
A Constant Approximation Algorithm for
Scheduling Packets on Line Networks
Guy Even1, Moti Medina2, and Adi Rosén3

1 Tel Aviv University
guy@eng.tau.ac.il

2 MPI for Informatics
medinamo@mpi-inf.mpg.de

3 CNRS and Université Paris Diderot
adiro@liafa.univ-paris-diderot.fr

Abstract
In this paper we improve the approximation ratio for the problem of maximizing the throughput
of line networks with bounded buffers. Each node in the network has a local buffer of bounded
size B, and each edge (or link) can transmit a limited number c of packets in every time unit.
The input to the problem consists of a set of packet requests, each defined by a source node, a
destination node, and a release times. We denote by n the size of the network, by B the size of
a node buffer, and by c the capacity of the links. A solution for this problem is a schedule that
delivers (some of the) packets to their destinations without violating the capacity constraints of
the network (buffers or edges). Our goal is to design an algorithm that computes a schedule that
maximizes the number of packets that arrive to their respective destinations.

We give a randomized approximation algorithm with constant approximation ratio for the case
where the buffer-size to link-capacity ratio, B/c, is constant. This improves over the previously
best result of O(log∗ n) [?]. Our improvement is based on a new combinatorial lemma that
we prove, stating, roughly speaking, that if packets are allowed to stay put in buffers only a
limited number of time steps, 2d, where d is the longest source-destination distance, then the
optimal solution is decreased by only a constant factor. This claim was not previously known
in the integral (unsplitable, zero-one) case, and may find additional applications for routing and
scheduling algorithms.

While we are not able to give the same improvement for the related problem when packets have
hard deadlines, our algorithm does support “soft deadlines”. That is, if packets have deadlines, we
achieve a constant approximation ratio when the produced solution is allowed to miss deadlines
by at most logn time units.

1998 ACM Subject Classification F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY

Keywords and phrases Approximation algorithms, linear programming, randomized rounding,
Admission control, Packet scheduling

1 Introduction

In this paper we give an approximation algorithm with an improved approximation ratio
for a network-scheduling problem which has been studied in numerous previous works in a
number of variants (cf. [?, ?, ?, ?, ?, ?]). The problem consists of a directed line network
over nodes {0, . . . , n− 1}, where each node i can send packets to node i+ 1, and can also
store packets in a local buffer. The maximum number of packets that can be sent in a single
time unit over a given link is denoted by c, and the number of packets each node can store
in any given time is denoted by B. An instance for the problem is further defined by a set

© Even, Medina, and Rosén;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Scheduling Packets on Line Networks

M of packets ri = (ai, bi, ti), 1 ≤ i ≤M , where ai is the source node of the packet, bi is its
destination node, and ti ≥ 1 is the release time of the packet at vertex ai. The goal is to
maximize the number of packets that reach their respective destinations without violating
the links or the buffers capacities. See Section ?? for a formal definition of the problem.

We present a randomized approximation algorithm for that problem, which has a constant
approximation ratio for the case that the ratio B/c is a constant., which improves upon
the previous O(log∗ n) approximation ratio given in [?, Theorem 3]. While this constant
approximation result does not hold for the variant of the problem where packets have
deadlines, our algorithm does provide a constant-approximation solution that abides to “soft
deadlines”. That is, in that solution each packet is delivered at most logn time units past its
deadline.

Our algorithm is based on a novel combinatorial lemma (Lemma ??) which states the
following. Consider a set of packets such that all source-destination distances are bounded
from above by some d. The throughput of an optimal solution in which every packet ri must
reach its destination no later than time ti + 2d is an Ω(B/c)-fraction of the unrestricted
optimal throughput. This lemma plays a crucial role in our algorithm, and we believe that
it may find additional application for scheduling and routing algorithms in networks. We
emphasize that the fractional version of a similar property, i.e., when packets are splitable
and one accrues a benefit also from the delivery of partial packets, presented first in [?], does
not imply the integral version that we prove here.

AR: check is this paragraph is correct at all and if it is interesting, and if this was not
done before, and why we do it this way

Another interesting ingredient of our algorithm and its analysis is a somewhat
different that usual way to performa and analyze randomized rounding for multicommodity
fractional solutions, applicable to the case that we consider in the present
paper. Usually one rounds the fractional solutions and shows that with high
probability no edge is overloaded in the rounded solution, hence we obtain with
high probability a feasible integral solution. Here we instead filter out any
packet (demand) that passes through a link that is overloaded. We show that
the probability that any given packet remains in the solution is high, and hence
our integral feasible solution is of cardinality close to the fractional one.

AR: ——————————————————————————————————–
We emphasize that the problem studied here, namely, maximizing the throughput on a

network with bounded buffers, has resisted substantial efforts in its (more realistic) distributed,
online setting, even for the simple network of a directed line. Indeed, even the question
whether or not there exists a constant competitive online distributed algorithm for that
problem on the line network remains unanswered at this point. We therefore study here
the less realistic, offline, setting , with the hope that results and ideas from this setting will
contribute to progress on the online problem.

AR: verify, check, complete
Furthermore, to the best of our knowledge, there is only a single problem known

to be O(log∗ n)-approximable but not O(1)-approximable (unless), namely
The state of the art for the problem we consider here was since a number of years
now that its best efficient approximation ratio was O(log∗ n) It is therefore of
interest to resolve, as we do in the present paper, the question whether the
problem we consider here has a “barrier” at log∗ n. We note that to the best of
our knowledge it is not known if the problem is NP-hard or not. AR: ——
————————————————————————————————–

Even, Medina, and Rosén 3

Related Work. The problem of scheduling packets so as to maximize the throughput (i.e.,
maximize the number of packets that reach their destinations) in a network with bounded
buffers was first considered in [?], where this problem is studied for various types of networks
in the distributed (and, hence, online) setting. The results in this paper, even for the simple
network of a directed line, were far from tight but no substantial progress has been made
since on the realistic, distributed and online, setting. This has motivated the study of this
problem in easier settings, as a first step towards solving the realistic, possibly applicable,
scneario.

Angelov et al. [] give centralized online randomized algorithms for the line network,
achieving an O(log3)-competitive ratio. Azar and Zachut [] improved the randomized
competitive ratio to O(log2 n) which was later improved by Even and Medina [?] to O(logn).
A deterministic O(log5 n)-competitive algorithm was given in [], which was later improved in []
to O(logn) if buffer and link capacities are not very small (not smaller than 5). Somewhat
better results are known for the related problem of information gathering, i.e., scheduling on
the line when all destinations are the end-node of the line.

