generator commits to various decisions (e.g., prefixes of adjacency lists).

These commitments include edges but also non-edges (i.e., vertices that can no longer serve as u(j)
for a certain j). Therefore each query may change the state of the generator. Note that the answers

of the generator to queries depend on its state, thus, the queries parent and next-child-flag are

also a function of this state (which is not given as a parameter).

5.1.1 The front of a node. For every node i ∈ {1, . . . ,n − 1}, the generator saves the front of i ,
which is roughly speaking, a value k > i for which it holds that (1) u(k) = i; and (2) the generator

decided for every node j ∈ [i + 1,k − 1] whether u(j) = i or not. Formally, at any given time, front(i)
is a pointer to a node in [i + 1,n + 1] which has the following properties.

(1) Initially front(i) = nil. The first time front(i) , nil is after the first next-child-flag(i, ·, ·)
query is issued.

(2) If front(i) = nil, then for any node in j ∈ [i + 1,n] for which u(j) = nil it is possible that u(j)
will be set to i in the future.

(3) If front(i) = k then

(a) for any node in j ∈ [i + 1,k − 1] for which u(j) = nil it is not possible that u(j) will be set to
i in the future

(b) for any node in j ∈ [k + 1,n] for which u(j) = nil it is possible that u(j) will be set to i in
the future

5.1.2 The set of potential parents. We denote the set of vertices that can become u-parents of j at
any given time t , by Φ(j) and their number by φ(j) (for brevity, we omit t from the notation). The

formal definition is as follows.

Definition 5. At a given time t , and for any node j, let Φ(j) and φ(j) be defined as follows:

Φ(j) ≜ {i | i < j and (front(i) < j or front(i) = nil)}, and φ(j) = |Φ(j)| .

We note that from technical reasons that will become clear below, according to the definition,

Φ(j) is not necessarily empty even if u(j) is already determined. Moreover, counter intuitively, it

might be the case that u(j) < Φ(j).

5.2 A naïve implementation of next-child
We give a naïve implementation of a next-child query, with time complexity O(n), with the

purpose of illustrating the main properties of this query and in order to contrast it with the more
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naïve-next-child

1: procedure naïve-next-child(j, k )
2: x ← k + 1.

3: while x ≤ n do
4: if u(x ) = j then return (x )
5: else
6: if u(x ) = nil then
7: Flip a random bit c(x ) such that Pr[c(x ) = 1] = 1/φ(x ).
8: if c(x ) = 1 then
9: return (x )
10: end if
11: end if
12: end if
13: x ← x + 1

14: end while
15: return (n + 1)

16: end procedure

Fig. 4. pseudo code of naïve-next-child

1 2 3 4 5 6 7 8 9 10 10 + 1

front(8)

u(10)

front(5)

u(8)u(5)u(1) u(5)

front(5)

Fig. 5. The state of the generator. The state of the generator after performing a next-child(5) and a
parent(10) queries. After the first query, which returns 8, the parent of node 5 is determined (in order to
keep Invariant 6) and set to be node 3 and front(5) and the first child of node 5 are set to be 8. Consequently,
in order to keep Invariant 7 the next child of node 8 is also discovered and is set to 10 + 1 (it has no children).
After the second query, the parent of node 10 is set to be node 5. However, this does not change front(5) and
so, potentially, node 9 could also pick node 5 as its parent (or any other node in {1, . . . , 7}).

efficient implementation later. We do so in a simpler manner without looking into the “flag”. The

naïve implementation of next-child is listed in Figure 4. This implementation, and that of parent,
share an array of pointers u, both updating it. A query next-child(i,k) is processed by scanning

the vertices one-by-one starting from k + 1. If u(x) = i , then x is the next child. If u(x) is nil, then a

coin c(x) is flipped and u(x) = i is set when c(x) comes out 1; the probability that c(x) is 1 is 1/φ(x).
If c(x) = 0, we proceed to the next vertex. The loop ends when some c(x) is 1 or all vertices have

been exhausted. In the latter case the query returns n + 1.

The correctness of naïve-next-child, i.e., the fact that the graph is generated according to the

required probability distribution, is based on the observation that given that u(x) has not been
determined yet, all the vertices in Φ(x) are equally likely to serve as u(x). Note that the description
above does not explain how φ(x) is computed, as explained next, this is one of the main challenges

in designing our on-the-fly generator.
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5.3 The challenge in obtaining an efficient implementation of next-child
We first shortly discuss the challenges on the way to an efficient implementation of next-child.
Consider the simple special case where the only two queries issued are, for some j , a single parent(j)
query followed by a single next-child(j) query (to simplify this discussion we assume that the the

value of k is globally known). Consider the situation after the query parent(j). At this point, every
node x ∈ [j + 1,n] may be a u-child of j (namely, u(x) may be set to j). In particular, since front(i)
is initially nil for every i , it holds that φ(x) = x − 1 and Pr[u(x) = j] = 1/(x − 1). Let Px denote

the probability that node x is the first child of j. Then Px =
1

x−1
·
∏x−1

ℓ=j+1
(1 − 1

ℓ−1
) =

j−1

(x−1)(x−2)

and for Pn+1 (i.e., j has no child) Pn+1 =
j−1

n−1
. As explained in the sequel, each of the probabilities

P ′k =
∑k

x=j+1
Px can be calculated in O(1) time, therefore, this random choice can be done in

O(logn) time by choosing uniformly at random a number in [0, 1] and performing a binary search

on [j + 1,n + 1] to find which index it represents (see a more detailed and accurate statement of this

procedure below). However, in general, at the time of a certain next-child query, limitations may

exist, due to previous queries, on the possible consistent values of certain pointers u(x). There are
two types of limitations: (i) u(x) might have been already determined, or (ii) u(x) is still nil but the
option of u(x) = i has been excluded since front(i) > x . These limitations change the probabilities

Px and P ′x , rendering them more complicated and time-consuming to compute, thus rendering

the above-defined process not efficient (i.e., not doable in O(logn) time). In the rest of this section

we define and analyze a modified procedure that uses polylog(n) random bits, takes polylog(n)
time, and increases the space (that is used to store the state of the generator) by polylog(n). This
procedure will be at the heart of the efficient implementation of next-child.