To the best of our knowledge, it is not known if the problem we consider here is NP-hard.
The related problem of maximizing the throughput when packets have deadlines (i.e., a
packet is counted towards the quality of the solution only if it arrives to its destination before
a known deadline) is known to be NP-hard [?]. This problem, in the exact setting that
we consider here, was studied in [?] where it is shown to have a O(log∗ n)-approximation
randomized algorithm. This result immediately gives an O(log∗ n)-approximation randomized
algorithm for the problem we study in the present paper [?].

2 Preliminaries

2.1 Model and problem statement
We consider the standard model of synchronous store-and-forward packet routing networks [?,
?, ?]. The network is modeled by a directed path over n vertices. Namely, the network is
a directed graph G = (V,E), where V = {0, . . . , (n− 1)} and there is a directed edge from
vertex u to vertex v if v = u+ 1. The network resources are specified by two positive integer
parameters B and c that describe, respectively, the local buffer capacity of every vertex and
the capacity of every edge. In every time step, at most B packets can be stored in the local
buffer of each vertex, and at most c packets can be transmitted along each edge.

The input consists of a set ofM packet requests R = {ri}Mi=1. A packet request is specified
by a 3-tuple ri = (ai, bi, ti), where ai ∈ V is the source node of the packet, bi ∈ V is its
destination node, and ti ∈ N is the time of arrival of the request. Note that bi > ai, and ri is
ready to leave ai in time step ti.

A solution is a schedule S. For each request ri, the schedule S specifies a sequence si of
transitions that packet ri undergoes. A rejected request ri is simply discarded at time ti,
and no further treatment is required (i.e., si = {reject}). An accepted request ri is delivered
from ai to bi by a sequence si of actions, where each action is either “store” or “forward”.
Consider the packet of request ri. Suppose that in time t the packet is in vertex v. A store
action means that the packet is stored in the buffer of v, and will still be in vertex v in time
step t+ 1. A forward action means that the packet is transmitted to vertex v + 1, and will
be in vertex v + 1 in time step t+ 1. The packet of request ri reaches its destination bi after
exactly bi − ai forward steps. Once a packet reaches its destination, it is removed from the
network and it no longer consumes any of the network’s resources.
A schedule must satisfy the following constraints:

4 Scheduling Packets on Line Networks

1. The buffer capacity constraint asserts that at any time step t, and in every vertex v, at
most B packets are stored in v’s buffer.

2. The link capacity constraint asserts that at any step t, at most c packets can be transmitted
along each edge.

The throughput of a schedule S is the number of accepted requests. We denote the
throughput of a schedule S by |S|. As opposed to online algorithms, there is no point in
injecting a packet to the network unless it reaches its destination. Namely, a packet that is
not rejected and does not reach its destination only consumes network resources without any
benefit. Hence, without loss of we assume that every packet that is dropped before reaching
its designation is rejected at its source node at its release time.

We consider the offline optimization problem of finding a schedule that maximizes the
throughput. We propose a centralized constant-ratio approximation algorithm. By offline we
mean that the algorithm receives all requests in advance1. By centralized we mean that all
the requests are known in one location where the algorithm is executed. Let opt(R) denote a
schedule of maximum throughput for the set of requests R. Let alg(R) denote the schedule
computed by alg on input R. We say that the approximation ratio of a scheduling algorithm
alg is c if

∀R : |alg(R)| ≥ c · |opt(R)|.

The Max-Pkt-Line Problem. The problem of maximum throughput schedule of packet
requests on directed line (Max-Pkt-Line) is defined as follows. The input of consists of: n -
the size of the network, B - node buffer capacities, c - link capacities, and M packet requests
{ri}Mi=1. The output is a schedule S. The goal is to maximize the throughput of S.

2.2 Path Packing in a uni-directed 2D-Grid
In this section we define a problem of maximum cardinality path packing in a two-dimensional
uni-directed grid (Max-Path-Grid). This problem is equivalent to maximum throughput
scheduling of packet requests on a directed line, and was used for that purpose in previous
work, where the formal reduction is also presented [?, ?, ?, ?]. For completeness, this
reduction is give in Appendix ??. As the two problems problems are equivalent, we use in
the sequel terminology from both problems interchangeably.

The grid, denoted by Gst = (V st, Est), is an infinite directed acyclic graph. The vertex
set V st equals V × N, where V = {0, 1, . . . , (n− 1)}. Note that we use the first coordinate
(that corresponds to vertices in V) for the y-axis and the second coordinate (that corresponds
to time steps) for the x-axis. The edge set consists of horizontal edges (also called store
edges) directed to the right and vertical edge (also called forward edges) directed upwards.
The capacity of vertical edges is c and the capacity of horizontal edges is B. We often refer
to Gst as the space-time grid because the x-axis is related to time and the y-axis corresponds
to the vertices in V .

A path request in the grid is a tuple rst = (ai, ti, bi), where ai, bi ∈ V and ti ∈ N. The
request is for a path that starts in node (ai, ti) and ends in any node in the row of bi (i.e.,
the end of the path can be any node (bi, t), where t ≥ ti).

1 The number of requests M is finite and known in the offline setting. This is not the case in the online
setting in which the number of requests is not known in advance and may be unbounded.

Even, Medina, and Rosén 5

A packing is a set of paths Sst that abides the capacity constraints. For every grid edge
e, the number of paths in Sst that contain e is not greater than the capacity of e.

Given a set of path requests Rst = {rsti }Mi=1, the goal in the Max-Path-Grid problem is
to find a packing Sst with the largest cardinality. (Each path in Sst serves a distinct path
request.)

Multi-Commodity Flows (MCFs). Our use of path packing problems gives rise to fractional
relaxations of that problem, namely to multi-commodity flows (MCFs) with unit demands
on un-directional grids. The definitions and terminology of MCFs appears in Appendix ??.

2.3 Tiling, Classification, and Sketch Graphs
To define our algorithm we make use of partiniongs of the space-time grid described above
into sub-grids. We define here the notions we use for this purpose. In this section we focus
on the case of unit capacities, namely, B = c = 1. An extension to other values of B and c
can be found [?].

Tiling. Tiling is a partitioning of the two-dimensional space-time grid (in short, grid) into
squares, called tiles. Two parameters specify a tiling: the side length k of the squares and
the shifting (ϕx, ϕy) of the squares. The shifting refers to the x- and y-coordinates of the
bottom left corner of the tiles modulo k. Thus, the tile Ti,j is the subset of the grid vertices
defined by

Ti,j , {(v, t) ∈ V × N | ik ≤ v − ϕy < (i+ 1)k and jk ≤ t− ϕx < (j + 1)k},

where ϕx and ϕy denote the horizontal and vertical shifting, respectively. We consider two
possible shifts for each axis, namely, ϕx, ϕy ∈ {0, k/2}.

Quadrants and Classification. Consider a tile T . Let (x′, y′) denote the lower left corner
(i.e., south-west corner) of T . The south-west quadrant of T is the set of vertices (x, y) such
that x′ ≤ x ≤ x′ + k/2 and y′ ≤ y ≤ y′ + k/2.

For every vertex (x, y) in the grid, there exists exactly one shifting (ϕx, ϕy) ∈ {0, k/2}2

such that (x, y) falls in the south-west (SW) quadrant of a tile. Fix the tile side length k. We
define a class for every shifting (ϕx, ϕy). The class that corresponds to the shifting (ϕx, ϕy)
consists of all the path requests rsti whose origin (ai, ti) belongs to a SW quadrant of a tile
in the tiling that uses the shifting (ϕx, ϕy).

Sketch graph and paths. Consider a fixed tiling. The sketch graph is the graph obtained
from the grid after coalescing each tile into a single node. There is a directed edge (s1, s2)
between two tiles s1, s2 in the sketch graph if there is a directed edge (α, β) ∈ Est such that
α ∈ s1 and β ∈ s2. Let ps denote the projection of a path p in the grid to the sketch graph.
We refer to ps as the sketch path corresponding to p. Note that the length of ps is at most
d|p|/ke+ 1.

3 Outline of our Algorithm

For the sake of simplicity we focus hereafter on the case of unit capacities, namely B = c = 1.
Extension to non-unit capacities are discussed in Section ??.

6 Scheduling Packets on Line Networks

Packet requests are categorized into three categories: short, medium, and long, according
to the source-destination distance of each packet. A separate approximation algorithm is
executed for each category. The algorithm returns a highest throughput solution among the
solutions computed for the three categories.

Notation. Two thresholds are used for defining short, medium, and long requests.

`M , 3 lnn, `S , 3 · ln(`M) = 3 · ln(3 lnn)

I Definition 1. A request ri is a short request if bi − ai ≤ `S . A request ri is a medium
request if `S < bi − ai ≤ `M . A request ri is a long request if bi − ai > `M .

We use a deterministic algorithm for the class of short packets, and in Theorem ?? we
prove that this deterministic algorithm achieves a constant approximation ratio. We use a
randomized algorithm for each of the classes of medium and long packets; in Theorem ?? we
prove that this randomized algorithm achieves a constant approximation ratio in expectation
for each of these classes. Thus, we obtain the following corollary.

I Corollary 2 (Main Result). If B = c = 1, then there exists a randomized approximation
algorithm for the Max-Pkt-Line problem that achieves a constant approximation ratio in
expectation.

In Section ?? we discuss non-unit capacities, give the approximation ratio for this case
and show that we achieve a constant approximation ratio as long as the ratio c/B is constant.

4 Approximation Algorithm for Short Packets

In this section we present a constant ratio deterministic approximation algorithm for short
packets. This algorithm, which is key to achieving the results of the present paper, makes
use of a new combinatorial lemma that we prove in the next subsection, stating, roughly
speaking, that if packets from a given set of packets are allowed to stay put in buffers (i.e., use
horizontal edges in the grid) only a limited number of time steps, 2d (where d is the longest
source-destination distance in the set of packets), then the optimal solution is decreased by
only a constant factor. We believe that this lemma may find additional application is future
work on routing and scheduling problems.

4.1 Bounding Path Lengths in the Grid

In this section we prove that bounding from above the slack (i.e., the number of horizontal
edges along a path) incurs only a small reduction in the throughput. Previously known
bounds along these lines hold only for fractional solutions [?], while we present here the first
such claim for integral schedules.

Let Rd denote a set of packet requests ri, i ≥ 1, such that bi − ai ≤ d for any i. Consider
the paths in the space-time grid that are allocated to the accepted requests. We prove that
restricting the path lengths to 2d decreases both the optimal fractional and the optimal
integral throughput only by a multiplicative factor of O(c/B). We note that if the ratio B/c
is a constant, then we are guarantees an optimal solution which is only a (different) constant
away from the unrestricted optimal solution.

Even, Medina, and Rosén 7

Notation. For a single commodity acyclic flow fi, let pmax(fi) denote the diameter of
the support of fi (i.e., length of longest path2). For an MCF F = {fi}i∈I , let pmax(F) ,
maxi∈I pmax(fi). Let F ∗frac(R) (respectively, F ∗int(R)) denote a maximum throughput frac-
tional (resp., integral) MCF with respect to the set of requests R. Similarly, let F ∗frac(R |
pmax < d′) (respectively, F ∗int(R | pmax < d′)) denote a maximum throughput fractional
(resp., integral) MCF with respect to the set of requests R subject to the additional constraint
that the maximum path length is at most d′.

I Lemma 3.

F ∗frac(Rd | pmax ≤ 2d) ≥ c

B + 2c · F
∗
frac(Rd)

F ∗int(Rd | pmax ≤ 2d) ≥ c

2(B + c) · F
∗
int(Rd).

Proof. Partition the space-time grid into slabs Sj of “width” d. Slab Sj contains the vertices
(v, k), where k ∈ [(j − 1) · d, j · d], j ≥ 1. We refer to vertices of the form (v, jd) as the
boundary of Sj . Note that if v − u ≤ d, then the forward-only vertical path from (u, jd) to
(v, jd+ (u− v)) is contained in slab Sj+1.