5.4 The invariants regarding the state of the generator
In the implementation of the on-the-fly generator of the pointers tree we will maintain two

invariants that are described below. We will later discuss the cost (in running time and space) of

maintaining these invariants.

The purpose of these invariants is to obtain an efficient computation of the probabilities Px and

P ′x discussed in Subsection 5.3. Roughly speaking, if for every node x ∈ {1, . . . ,n − 1} it was the

case that φ(x + 1) − φ(x) = 1, then these probabilities were easy to calculate. However, since the

commitments of the generator impose changes on φ, this property can not hold for all the nodes.

The invariants ensure that the set of nodes for which this property does not hold are easy to identify

and for which the u-parent is already determined.

Invariant 6. For every node j, the first next-child-flag(j, ·, ·) query is always preceded by a
parent(j) query.

We will use this invariant to infer that front(j) , nil implies that u(j) , nil. (recall that if a
next-child-flag(j, ·, ·) query was not issued thus far then front(j) = nil). One can easily main-

tain this invariant by introducing a parent(j) query as the first step of the implementation of

the next-child-flag(j, ·, ·) query (for technical reasons we do that in a lower-level procedure

next-child.)

Invariant 7. For every vertex j, front(j) , nil implies that front(front(j)) , nil.

The second invariant is maintained by issuing an “internal” next-child(front(j), front(j)) query
whenever front(j) is updated. This is done recursively, the base of the recursion being node n + 1.

When analyzing the complexities of our algorithm we will take into account these recursive calls.

Let front−1(j) denote the vertex i such that front(i) = j , if such a vertex i exists; (note that there can
be at most one such node i , except for the case of j = n + 1); otherwise front−1(j) = nil. We get that

if front−1(j) , nil, then u(j) , nil. See Figure 5 for an illustrative example.
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We note that if at a given time we consider a node j such that u(j) = nil (i.e., its parent in the

pointers tree is not yet determined), then the set Φ(j) is the set of all the nodes that can still be the

parent of node j in the pointers tree. As mentioned above, the set Φ is however defined also for

nodes for which their parent is already determined.

We are now ready to define the set K which is, as we prove in the sequel, the set of nodes, i , for
which φ(i + 1) = φ(i). Moreover, we prove that if x < K then φ(i + 1) − φ(i) = 1. It is also the case

that for x ∈ K it holds that u(x) , nil, as desired

Definition 8. Let K denote the following set:

K ≜ {i : front(i) , nil and front−1(i) = nil} .

We shall prove the following lemma.

Lemma 9. For any x ∈ {1, . . . ,n − 1}:

φ(x + 1) − φ(x) =

{
0 if x ∈ K ,
1 if x < K

. (2)

Lemma 9 follows directly from the following more general claim.

Claim 10. For every x ∈ {1, . . . ,n − 1}:
(1) Φ(x) ⊆ Φ(x + 1) ⊆ Φ(x) ∪ {x , front−1(x)}.
(2) Φ(x + 1) = Φ(x) iff x ∈ K .
(3) φ(x + 1) − φ(x) ≤ 1.

Proof. We first observe that Item 1 follows directly from the definition of Φ and the properties

of front. The see this, we first note that the fact that Φ(x) ⊆ Φ(x + 1) follows from that fact that

for every i such that front(i) < x it clearly holds that front(i) < x + 1. On the other hand, there

might be only a single node, i , such that front(i) < x + 1 but front(i) ≥ x . This is possible only when
front(i) = x , which might be the case only for a single node, which is the u-parent of x . Finally,
x ∈ Φ(x + 1) if and only if front(x) = nil.

To prove Item 2, observe that by Item 1, Φ(x) = Φ(x +1), iff x < Φ(x +1) and front−1(x) < Φ(x +1).

As stated above, x ∈ Φ(x + 1) iff front(x) = nil. Similarly, front−1(x) < Φ(x + 1) iff front−1(x) = nil.
Finally, to prove Item 3 we need to show that it is not possible for both x and front−1(x) to belong

to Φ(x + 1). Indeed, if front−1(x) ∈ Φ(x + 1), then there exists a vertex i such that front(i) = x .
Invariant 7 implies that front(x) = front(front(i)) , nil. However, x ∈ Φ(x +1) implies front(x) = nil,
a contradiction. □

5.5 Description of the efficient implementation
We are now ready to describe the implementation of next-child-flag(j,k, f laд) and

next-child(j). The state of the generator is stored using the following data structures, of which

the implementation of next-child (and of parent) makes use of.

• An array of length n, u(j).
• An array of length n, f laд(j).
• An array of length n, front(j) (We also maintain an array front−1(i)with the natural definition).
• An array of n balanced search trees, called child(j), each holding the set of nodes i > j
such that u(i) = j . The operations we use on the search trees are insert and successor, where

insert(T , j) inserts the element j to the tree T and successor(T , j) returns the smallest

elements in T which is larger than j. For technical reasons all trees child(j) are initiated
with n + 1 ∈ child(j).
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• A number of additional data structures that are implicit in the listing, described and analyzed

in the sequel.

As seen in Figure 6, next-child-flag(j,k, f laд) is merely a loop of next-child-from(j,k),
and next-child-from(j,k) is essentially a call to next-child(j). The “real work” is done in the

implementation of next-child(j) that we describe now. Note that if j does not have children larger

than k , then next-child-from(j,k) returns n + 1.

If front(j) > k when next-child-from(j,k) is called, then the next child is already fixed and it

is just extracted from the data structures.

Otherwise, an interval I = [a,b] is defined, and it will contain the answer of next-child(j). Let
a = front(j) + 1 if front(j) , nil; and a = j + 1, if front(j) = nil. Let b = min{{ℓ > front(j) : u(ℓ) =
j} ∪ {n + 1}} if front(j) , nil; and b = min{{ℓ > j : u(ℓ) = j} ∪ {n + 1}}, if front(j) = nil Observe
that no vertex x ∈ F ∩ [a,b) can satisfy u(x) = j. Hence, the answer is in I \ (F \ {b}).

The next child can be sampled according to the desired distribution in a straightforward way by

going sequentially over the vertices in I \ (F \ {b}), and tossing for each vertex x a coin that has

probability 1/φ(x) to be 1, until indeed one of those coins comes out 1, or all vertices are exhausted

(in which case node b is taken as the next child). We denote by D(x), x ∈ I \ F , the probability that

x is chosen when the the above procedure is applied. This procedure, however, takes linear time.

In order to start building our efficient implementation for next-child we note that by the

definition of K , K ⊆ F , and we consider a process where we toss |[a,b) \ K | coins sequentially for

the vertices in [a,b) \ K . The probability that the coin for x ∈ [a,b) \ K is 1 is still 1/φ(x). We stop

as soon as 1 is encountered or on b if all coins are 0. The vertex on which we stop, denote it x , is
a candidate next u-child. If x ∈ F \ K \ {b}, then x cannot be a child of j (because it already has a

u-parent) so we proceed by repeating the same process recursively, but with the interval [x + 1,b]
instead of the interval [a,b]. We denote by D ′(x), x ∈ I \ F , the probability that x is chosen when

this procedure is applied.

5.5.1 Efficiently selecting a u-child candidate. We now build our efficient procedure that selects

the candidate, without sequentially going over the nodes. To this end, observe that the sequence

of probabilities of the coins tossed in the last-described process behaves “nicely”. Namely, the

probabilities 1/φ(x), for x ∈ [a,b) \K , form the harmonic sequence starting from 1/φ(a) and ending
in 1/(φ(a) + |[a,b) \ K | − 1). Indeed, Eq. (2) implies that if vertex i is the smallest vertex in I \ K ,
then φ(i) = φ(a) and an increment between φ(x) and φ(x + 1) occurs if and only if x < K . Let
s = |[a,b) \ K | and let Ph , 0 ≤ h ≤ s be the probability that the node of rank h in ([a,b) \ K) ∪ {b}
is chosen as candidate in the sequential procedure defined above. Since 1/φ(x) forms the harmonic

sequence for x ∈ [a,b) \ K , we can, given φ(a), calculate in O(1) time, for any 0 ≤ i ≤ s + 1, the

probability P ′i =
∑
q<i Pq (i.e., the probability that a node of some rank q, q < i , is chosen). Indeed,

for i = 0, Pi =
1

φ(a) ; for 0 < i < s , Pi =
1

φ(a)+i ·
∏i−1

ℓ=0

(
1 − 1

φ(a)+ℓ

)
=

φ(a)−1

(φ(a)+i−1)(φ(a)+i) ; and for i = s ,

Ps =
∏s−1

ℓ=0

(
1 − 1

φ(a)+ℓ

)
=

φ(a)−1

φ(a)+s−1
. Hence, for 0 ≤ i ≤ s , P ′i = 1 −

φ(a)−1

φ(a)+(i−1)
, and for i = s + 1,

P ′s+1
= 1. This allows us to simulate one iteration (i.e., choosing the next candidate next u-child)

by choosing uniformly at random a single number in [0, 1], and then performing a binary search

over 0 to s to decide what rank h this number “represents”. After the rank h ∈ [0, s] is selected, h is

then mapped to the vertex of rank h in ([a,b) \ K) ∪ {b}, denote it x , and this is the candidate next
u-child. As before, if x ∈ F \ K \ {b}, then x cannot be a child of j so we ignore it and proceed in

the same way, this time with the interval [x + 1,b]. We denote by D̂(x), x ∈ I \ F the probability

that x is chosen when this third procedure is applied. See Figure 7 for a formal definition of this

procedure and that of next-child.
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Observe that this procedure takes O(log s) time (see Section 5.7 for a formal statement of the

time and randomness complexities). We note that we cannot perform this selection procedure in

the same time complexity for the set [a,b) \ F , because we do not have a way to calculate each and

every probability P ′i , i ∈ [a,b) \ F , in O(1) time, even if φ(a) is given.
To conclude the description of the implementation of next-child, we give the following lemma

which states that the probability distribution on the next child is the same for all three processes

described above.

Lemma 11. For all x ∈ I \ F , D̂(x) = D(x).

Proof. To prove the claim we prove that D̂(x) = D ′(x) and that D ′(x) = D(x).
To prove the latter, denote by x1 < x2 < . . . < xk the nodes in the set I \ F , where k = |I \ F |,

and let p(x j ) =
1

φ(x j )
. For any 1 ≤ j ≤ k − 1 D(x j ) = p(x j ) · Π

j−1

i=1
(1 − p(xi )), and for xk (which is the

node denoted b in the discussion above), D(xk ) = 1 − Πk−1

i=1
(1 − p(xi )).

When we consider the sequential process where one tosses a coin sequentially for all nodes in

I \ K (and not only for the nodes in I \ F ) we extend the definition of D ′(·) to be defined also for

nodes in I \ K . For a node z ∈ (I \ K) ∩ F , D ′(z) is the probability that x is chosen as a candidate
next u-child. Thus, if we denote by y1 < y2 < . . . < yℓ , ℓ = |I \ K |, the nodes in I \ K we have that

D ′(yj ) = p(yj ) · Π1≤i<j ;yj ∈I\F (1 − p(yi )), and for yℓ (which is the node denoted b in the discussion

above), D(yℓ) = 1 − Π1≤i<ℓ;yj ∈I\F (1 − p(yi )). Thus, for any x ∈ I \ F , D(x) = D ′(x).

We now extend D̂(·) to be defined for all nodes in I \ K . The assertion D̂(x) = D ′(x), for any
x ∈ I \ K , follows from the fact a numberM ∈ [0, 1] is selected uniformly at random and then the

interval in which it lies is found. That is, i is selected if and only if P ′i ≤ M < P ′i+1
which, by the

definitions of Pi and P
′
i , occurs with probability Pi = D ′(xi ). □

5.6 Implementation of parent
The implementation of parent is straightforward (see Figure 6). However, note that updating the

various data structures, while implicit in the listing, is accounted for in the time analysis.

5.7 Analysis of the pointer tree generator
We first give the following claim that we later use a number of times.

Lemma 12. With high probability, for each and every call to next-child, the size of the recursion
tree of that call, for calls to next-child, is O(logn).