We begin with the fractional case. Let f∗ = F ∗frac(Rd) denote an optimal fractional
solution for Rd. Consider request ri and the corresponding single commodity flow f∗i in
f∗. Decompose f∗i to flow-paths {p`}`. For each flow-path p` in f∗i , let p′` denote the prefix
of p` till it reaches the boundary of a slab. Note that p′` = p` if p` is confined to a single
slab. If p′` (p`, then let (v, jd) denote the last vertex of p′`. Namely, the path p′` begins
in (ai, ti) ∈ Sj and ends in (v, jd). Let q′′` denote the forward-only path from (v, jd) to
(bi, jd+ (bi− v)). (If p′` = p`, then q′′` is an empty path.) Note that q′′` is confined to the slab
Sj+1. We refer to the vertex (v, jd) in the intersection of p′` and q′′` as the boundary vertex.
Let gi denote the fractional single commodity flow for request ri obtained by adding the
concatenated flow-paths q` , p′` ◦ q′′` each with the flow amount of f∗i along p`. Define the
MCF g by g(e) ,

∑
i∈I gi(e). For every edge e, part of the flow g(e) is due to prefixes p′`,

and the remaining flow is due to suffixes q′′` . We denote the part due to prefixes by gpre(e)
and refer to it as the prefix-flow. We denote the part due to suffixes by gsuf (e) and refer to
it as the suffix-flow. By definition, g(e) = gpre(e) + gsuf (e).

The support of gi is contained in the union of two consecutive slabs. Hence, the diameter
of the support of gi is bounded by 2d. Hence pmax(g) ≤ 2d.

Clearly, |gi| = |f∗i | and hence |g| = |f∗|. Set ρ = c/(B + 2c). To complete the proof,
it suffices to prove that ρ · g satisfies the capacity constraints. Indeed, for a “store” edge
e = (v, t)→ (v, t+ 1), we have gsuf (e) = 0 and gpre(e) ≤ f∗(e) ≤ B. For a “forward” edge
e = (v, t)→ (v + 1, t+ 1) we have: gpre(e) ≤ f∗(e) ≤ c. On the other hand, gsuf (e) ≤ B + c.
The reason is as follows. All the suffix-flow along e starts in the same boundary vertex (u, jd)
below e. The amount of flow forwarded by (u, jd) is bounded by the amount of incoming
flow, which is bounded by B + c. This completes the proof of the fractional case.

We now prove the integral case. The proof is a variation of the proof for the fractional
case in which the supports of pre-flows and suffix-flows are disjoint. Namely, one alternates
between slabs that support prefix-flow and slabs that support suffix-flow.

In the integral case, each accepted request ri is allocated a single path pi, and the allocated
paths satisfy the capacity constraints. As in the fractional case, let qi , p′i ◦ q′′i , where p′i is
the prefix of pi till a boundary vertex (v, jd), and q′′i is a forward-only path. We need to

2 Without loss of generality, we may assume that each single commodity flow fi is acyclic.

8 Scheduling Packets on Line Networks

prove that there exists a subset of at least c/(2(B + c)) of the paths {qi}i that satisfy the
capacity constraints. This subset is constructed in two steps.

First, partition the requests into “even” and “odd” requests according to the parity of
the slab that contains their origin (ai, ti). (The parity of request ri is simply the parity of
dti/de.) Pick a part that has at least half of the accepted requests in F ∗int(Rd). We only keep
accepted requests whose origin belong to even slabs.

In the second step, we consider all boundary vertices (v, j · d). For each boundary vertex,
we keep up to c paths that traverse it, and delete the remaining paths if such paths exist.
In the second step, again, at least a c/(B + c) fraction of the paths survive. It follows that
altogether at least c/(2(B + c)) of the paths survive.

We claim that the remaining paths satisfy the capacity constraints. Note that prefixes
are restricted to even slabs, and suffixes are restricted to odd slabs. Thus, intersections,
if any, are between two prefixes or two suffixes. Prefixes satisfy the capacity constraints
because they are prefixes of F ∗int(Rd). Suffixes satisfy the capacity constraints because if
two suffixes intersect, then they start in the same boundary vertex. However, at most c
paths emanating from every boundary vertex survive. Hence, the surviving paths satisfy the
capacity constraints, as required. This completes the proof of the lemma. J

We note that if the ratio B/c is a constant, then Lemma ?? guarantees an optimal
solution which is only a (different) constant away from the unrestricted optimal solution.
I Remark.

One may compute a maximum throughput fractional solution with bounded diameter
using linear programming. This is true because the constraint pmax(fi) ≤ d′ is a linear
constraint and can be imposed by a polynomial number of inequalities (i.e, polynomial in
n and d′). For example, one can construct a product network with (d′ + 1) layers, and
solve the MCF problem over this product graph.
Note that in the proof of Lemma ??, |q`| ≤ |p`|, namely, the length of each new path q`
that replaces an original flow-path p` is not greater than the length of p`.
The proof of Lemma ?? is algorithmic. Given any MCF F , one can compute in polynomial
time a diameter-bounded MCF F ′ such that |F ′| is at least a fraction of |F | (the value of
the fraction depends on whether the MCF is integral or fractional).
In [?] it is proved that a constant fraction of the fractional throughput can be obtained
with diameter 2d(1 + B

c). Formally,

F ∗frac

(
Rd | pmax ≤ 2d

(
1 + 2B

c

))
≥ 1

2 ·
(

1− 1
e

)
· F ∗frac(Rd).

4.2 The Algorithm for Short Packets
Short requests are further partitioned into four classes, defined as follows. Consider four
tilings each with side length k , 4`S and horizontal and vertical shifts in ϕx, ϕy ∈ {0, k/2} 3.
The four possible shiftings define four classes; in each class, all the sources nodes reside in
the SW quadrant of tiles. We say that a path pi from (ai, ti) to the row of bi is confined
to a tile if pi is contained in one tile. We bound the path lengths by 2`S so that, within
each class, every path is confined to the tile that contains its origin. AR: It is no good to
talk about c = B = 1 here since a few lines later we talk about general c,B, so it does not
combine. On the other hand I think that k above is defined given B = c = 1... So it does not

3 Recall that `M , 3 lnn and `S , 3 · ln(`M) = 3 · ln(3 lnn).

Even, Medina, and Rosén 9

work. I would delete the following lines, but this needs to be taken care of at some point.
Please comment out this comment, but don’t delete from the file so that we deal with it for
a future version. — Lemma ref(lemma:bounded path length) used with B = c = 1, implies
that an optimal solution.—

If we restrict the paths lengths to be at most 2`S , then by exhaustive search, it is
possible to efficiently compute a maximum throughput solution for each class. The algorithm
computes an optimal (bounded path length) solution for each class, and returns a highest
throughput solution among the four solutions.

The polynomial running time of the exhaustive search algorithm per class is based on
two observations.

I Observation 4. A path of length at most k/2 = 2`S that begins in the SW quadrant of tile
T is confined to T .

Proof. The tile side length equals k = 4`S . If the origin of a request is in the SW quadrant
of a tile and the path length is at most 2`S = k/2, then the end of the path belongs to the
same tile. J

I Observation 5. An optimal solution for each class in which paths are confined to their
origin tile is computable in time polynomial in n and M .