Proof. Consider the recursive invocation tree that results from a call to next-child. Observe
that (1) by the code of next-child this tree is in fact a path; and (2) this path corresponds to a path

in the pointers tree, where each edge of this tree-path is “discovered” by the corresponding call

to next-child. That is, the maximum size of a recursion tree of a call of next-child is bounded
from above by the height of the pointers tree. By Claim 4, with high probability, this isO(logn). □

5.8 Efficient rolling of dice
In Algorithm 7 we implement a rolling of a dice whose time complexity is, with high probability,

O(logn), as explained next. The commulative probabilities P ′y of each side of the dice are a function

of ξ and y and are computable in O(1) time. To determine the outcome of a roll of the dice, we pick

r = c logn random unbiased bits, which are interpreted as a binary representation of a subinterval

[ℓ1, ℓ2] of [0, 1] of length 2
−r
. We say that the subinterval is good if it is contained in an interval, the

endpoints of which are consecutive cumulative probabilities. Namely, [ℓ1, ℓ2] is good if there exists

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: 0.



Sublinear Random Access Generators for Preferential Attachment Graphs 1:15

next-child-flag
Returns the least i > k , i is a u-child of j , i has flag
“flag”.

Assumes that k ≤ front(j)

1: procedure next-child-flag(j, k, f laд)
2: x ← k
3: repeat
4: x ← next-child-from(j, x )
5: until f laд(x ) = f laд or x = n + 1

6: return x
7: end procedure

next-child-from
Returns the least i ≥ k , i is a u-child of j .
Assumes that k ≤ front(j).

1: procedure next-child-from(j, k )
2: If (k ≥ n) return (n + 1)

3: q ← successor(child(j), k )
4: if q ≤ front(j) then
5: return q
6: else
7: return next-child(j)
8: end if
9: end procedure

parent
Returns the u-parent of j .

1: procedure parent(j )
2: if u(j) = nil then
3: u(j) ←R [1, j − 1]

4: f laд(j) ←R {imm, rec}
5: insert(child(u(j)), j)
6: end if
7: return (u(j), f laд(j))
8: end procedure

Fig. 6. Pseudo code of the pointers tree generator (part 1)

an i such that [ℓ1, ℓ2) ⊆ [P
′
i , P
′
i+1
]. Note that in this case, we choose i as the outcome of the roll of

the dice. The number of bad subintervals is bounded by t , which is at most n. Hence, the probability
that the subinterval is bad is at most n · 2−r . Since r = c logn, the probability of determining the

side of the dice after r random bits is at least 1 − n−c+1
. Hence, the time complexity in this case

is dominated by the time complexity of the random search which is O(logn). On the other hand,

if the interval we picked is bad (which happens with negligible probability), then we refine the

size of the intervals so that all intervals are good (Line 10). In this case the time complexity is

O(max{t , logn}).
We note that by a standard technique we could alternatively implement a Las-Vegas algorithm

that rolls the dice. In this case the algorithm continues refining the intervals (by using additional
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next-child
Returns the least i > front(j) which is a u-child of j .

1: procedure next-child(j )
2: (p, t ) ← parent(j)
3: If (front(j) ≥ n) return (n + 1)

4: a ←

{
front(j) + 1 if front(j) , nil

j + 1 if front(j) = nil

5: b ←

{
successor(child(j), front(j)) if front(j) , nil

successor(child(j), j) if front(j) = nil
6: repeat
7: s ← |[a, b) \ K |
8: h ← toss(φ(a), s + 1)

9: if h = s then
10: return b
11: else
12: x ← the vertex of rank h in [a, b) \ K
13: if u(x ) = nil then
14: u(x ) = j
15: f laд(x ) ←R {imm, rec}
16: insert(child(j), x )
17: front(j) ← x
18: front−1(x ) ← j
19: if (front(x ) = nil) next-child(x )
20: return (x )
21: else /* i.e., if u(x ) , nil */
22: a ← x + 1

23: end if
24: end if
25: until forever
26: end procedure

toss
Returns a random rank 0 ≤ y ≤ t − 1.

1: procedure toss(ξ , t )
2: α ← nc (for some constant c > 1).
3: Choose uniformly at random an integer M ∈ [0, α ]
4: H ← M · 1

α
5: Using binary search on [0, t − 1] find 0 ≤ y ≤ t − 1 such that P ′y ≤ H < P ′y+1

6: (where, for 0 ≤ y ≤ t − 1, P ′y = 1 −
ξ −1

ξ +(y−1)
, and P ′t = 1)

7: if (H + 1) 1

α ≤ P ′y+1
then

8: return y
9: else
10: α ← α · Πt−1

y=0
(P ′y+1

− P ′y )
11: Choose uniformly at random an integer M ∈ [0, α ]
12: H ← M · 1

α
13: Using binary search on [0, t − 1] find 0 ≤ y ≤ t − 1 such that P ′y ≤ H < P ′y+1

14: (where, for 0 ≤ y ≤ t − 1, P ′y = 1 −
ξ −1

ξ +(y−1)
, and P ′t = 1)

15: return y
16: end if
17: end procedure

Fig. 7. Pseudo code of the pointers tree generator (part 2)
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random bits, one at a time) until the subinterval is good. Namely, the Las-Vegas algorithm, after

each random bit, checks in time O(logn) if the subinterval is good by performing a binary search

over the commulative probabilities and adds an additional bit only if the selected interval is bad.

5.8.1 Data structures and space complexity. The efficient implementation of next-child makes

use of the following data structures.

• A number of arrays of length n, u(j) and f laд(j), front(j) and front−1(j), used to store various
values for nodes j . Since we implement arrays by means of search trees, the space complexity

of each array isO(m), wherem is the maximum number of distinct keys stored with a non-null

value in that array, at any given time. The time complexity for each operation on this arrays

is O(logm) = O(logn) (since they are implemented as balanced binary search trees).

• For each node j, a balanced binary search tree called child(j), where child(j) includes all
nodes i such that u(i) = j (for technical reasons we define child(j) to always include node

n + 1.)
5
Observe that for each child i stored in one of these trees, u(i) is already determined.