Proof. AR: it is a mess here, since above we apply the path length lemma for capacities 1
but here we talk about general c and B. I didn’t touch. Please comment out this comment,
but don’t delete from the file so that we deal with it for a future version. Fix a tile T . Let
X denote the set of short requests in T . Let Y denote the set of paths in T . It suffices for
exhaustive search to consider all functions f : X → Y . The number of short requests that
originate in the SW quadrant of T is bounded by (B + c)k2 (there are less than k2 possible
origins in T , and each origin can serve as the origin of at most (B + c) requests). Hence
|X| < 2k2. For each request there are less than

(2k
k

)
< 22k possible paths within the tile.

Hence, |Y | < 22k. This implies that the number of combinations of paths that exhaustive
search needs to consider is bounded by

|Y ||X| <
(
22k)(2k2) = o(n).

The number of tiles that contain a request is bounded by the number of requests M . Hence
the running time of the algorithm for short requests is polynomial in n and M . J

I Theorem 6. The approximation ratio of the algorithm for short requests is c
8(B+c) = 1

16 .

Proof. The short requests are partitioned to 4 classes. For each class and tile, the exhaustive
algorithm computes a c/(2(B + c))-approximation (by the integral version of Lemma ??)
because it bounds the path length by no less than twice the source-destination vertical
distance. J

I Remark. The algorithm for short requests can handle requests with deadlines, and achieve
the same performance while respecting hard deadlines, because it employs exhaustive search.

5 Approximation Algorithm for Medium & Long Requests

We use the same algorithm for the two classes of medium and long requests, the only difference
being some parameters of the algorithm. As indicated above, we consider at this point the
case of unit capacities (B = c = 1). We further note that the approximation ratio of the
algorithm for these classes is with respect to the optimal fractional solution.

10 Scheduling Packets on Line Networks

Notation. Let Rdmin,dmax denote the set of packet requests whose source-to-destination
distance greater than dmin and at most dmax. Formally, Rdmin,dmax , {ri | dmin < bi − ai ≤
dmax}.

Parametrization. When applied to medium requests we use the parameter dmax = `M and
dmin = `S . When applied to long requests the parameters are dmax = n and dmin = `M .
Note that these parameters satisfy dmin = 3 · ln dmax.

5.1 Outline of the Algorithm for Rdmin,dmax

The algorithm for Rdmin,dmax proceeds as follows. (To simplify notation, we abbreviate
Rdmin,dmax by R.)

1. Reduce the packet requests in R to path requests Rst over the space-time graph Gst.
2. Compute a maximum throughput fractional MCF F , {fi}ri∈Rst with edge capacities

c̃(e) = λ (for λ = β(1)/6 ≈ 1/15.54) 4 and bounded diameter pmax(F) ≤ 2dmax. We
remark that this MCF can be computed in time polynomial in n - the number of nodes
and M - the number of requests. The reason is that dmax ≤ n. Hence, for every request
one needs to consider at most an n× n subgrid.

3. Partition R to 4 classes {Rj}4
j=1 according to the quadrant that contains the source node

in a k × k tiling, where k , 2dmin = 6 ln dmax. Pick a class Rj such that the throughput
of F restricted to Rj is at least a quarter of the throughput of F , i.e., |F (Rj)| ≥ |F |/4.

4. For each request ri ∈ Rj , apply randomized rounding independently to fi as described
in Appendix ??. The outcome of randomized rounding per request ri ∈ Rj is either
“reject” or a path pi in Gst. Let Rrnd ⊆ Rj denote the subset of requests ri that are
assigned a path pi by the randomized rounding procedure.

5. Let Rfltr ⊆ Rrnd denote the requests that remain after applying filtering (described
in Section ??).

6. Let Rquad ⊆ Rfltr denote the requests for which routing in first quadrant is successful (as
described in Section ??).

7. Complete the path of each request in Rquad by applying crossbar routing (as described
in Section ??).

5.2 Filtering
Notation. Let e denote an edge in the space-time grid Gst. Let es denote an edge in
the sketch graph. We view es also as the set of edges in Gst that cross the tile edge that
corresponds to the sketch graph edge es. The path pi is a random variable that denotes the
path, if any, that is chosen for request ri by the randomized rounding procedure. For a path
p and an edge e let 1p(e) denote the 0-1 indicator function that equals 1 iff e ∈ p.

The set of filtered requests Rfltr is defined as follows (recall that λ = β(1)/6).

I Definition 7. A request ri ∈ Rfltr if and only if ri is accepted by the randomized rounding
procedure, and for every sketch-edge es in the sketch-path psi it holds that

∑
i 1p

s
i
(es) ≤ 2λ ·k.

I Claim 8 (Proof in Appendix ??). E [|Rfltr|] ≥
(
1−O(1

k)
)
·E [|Rrnd|].

4 The function β is defined in Definition ??.

Even, Medina, and Rosén 11

5.3 Routing in the First Quadrant
In this section, we deal with the problem of evicting as many requests as possible from their
origin quadrant to the boundary of the origin quadrant.
I Remark. Because k/2 ≤ dmin every request that starts in a SW quadrant of a tile must
reach the boundary (i.e. top or right side) of the quadrant before it can reach its destination.

The maximum flow algorithm. Consider a tile T . Let X denote set of requests ri whose
source (ai, ti) is in the south-west quadrant of T . We say that a subset X ′ ⊆ X is quadrant
feasible (in short, feasible) if it satisfies the following condition: There exists a set of edge
disjoint paths {qi | ri ∈ X ′}, where each path qi starts in the source (ai, ti) of ri and ends in
the top or right side of the SW quadrant of T .

We employ a maximum-flow algorithm to solve the following problem.
Input: A set of requests X whose source is in the SW quadrant of T .
Goal: Compute a maximum cardinality quadrant-feasible subset X ′ ⊆ X.

The algorithm is simply a maximum-flow algorithm over the following network, denoted
by N(X). Augment the quadrant with a super source s̃, a super sink t̃. The super source
s̃ is connected to every source (ai, ti) (of a request ri ∈ X) with a unit capacity directed
edge. (If γ requests share the same source, then the capacity of the edge is γ.) There is a
unit capacity edge from every vertex in the top side and right side of the SW quadrant of
T to the super sink t̃. All the grid edges are assigned unit capacities. Compute an integral
maximum flow in the network. Decompose the flow to unit flow paths. These flow paths are
the paths that are allocated to the requests in X ′.

Analysis. Fix a tile T and let RT ⊆ Rfltr denote the set of requests in Rfltr whose source
vertex is in the SW quadrant of T . Let R′T ⊆ RT denote the quadrant-feasible subset of
maximum cardinality computed by the max-flow algorithm. Let Rquad =

⋃
T R
′
T .

We now prove the following theorem that relates |R′T | to |RT |.

I Theorem 9. [?, ?] Let τ denote the probability space induced by the randomized rounding
procedure. Eτ [|Rquad|] ≥ 0.93 ·Eτ [|Rfltr|].

Routing within the first tile (see Section ??) requires a stronger limit on the number of
requests that emanate from each side of the quadrant.

I Corollary 10. One can further limit the quadrant-feasible set of requests in Rquad so that at
most k/3 paths reach each side of the quadrant. This restriction further reduces the expected
throughput by a factor of 2/3.

Proof. The sum of the capacities of the edges emanating from a side of the quadrant is k/2.
Limiting the number of paths to k/3 reduces the throughput by at most a factor of 2/3. J

5.4 Detailed Routing
In this section we deal with computing paths for requests ri ∈ Rquad starting from the
boundary of the SW quadrant that contains the source (ai, ti) till the destination row bi.
These paths are concatenated to the paths computed in the first quadrant to obtain the final
paths of the accepted requests. Detailed routing is based on the following components: (1) The
projections of the final path and the path pi to the sketch graph must coincide. (2) Each

12 Scheduling Packets on Line Networks

SW

NENW

SE

k/2k/6

k/3
k/3

k/6

k/6

k/2

k/6

(a)

b

a
req(W→N)

req(S→E)

req(W→E)

req(S→N)

(b)

Figure 1 (a) Partitioning of a tile to quadrants [?]. Thick lines represent “walls” that cannot
be crosses by paths. Sources may reside only in the SW quadrant of a tile. Maximum flow
amounts crossing quadrant sides appears next to each side. Final destinations of paths are assumed
(pessimistically) to be in the top row of the NE quadrant. (b) Crossbar routing: flow crossing an
a× b grid [?].

tile is partitioned to quadrants and routing rules within a tile are defined. (3) Crossbar
routing within each quadrant is applied to determine the final paths (except for routing in
SW quadrants in which paths are already assigned).

Sketch paths and routing between tiles. Each path pi computed by the randomized
rounding procedure is projected to a sketch path psi in the sketch graph. The final path p̂i
assigned to request ri traverses the same sequence of tiles, namely, the projection of p̂i is
also psi .

Routing rules within a tile [?]. Each tile is partitioned to quadrants as depicted in Figure ??.
The bold sides (i.e., “walls”) of the quadrants indicate that final paths may not cross these
walls. The classification of the requests ensures that source vertices of requests reside only in
SW quadrants of tiles. Final paths may not enter the SW quadrants; they may only emanate
from them. If the endpoint of a sketch path psi ends in tile T , then the path p̂i must reach a
copy of its destination bi in T . Reaching the destination is guaranteed by having p̂i reach
the top row of the NE quadrant of T (and thus it must reach the row of bi along the way).

Crossbar routing. [?]. Routing in each quadrant is simply an instance of routing in a 2D
grid where requests enter from two adjacent sides and exit from the opposite sides. Figure ??
depicts such an instance in which requests arrive from the left and bottom sides and exit from
the top and right side. The following claim characterizes when crossbar routing succeeds.

I Claim 11. [?] Consider a 2-dimensional directed a× b grid. A set of requests can be routed
from the bottom and left boundaries of the grid to the opposite boundaries if and only if the
number of requests that should exit each side is at most the length of the corresponding side.

We conclude with the following claim.

I Claim 12. Detailed routing succeeds in routing all the requests in Rquad.

Proof sketch. The sketch graph is a directed acyclic graph. Sort the tiles in topological
ordering. Within each tile, order the quadrants also in topological order: SW, NW, SE, NE.
Prove by induction on the position of the quadrant in the topological ordering that detailed
routing in the quadrant succeeds. The induction basis, for all SW quadrants, follows because

Even, Medina, and Rosén 13

this routing is performed by the routing in the first quadrant. Note that filtering ensures
that the number of paths between tiles is at most 2λk = k/6. Routing in the first quadrant
ensures that the number of paths emanating from each side of a SW quadrant is at most
k/3. The induction step follows by applying Claim ??. J

5.5 Approximation Ratio
AR: As we discussed this section should be revised: (1) all above talks about c = B = 1, see
the top of the section (it was there before my pass), so the proof cannot use B and c. (2)
there should be a claim for B = c = 1 which is the main proof for this section. (3) then a
corollary for arbitrary B and c with some argument why even of we have arbitrary B = c

(i.e., they are equal, but anything) we get something good (what do we get ?) (4) a few
words that explain why the remark is correct.

I Theorem 13. The approximation ratio of the algorithm for packet requests in Rdmin,dmax

is constant in expectation.

Proof. By Lemma ??, bounding path lengths in the MCF incurs a factor of c/(B + 2c).
The scaling of the capacities in the space-time grid incurs a factor of λ. The classification
into 4 classes incurs a factor of 1/4. By Claim ??, the filtering stage incurs a factor of
1 − O(1/k) in expectation. By Theorem ??, routing in the first quadrant incurs factor of
0.93 in expectation. By Corollary ??, limiting the number of paths that cross the sides of
SW quadrants incurs an additional factor of 2/3. J

I Remark. If deadlines are present, then they are missed by most k time steps.

6 Extension to Non-unit Capacities & Buffer Sizes

Our results extend to arbitrary values of B and c. If the ratio of B/c is a constant, our results
will give a randomized approximation algorithm with a (different) constant approximation
ratio We outline the required modifications to handle this case.

1. AR: I have no idea what this item means, and in particular I don’t see in its text anything
that talks about c and B. So it is not clear to me (or any other reader) why if B or
c are not 1, there should be an additional class. Exhaustive search can be executed
in polynomial time provided that the distance of each packet request is at most ln(`S)
(see [?, Lemma 7]). This means that there is an additional category of requests, called
very short requests, in addition to short, medium, and long requests. The distance of
short requests is lower bounded by ln(`S). Hence we can apply the same algorithm to
long, medium, and short requests with the proper parametrization.