Thus, the increase, during a given period, in the space used by the child trees is bounded
from above by the the number of nodes i for which u(i) got determined during that period.

For the time complexity of the operations on these trees we use a coarse standard upper

bound of O(logn) on each tree operation.
6

We store the roots of all non-empty trees child(j) in an “array”. Thus, using our implemen-

tation of arrays as balanced search trees, the space used by this “array” is O(m) and the time

to access the root of a certain child(j) is O(logm) = O(logn), wherem is the number of

non-empty trees child(j) at a given time.

The listings of the implementations of the various procedures leave implicit the maintenance of

two data structures, related to the set K and to the computation of φ(·):

• A data structure that allows one to retrieve the value of φ(a) for a given node a. This data
structure is implemented by retrieving the cardinality of the set of nodes that are not potential

parent of a, i.e., (a − 1) − φ(a), for a given node a. The latter is equivalent to counting how

many nodes i < a have front(i) , nil and front(i) ≥ a. We use two balanced binary search

trees (or order statistics trees) in a specific way and have that by standard implementations

of balanced search trees the space complexity is O(k) (and all operations are done in time

O(logk) = O(logn)). Here k denotes the number of nodes i such that front(i) , nil. More

details of the implementation of this data structure appear in the appendix (See Section A.1).

• A data structure that allows one to find the vertex of rank h in the ordered set [a,n + 1] \ K .
This data structure is implemented by a balanced binary search tree storing the nodes in K ,
augmented with the queries rankK (i) (as in an order-statistics tree [8, Sec. 14]

7
) as well as

rankK̄ (i) and selectK̄ (s), i.e., finding the element of rank s in the complement of K . To find the
vertex of rank h in [a,n+ 1] \K we use the query selectK̄ (rankK̄ (a)+h). The space complexity

of this data structure is O(k), and all operations are done in time O(logk) = O(logn) or
O(log

2 k) = O(log
2 n) (for the selectK̄ (i) query). Here k denotes the number of nodes in K ,

5
So that we maintain low space complexity, for a given (j), child(j) is initialized only at the first use of child(j), at which
time node n + 1 is inserted .

6
In fact we can use the fact that with high probability Cj = O (logn) and get, with high probability, an upper bound of

O (logCj ) = O (log logn) on the time complexity.

7
An order-statistic tree is a data structure, that supports two operations beyond the classical balanced binary search tree

operations (i.e., insertion, lookup, and deletion), as follows. Informally, given an index i the select(i) operation returns the

i-th element in the sorted list of the elements that are in the tree. On the other hand, the rank of an element x in the tree is

its index in that sorted list.
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which is upper bounded by the number of nodes i such that front(i) , nil. More details of the

implementation of this data structure appear in the appendix (See Section A.2).

5.8.2 Time complexity.

Time complexity of toss(φ, s). The time complexity of this procedure is with high probability

O(logn) (see Section 5.8)

Time complexity of “x ← the vertex of rank h in [a,n + 1] \ K”. This operation is implemented

using the data structure defined above, and takes O(log
2 n) time.

Time complexity of parent(j). As stated in Lemma 16, the time complexity of parent is O(logn).

Time complexity of next-child. First consider the time complexity consumed by a single invo-

cation of next-child (i.e., without taking into account the time consumed by recursive calls of

next-child):8 The call to parent takes O(logn) time. Therefore, until the start of the repeat loop,

the time is O(logn) (the time complexity of successor is O(logn)). Now, the time complexity of a

single iteration of the loop (without taking into account recursive calls to next-child) is (O log
2 n)

because:

• Each access to an “array” takes O(logn) time.

• Calculating φ(a) takes O(logn) time.

• The call to toss takes O(logn) time.

• Finding the vertex of rank h in [a,n + 1] \ K takes O(log
2 n) time.

• Each of the O(1) updates of front(·) or front−1(·) may change the set K , and therefore may

take O(logn) time to update the data structure involving K .
• An update of any given child(·) binary search tree takes O(logn) time.

We now examine the number of iterations of the loop.

Claim 13. With high probability, the number of iterations of the loop in a single invocation of
next-child is O(logn).

Proof. We consider a process where the iterations continue until the selected node is node b.
A random variable, R, depicting this number dominates a random variable that depicts the actual

number of iterations. For each iteration, an additional node is selected by toss. By Lemma 11 the

probability that a node j < b is selected by toss is 1/φ(j), and we have that 1/φ(j) ≤ 1

j−1
. Thus,

R = 1 +
∑b−1

j=a X j , where X j is 1 iff node j was selected, 0 otherwise. Since µ =
∑b−1

j=a
1

φ(j) ≤ logn,

using Chernoff bound
9
we have, for any constant c > 6, P[R > c · logn] ≤ 2

−c ·logn = n−Ω(1). □

We thus have the following.

Lemma 14. For any given invocation of next-child, with high probability, the time complexity is
O(log

3 n).

5.8.3 Randomness complexity. Randomness is used in our generator to randomly select the parent

of the nodes (in parent) and to randomly select a next child for a node (in toss). We use the

common convention that, for any given m, one can choose uniformly at random an integer in

[0,m − 1] using O(logm) random bits and in O(1) computation time. We give our algorithms and

analyses based on this building block.

8
We talk about an “invocation”, rather than a “call”, when we want to emphasize that we consider only the resources

consumed by a single level of the recursion tree.

9
cf. [16], Inequality (8).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: 0.



Sublinear Random Access Generators for Preferential Attachment Graphs 1:19

In procedure parentwe useO(logn) random bits whenever, for a given j , this procedure is called
with parameter j for the first time.

In procedure toss the if condition holds with probability 1 − 1/nc−1
(where c is the constant

used in that procedure). Therefore, given a call to toss, with probability 1 − 1/nc−1
this procedure

uses O(logn) bits. By Claim 13, in each call to next-child the number of times that toss is called

is, w.h.p., O(logn). We thus have the following.

Lemma 15. During a given call to next-child, w.h.p., O(log
2 n) random bits are used.

The following lemma states the time, space, and randomness complexities of the queries.