2. We can run the algorithm of Section ?? for the short, medium, and long requests using
as both the the buffer size and the link capacity min{B, c}. By Corollary ?? we get an
....-approximation with respect to a fractional optimal that uses the same capacities. But,
because we consider the the fractional optimal we can use the fact that the fractional
Optimum with this capacities is only at most a c/B fraction away from the real fractional
optimum. Hence, because, we assume that c/B is a constant we remain with a constant
approximation algorithm.

I Theorem 14. There exists a randomized algorithm for the Max-Pkt-Line such that if B/c
is constant, then its approximation ratio is a (different) constant.

14 Scheduling Packets on Line Networks

time
0

1

n−1

node

(a)

x

0

1

n−1

t−x

(b)

Figure 2 The space-time graph Gst before and after untilting [?].

References

A Reduction of Packet-Routing to Path Packing

A.1 Space-Time Transformation

A space-time transformation is a method to map schedules in a directed graph over time into
paths in a directed acyclic graph [?, ?, ?, ?]. Let G = (V,E) denote a directed graph. The
space-time transformation of G is the acyclic directed infinite graph Gst = (V st, Est), where:
(i) V st , V × N. We refer to every vertex (v, t) as a copy of v. Namely, each vertex has a
copy for every time step. We often refer to the copies of v as the row of v. (ii) Est , E0 ∪E1
where the set of forward edges is defined by E0 , {(u, t)→ (v, t+ 1) : (u, v) ∈ E , t ∈ N}
and the set of store edges is defined by E1 , {(u, t)→ (u, t+ 1) : u ∈ V, t ∈ N}. (iii) The
capacity of every forward edge is c, and the capacity of every store edge is B. Figure ??
depicts the space-time graph Gst for a directed path over n vertices. Note that we refer
to a space-time vertex as (v, t) even though the x-axis corresponds to time and the y-axis
corresponds to the nodes. We often refer to Gst as the space-time grid.

A.2 Untilting

The forward edges of the space-time graph Gst are depicted in Fig. ?? by diagonal segments.
We prefer the drawing of Gst in which the edges are depicted by axis-parallel segments [?].
Indeed, the drawing is rectified by mapping the space-time vertex (v, t) to the point (v, t− v)
so that store edges are horizontal and forward edges are vertical. Untilting simplifies the
definition of tiles and the description of the routing. Figure ?? depicts the untilted space-time
graph Gst (e.g., the node (2, 1) is mapped to (2,−1).).

A.3 The Reduction

A schedule si for a packet request ri specifies a path pi in Gst as follows. The path starts
at (ai, ti) and ends in a copy of bi. The edges of pi are determined by the actions in si; a
store action is mapped to a store edge, and a forward action is mapped to a forward edge.
We conclude that a schedule S induces a packing of paths such that at most B paths cross
every store edge, and at most c paths cross every forward edge. Note that the length of the
path pi equals the length of the schedule si. Hence we can reduce each packet request ri to
a path request rsti over the space-time graph. Vice versa, a packing of paths {pi}i∈I , where

Even, Medina, and Rosén 15

pi begins in (ai, ti) and ends in a copy of bi induces a schedule5. We conclude that there is a
one-to-one correspondence between schedules and path packings.

B Multi-Commodity Flow Terminology

Network. A network N is a directed graph6 G = (V,E), where edges have non-negative
capacities c(e). For a vertex u ∈ V , let out(u) denote the outward neighbors, namely the set
{y ∈ V | (u, y) ∈ E}. Similarly, in(u) , {x ∈ V | (x, u) ∈ E}.

Grid Network. A grid network N is a directed graph G = (V,E) where V = [n]× N and
(i, t1)→ (j, t2) is an edge in E if t2 = t1 + 1 and 0 ≤ j − i ≤ 1.

Commodities/Requests. A request ri is a pair (ai, bi), where ai ∈ V is the source and
bi ∈ V is the destination. We often refer to a request ri as commodity i. The request ri is to
ship commodity i from ai to bi. All commodities have unit demand.

In the case of space-time grids, a request is a triple (ai, bi, ti) where ai, bi ∈ [n] are the
source and destination and ti is the time of arrival. The source in the grid is the node (ai, ti).
The destination in the grid is any copy of bi, namely, vertex (bi, t), where t ∈ N.

Single commodity flow. Consider commodity i. A single-commodity flow from ai to bi is
a function fi : E → R≥0 that satisfies the following conditions:

(i) Capacity constraints: for every edge (u, v) ∈ E, 0 ≤ fi(u, v) ≤ c(u, v).
(ii) Flow conservation: for every vertex u ∈ V \ {ai, bi}∑

x∈in(u)

fi(x, u) =
∑

y∈out(u)

fi(u, y).

(iii) Demand constraint: |fi| ≤ 1 (amount of flow |fi| defined below).
The amount of flow delivered by the flow f is defined by

|fi| ,
∑

y∈out(ai)

fi(ai, y)−
∑

x∈in(ai)

fi(x, ai).

The support of a flow fi is the set of edges (u, v) such that fi(u, v) > 0. As cycles in the
support of fi can be removed without decreasing |fi|, one may assume that the support of fi
is acyclic.

Multi-commodity flow (MCF). In a multi-commodity flow (MCF) there is a set of com-
modities I, and, for each commodity i ∈ I, we have a source-destination pair denoted by
(ai, bi). Consider a sequence F , {fi}i∈I of single-commodity flows, where each fi is a single
commodity flow from the source vertex ai to the destination vertex bi. We abuse notation,
and let F denote also the sum of the flows, namely F : E → R, where F (e) ,

∑
i∈I fi(e), for

5 In [?], super-sinks are added to the space-time grid so that the destination of each path request is single
vertex rather than a row.

6 The graph G is this section is an arbitrary graph, not a directed path. In fact, we use MCF over the
space-time graph of the directed graph with super sinks for copies of each vertex.

16 Scheduling Packets on Line Networks

every edge e. A sequence F is a multi-commodity flow if, in addition it satisfies cumulative
capacity constraints defined by:

for every edge (u, v) ∈ E: F (u, v) ≤ c(u, v).

The throughput of an MCF F , {fi}i∈I is defined to be
∑
i∈I |fi|. In the maximum

throughput MCF problem, the goal is to find an MCF F that maximized the throughput.
An MCF is all-or-nothing if |fi| ∈ {0, di}, for every commodity i ∈ I. An MCF

is unsplittable if the support of each flow is a simple path. The support of each single
commodity flow fi is a simple path if F = {fi}i∈I is an unsplittable MCF. An MCF is
integral if it is both all-or-nothing and unsplittable. An MCF that is not integral is called a
fractional MCF.