Lemma 16. The complexities of next-child-flag and parent are as follows.

• Given a call to parent the following hold for this call:
(1) The increase, during the call, of the space used by our algorithm is O(1).
(2) The number of random bits used during that call is O(logn).
(3) The time complexity of that call is O(logn).
• Given an call to next-child-flag, with high probability, all of the following hold for this call:
(1) The increase, during that call, of the space used by our algorithm is O(log

2 n).
(2) The number of random bits used during that call is O(log

4 n).
(3) The time complexity of that call is O(log

5 n).

Proof. During a call to parent(j) the size of the used space increases when a pointer u(j)
becomes non-null or when additional values are stored in child(u(j)). To select u(j), O(logn)
random bits are used, and O(logn) time is used to insert j in child(u(j)) and to update the data

structure for the set K (this is implicit in the listing).

For the analysis of next-child-flag, we first consider next-child. Observe that by Lemma 12,

w.h.p., each and every root (non-recursive) call of next-child has a recursion tree of sizeO(logn).
In each invocation of next-child, O(1) variables front(j) and u(j) may be updated. Therefore,

w.h.p., for all root (non-recursive) calls to next-child it holds that the increase in space during

this call is O(logn) (see Section 5.8.1). Using Lemmas 15 and 12 we have that, w.h.p., each root call

of next-child usesO(log
3 n) random bits. Using Lemmas 14 and 12, we have that, w.h.p., the time

complexity of each root call of next-child is O(log
4 n).

Because the flags of the pointers are uniformly distributed in {imm, rec}, each call to

next-child-flag results, w.h.p., in O(logn) calls to next-child. The above complexities are

thus multiplied by an O(logn) factor to get the (w.h.p.) complexities of next-child-flag. □

6 ON-THE-FLY GENERATOR FOR BA-GRAPHS
Our on-the-fly generator for BA-graphs (see definition in Section 1.1) is called O-t-F-BA, and sim-

ply calls BA-next-neighbor(v) for each query on node v . We present an implementation for the

BA-next-neighbor query, and prove its correctness, as well as analyze its time, space, and random-

ness complexities. The on-the-fly BA generator maintains n standard heaps, one for each node. The

heaps store nodes, where the order is the natural order of their serial numbers.
10
The heap of node

j stores some of the nodes already known to be neighbors of j . In addition, the generator maintains

for purely technical reasons an array of size n, f irst_query, indicating if a BA-next-neighbor
query has been issued for a given node. The implementation of the BA-next-neighbor query

works as follows (see Figure 8).

10
For simplicity of presentation we assume that the initialization of the heap occurs at the first insert, and make sure in our

use of the heap that no extraction is performed before the first insert.
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BA-next-neighbor
Returns the next neighbor of j in the BA-graph.

1: procedure BA-next-neighbor(j )
2: if f ir st_query(j) = true then
3: /* first query for j */
4: f ir st_query(j) ← false
5: heap-insert(heapj , n + 1)

6: heap-insert(heapj , next-child-flag(j, j, imm))
7: return BA-parent(j)
8: else
9: /* all subsequent queries for j */
10: r ← heap-extract-min(heapj )
11: if r = n + 1 then
12: heap-insert(heapj , n + 1)

13: return n + 1

14: else
15: if f laд(r ) = imm then
16: heap-insert(heapj , next-child-flag(j, r, imm))
17: heap-insert(heapj , next-child-flag(r, r, rec))
18: else
19: (q, f laд) ← parent(r )
20: heap-insert(heapj , next-child-flag(q, r, rec))
21: heap-insert(heapj , next-child-flag(r, r, rec))
22: end if
23: return r
24: end if
25: end if
26: end procedure

BA-parent
Returns the parent of j in the

BA-graph.

1: procedure BA-parent(j )
2: (i, f laд) ← parent(j)
3: if f laд = imm then
4: return i
5: else
6: return BA-parent(i)
7: end if
8: end procedure

Fig. 8. Pseudo code of the on-the-fly BA generator

• For the first BA-next-neighbor(j) query, for a given j, we proceed as follows. We find the

parent of j in the constructed BA-graph, which is done by following, in the pointers tree, the

pointers of the ancestors of j until we find an ancestor pointed to by an imm pointer (and not

a rec pointer). See Figure 8. In addition, we initialize the process of finding neighbors of j
to its right (i.e., with a bigger serial number) by inserting into the heap of j the “final node”
n + 1 as well as the first child of v .
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• For any subsequent BA-next-neighbor(j) query for node j we proceed as follows. Observe

that any subsequent query is to return a child of j in the constructed BA-graph. The children

of j in the BA-graph are those nodes x which have, in the pointers tree, a path of u(·) pointers
starting at x and ending at j and with all pointers on that path, except the last one, being rec
(the last one being imm). The query BA-next-neighbor(j) has, however, to report the children
in increasing order of their index. To this end the heap of node j is used; it stores at any give

time some of the children of j in the BA-graph, not yet returned by a BA-next-neighbor(j)
query. We further have to update this heap so that BA-next-neighbor(j) will continue
to return the next child according to the index order. To this end we proceed as follows.

Whenever node, r is extracted from the heap, in order to be returned as the next child, we

update the heap to include the following:

– If r has an imm pointer to j , then we add to the heap (1) the next node, after r , with an imm
pointer to j, and (2) the first node that has a rec pointer to r .

– If r has a rec pointer to a node r ′, then we add to the heap (1) the first node, after r , with a

rec pointer to r ′, and (2) the first node that has a rec pointer to r .

The proof of Lemma 17 below is based on the premise that the heap contains only children of v
in the BA-graph, and that it always contains the child of v just after the one last returned.

Lemma 17. The procedure BA-next-neighbor returns the next neighbor of v .

Proof. Given a pointers tree we define the following notions:

• The set of nodes which have an imm pointer to a given node j. That is, for 1 ≤ j ≤ n,
D(j) ≜ {i | u(i) = j, f laд(i) = imm}.
• The set of nodes which have a rec pointer to a given node j. That is, for 1 ≤ j ≤ n,
R(j) ≜ {i | u(i) = j, f laд(i) = rec}.

Given a BA graph, for any node 1 ≤ j ≤ n and any prefix length 0 ≤ ℓ ≤ n − 1, we denote by N ℓ(j)
the set of the first (according to the index number) ℓ neighbors of j in the BA graph.

In what follows we consider an arbitrary node j . We consider the actions of BA-next-neighbor
(see Figure 8). LetMℓ(j) be the set of nodes returned by the first ℓ calls BA-next-neighbor(j). We

first prove that the following invariant holds.

Just after call number ℓ ≥ 1 of BA-next-neighbor(v):

(1) The heap heapj contains only neighbors of j in the BA-graph.

(2) The heap heapj contains the minimum node in D(j) \Mℓ(j).
(3) Let q be the first neighbor of j in the BA graph. The heap heapj contains, for each node

i ∈ Mℓ(j) \ {q}, the minimum node in R(i) \Mℓ(j).

We prove that the invariant holds by induction on ℓ. The induction basis, for call number ℓ = 1,

holds since (1) the first call to BA-next-neighbor(j) results in inserting into heapj the first node
x which has an imm pointer to node j and (2) heapj was previously empty (see Figure 8). Thus all

points of the invariant hold after call ℓ = 1. For ℓ > 1 assume that the induction hypothesis holds

for ℓ − 1 and let r be the node returned by the ℓ’th call to BA-next-neighbor(j). We claim that the

invariant still holds after call ℓ by verifying each one of the two cases for the pointer of r and the

insertions into the heap for each such case.

If r has an imm pointer, then the following nodes are inserted into heapj : (1) The first node after r
with an imm pointer to j. Since this is a neighbor of j in the BA graph Point 1 continues to hold.

Since r , just extracted from the heap, was the minimum node in the heap, Point 2 continues to hold.

(2) The first node after r which has a rec pointer to r . Since this is a neighbor of j in the BA graph

Point 1 continues to hold; Point 3 continues to hold since nothing has changed for any other i , r ,
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i ∈ Mℓ(j) \ {q}, and for r the minium node in R(i) \Mℓ(j) is just inserted.
If r has a rec pointer, and let q be the parent of r in the pointers tree, then the following nodes are

inserted into heapj : (1) The first node after r which has a rec pointer to q; denote it x . Since x is a

neighbor of j in the BA graph Point 1 continues to hold. Since r , just extracted from the heap, was

the minimum node in the heap, x is the minimum node in R(i) \Mℓ(j) and Point 3 continues to

hold (nothing changes for any q′ , q, q′ ∈ Mℓ(j) \ {q}). (2) The first node after r which has a rec
pointer to r . The same arguments as those for the corresponding case when r has an imm pointer
hold, and thus both Point 1 and Point 3 continue to hold.

This concludes the proof of the invariant.

We now use the above invariant in order to prove that, for any ℓ ≥ 1, N ℓ(j) = Mℓ(j). We do this

by induction on ℓ. For ℓ = 1 the claim follows from the facts the first neighbor of node j is its parent
in the BA graph and that the first call BA-next-neighbor(j) returns the value that BA-parent(j)
returns. This proves the induction basis. We now prove the claim for ℓ > 1 given the induction

hypothesis for all ℓ′ < ℓ. Let node x be the ℓ’th neighbor of j . We have two cases: (1) node x has an

imm pointer to j; (2) node x has a rec pointer to another child of j in the BA graph (i.e., to another

neighbor of j in the BA graph, which is not the first neighbor).

Case (1): By the induction hypothesis N ℓ−1(j) = Mℓ−1(j), hence by Point 2 of the invariant x is

in the heap heapj when the ℓ’th call occurs. Since any node returned by BA-next-neighbor(j) is
no longer in heapj , by Point 1 of the invariant, heapj does not contain any node smaller than x .
Therefore the node returned by the ℓ’th call of BA-next-neighbor(j) is node x .
Case (2): Let node y be the parent of node x in the pointers tree, i.e., u(x) = y. Since y is a neighbor

of j in the BA graph, and y < x , it follows that y ∈ N ℓ−1(j), and by the induction hypothesis

y ∈ Mℓ−1(j). Moreover, any node x ′ < x has u(x ′) = y, f laд(x ′) = rec if and only if it is a neighbor
of j, hence any such node x ′ is in N ℓ−1(j), and by the induction hypothesis also in Mℓ−1(j). It
follows from Point 3 of the invariant that x is in the heap heapj when the ℓ’th call occurs. Since

any node returned by BA-next-neighbor(j) is no longer in heapj , by Point 1 of the invariant,

heapj does not contain any node smaller than i . Therefore the node returned by the ℓ’th call of

BA-next-neighbor(j) is node i . This completes the proof of the lemma. □

Lemma 18. For any given root (non-recursive) call of BA-parent, with high probability, that call
takes O(log

2 n) time.

Proof. Consider the execution of BA-parent as stated in Figure 8. Consider the recursive

invocation tree that results from a call to BA-parent. Each path in this tree corresponds to a path

in the pointers tree. Since, By Claim 4, w.h.p. the height of the pointers tree is bounded byO(logn),
the lemma follows by Lemma 16. □

We can now conclude with the following theorem.

Theorem 19. For any given call of BA-next-neighbor, with high probability, all of the following
hold for that call:
(1) The increase, during that call, of the space used by our algorithm is O(log

3 n).
(2) The number of random bits used during that call is O(log

5 n).
(3) The time complexity of that call is O(log

6 n).

Proof. Each call of BA-next-neighbor is executed, w.h.p., by O(logn) number of calls (and a

constant number of calls in expectation) to BA-parent and next-child-flag, as well as O(logn)
number of calls to heap-insert and heap-extract-min, and accesses to “arrays”. The claim then

follows from standard deterministic heap implementations (which uses O(1) space per stored item

and O(logn) time per query) and from Lemma 16. □
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We now state the properties of our on-the-fly graph generator for BA-graphs.

Definition 20. For a number of queries T > 0 and a sequence of BA-next-neighbor queries
Q = (q(1), . . . ,q(T )), let A(Q) be the sequence of answers returned by an algorithm A on Q . If A is
randomized then A(Q) is a probability distribution on sequences of answers.

Let Opt-BAn be the (randomized) algorithm that first runs the Markov process to generate a

graph G on n nodes according to the BA model, stores G, and then answers queries by accessing

the storedG . Let O-t-F-BAn be the algorithm O-t-F-BA run with graph-size n. From the definition

of the algorithm we have the following.

Theorem 21. For any sequence of queries Q , Opt-BAn(Q) = O-t-F-BAn(Q).

We now conclude by stating the complexities of our on-the-fly BA generator.

Theorem 22. For any T > 0 and any sequence of queries Q = (q(1), . . . ,q(T )), when using
O-t-F-BAn it holds w.h.p. that, for all 1 ≤ t ≤ T :
(1) The increase in the used space, while processing query t , is O(log

3 n). Therefore, the total space
that is used to store the state of the generator after T queries is O(T · log

3 n).
(2) The number of random bits used while processing query t is O(log

5 n).
(3) The time complexity for processing query t is O(log

6 n).

Proof. A query BA-next-neighbor(v) at time t is a trivial if at some t ′ < t a query

BA-next-neighbor(v) returns n + 1. Observe that trivial queries take O(logn) deterministic time,

do not use randomness, and do not increase the used space. Since there are less than n2 non-trivial
queries, the theorem follows from Theorem 19 and a union bound. □

We note that the various assertions in this paper of the form of “with high probability ... is

O(log
c n)” can also be stated in the form of “with probability 1 − 1

nd ... is f (d) · log
c n”. Therefore,

we can combine these various assertions, and together with the fact that the number of non-trivial

queries is poly(n), we get the final result stated above.

7 A DIRECTION FOR EXTENDING TO GENERAL OUT-DEGREES
Given a random process that generates a Preferential-Attachment graph with out-degree 1, Bollobás

and Riordan [7] consider the following generalization for defining a process that generates a

Preferential-Attachment graph with general out-degree. A BAm
n -graph, where BA

m
n denotes an

n node Preferential-Attachment graph with out-degreem, is constructed from a BAnm-graph by

identifying each of the n nodes of the BAm
n -graph with a block ofm nodes in the BAnm-graph

11

Hence, a BAm
n -graph can be generated on-the-fly by using an on-the-fly generator for a BAnm-

graph, in a black-box manner, by increasing the complexity by a factor ofm (up to poly-logarithmic

factors). We leave working out the details for this generalization to higher out-degrees, as well as

for other variants of generalization, for further research.

8 CONCLUSIONS
We introduce an approach to probing and accessing a huge random graph, sampled from a given

distribution, in a way that does not require to first sample the whole huge graph and then access

it. The latter approach may require prohibitive amounts of time, space and randomness which

could be avoided if only relatively small parts of the random graph are accessed. The feasibility

11
Bollobás and Riordan define the process BAn slightly different from the model we are using in this paper. According

to their definition the head of the edge ej is the node vi , for 1 ≤ i ≤ j − 1, with probability

deg(vi ,BAj−1)

2j−1
and is vj with

probability
1

2j−1
(so there is some, vanishing, probability of forming self-loops).
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of such savings may be especially challenging when the distribution at hand is usually defined

by an evolving sequential process (over, e.g., nodes) such as in the Barabási-Albert Preferential

Attachment model or the random recursive tree model.

We show how to achieve such savings for the Barabási-Albert graphs of out-degree 1, as well

as for the evolving tree model, and give on-the-fly generation algorithms for both models such

that with probability 1 − 1/poly(n), each and every query is answered in polylog(n) time, and the

increase in space and the number of random bits consumed by any single query are both polylog(n),
where n denotes the number of vertices in the graph.
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A IMPLEMENTATIONS OF DATA STRUCTURES
A.1 Data Structure for φ(·)
We use two balanced binary search trees (or order statistic trees). One, called left, stores all vertices
i such that front(i) , nil. The other, called right, stores (the multi-set) {front(i) | front(i) , nil}. To
determineφ(a)we find, using tree right, howmany nodes i have front(i) > a−1 (and front(i) , nil).
Let this number be R. Using tree left we find how many nodes i < a have front(i) , nil. Let this
number be L. Then φ(a) = R − L.
By standard implementations of balanced search trees the space complexity is O(k) and all

operations are done in time O(logk) = O(logn)) Here k denotes the number of nodes i such that

front(i) , nil.
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A.2 Data Structure to find the node of rank h in [a,n + 1] \ K

We start with a number of definitions useful for specifying the data structure and its operations.

For a node j ∈ {1, . . . ,n + 1} and a subset of nodes Q ⊆ {1, . . . ,n + 1}, define Q(j) as follows:

Q(j) ≜

{
j if j ∈ Q or j = 1

maxj′∈Q {j
′ |j ′ < j} otherwise

.

Note that for technical reasons for j = 1 we define Q(j) = 1 whether or not j ∈ Q .
For a node j ∈ {1, . . . ,n+ 1} and a subset of nodesQ ⊆ {1, . . . ,n+ 1}, define rankQ (j) as follows:

rankQ (j) ≜ |{i | i < Q(j); i ∈ Q}| .

We note that using these definitions we have that, for any j ∈ {1, . . . ,n+ 1}, the number of items

i < j in Q̄ , where Q̄ = {1, . . . ,n + 1} \Q , is (j − 1) − rankQ (j).
The insertQ , deleteQ and rankQ operations are implemented as in a standard order-statistics tree

based on a balanced binary search tree. The operation rankQ̄ is implemented using the rankQ and

then performing the calculation above. To implement selectQ̄ (s) we proceed as follows. We traverse

the search tree with the value s , and in each node of the tree that contains the vertex j we compare

s with (j − 1) − rankQ (j). Thus, we can find the maximum j ∈ Q such that rankQ̄ (j) ≤ s . Denote

this node j ′. We then return the node j ′ +
[
s + 1 − ((j ′ − 1) − rankQ (j ′))

]
.

The time complexities of insertQ , deleteQ and rankQ and rankQ̄ are therefore O(logn) based on

standard order statistics trees. The time complexity of selectQ̄ is O(log
2 n): for each node along the

search path of length O(logn) we need to use the query rankQ .
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