C Randomized Rounding Procedure

In this section we present material from Raghavan [?] about randomized rounding. The
proof of the Chernoff bound is also based on Young [?].

Given an instance F = {fi}i∈I of a fractional multi-commodity flow, we are interested in
finding an integral (i.e., all-or-nothing and unsplittable) multi-commodity flow F ′ = {f ′i}i∈I
such that the throughput of F ′ is as close to the benefit of F as possible.

I Observation 15. As flows along cycles are easy to eliminate, we assume that the support
of every flow fi ∈ F is acyclic.

We employ a randomized procedure, called randomized rounding, to obtain F ′ from F .
We emphasize that all the random variables used in the procedure are independent. The
procedure is divided into two parts. First, we flip random coins to decide which commodities
are supplied. Next, we perform a random walk along the support of the supplied commodities.
Each such walk is a simple path along which the supplied commodity is delivered. We
describe the two parts in details below.

Deciding which commodities are supplied. For each commodity, we first decide if |f ′i | = 1
or |f ′i | = 0. This decision is made by tossing a biased coin bi ∈ {0, 1} such that

Pr [bi = 1] , |fi| ≤ 1.

If bi = 1, then we decide that |f ′i | = 1 (i.e., the packet is accepted). Otherwise, if bi = 0,
then we decide that |f ′i | = 0 (i.e., the packet is rejected).

Assigning paths to the supplied commodities. For each commodity i that we decided to
fully supply (i.e., bi = 1), we assign a simple path Pi from its source si to its destination ti by
following a random walk along the support of fi. At each node, the random walk proceeds by
rolling a dice. The probabilities of the sides of the dice are proportional to the flow amounts.
A detailed description of the computation of the path Pi is given in Algorithm ??.

Definition of F ′. Each flow f ′i ∈ F ′ is defined as follows. If bi = 0, then f ′i is identically
zero. If bi = 1, then f ′i is defined by

f ′i(u, v) ,
{

1 if (u, v) ∈ Pi,
0 otherwise.

Hence, F ′ = {f ′i | bi = 1} is an all-or-nothing unsplittable flow, as required.

Even, Medina, and Rosén 17

Algorithm 1 Algorithm for assigning a path Pi to flow fi.
1: Pi ← {si}.
2: u← si
3: while u 6= ti do . did not reach ti yet
4: v ← choose-next-vertex(u).
5: Append v to Pi
6: u← v

7: end while
8: return (Pi).
9: procedure choose-next-vertex(u, fi)
10: Let out(u, fi) denote the set of edges in the support of fi that emanate from u.
11: Consider a dice C(u, fi) with |out(u, fi)| sides. The side corresponding to an edge

(u, v) ∈ out(u, fi) has probability fi(u, v)/(
∑

(u,v′)∈out(u,fi) fi(u, v′)).
12: Let v denote the outcome of a random roll of the dice C(u, fi).
13: return (v)
14: end procedure

C.1 Expected flow per edge
The following claim can be proved by induction on the position of an edge in a topological
ordering of the support of fi.

I Claim 16. For every commodity i and every edge (u, v) ∈ E:

Pr [(u, v) ∈ Pi] = fi(u, v),
E [f ′i(u, v)] = fi(u, v).

D Chernoff Bound

I Definition 17. The function β : (−1,∞)→ R is defined by β(ε) , (1 + ε) ln(1 + ε)− ε.

I Observation 18. For ε such that −1 < ε < 1 it holds that ε2

2 ≥ β(ε) ≥ 2ε2

4.2+ε . Hence,
β(ε) = Θ(ε2).

I Theorem 19 (Chernoff Bound [?, ?]). Let {Xi}i denote a sequence of independent random
variables attaining values in [0, 1]. Assume that E [Xi] ≤ µi. Let X ,

∑
iXi and µ ,

∑
i µi.

Then, for ε > 0,

Pr [X ≥ (1 + ε) · µ] ≤ e−β(ε)·µ.

I Corollary 20. Under the same conditions as in Theorem ??,

Pr [X ≥ α · µ] ≤
(e
α

)α·µ
.

E Proofs

Proof of Claim ??

Proof. We begin by bounding the probability that at least 2λk sketch paths cross a single
sketch edge.

18 Scheduling Packets on Line Networks

I Lemma 21 (Chernoff Bound). For every edge es in the sketch graph,7

Pr
[∑

i

1ps
i
(es) > 2λk

]
≤ e−k/6 . (1)

Proof of lemma. Recall that the edge capacities in the MCF F are λ. The capacity constraint∑
i fi(e) ≤ λ implies that fi(e) ≤ λ. Each sketch edge es corresponds to the grid edges

between adjacent tiles. Since the demand of each request is 1, it follows that fi(es) ≤ 1.
For every edge e and request ri, we have

E
[
1ps

i
(es)

]
= Pr

[
1ps

i
(es) = 1

]
= fi(es) ≤ 1.

Fix a sketch edge es. The random variables {1ps
i
(es)}i are independent 0-1 variables.

Moreover,
∑
i E
[
1ps

i
(es)

]
=
∑
i fi(es) =

∑
e∈es

∑
i fi(e) ≤ λ · k. By Chernoff bound

(Theorem ??),

Pr
[∑

i

1ps
i
(es) > 2 ·

∑
i

E
[
1ps

i
(es)

]]
< e−β(1)·λk = e−k/6.

J

A request ri ∈ Rrnd is not in Rfltr iff at least one of the edges es ∈ psi is over-congested.
Hence, by a union bound,

Pr [ri 6∈ Rfltr | ri ∈ Rrnd] ≤ |psi | · e−k/6

≤
(⌈

dmax

k

⌉
+ 1
)
· e− ln dmax

= O

(
1
k

)
.

J

I Remark. Note that filtering uses the fact that k ≥ 6 ln dmax.

Proof of Theorem ??

Proof. By linearity of expectation, it suffices to prove that Eτ [|R′T |] ≥ 0.93 ·Eτ [|RT |]
Let R̂T ⊆ RT denote the subset of requests that do not violate the capacity constraints

of “rectangles” described below. We prove that: (1) The cuts induced by rectangles are
critical in the sense that if none of these cuts is violated, then the set of requests is feasible.
(2) Eτ

[
|R̂T |

]
≥ 0.93·Eτ [|RT |]. By the construction, R′T is of maximum cardinality, therefore,

|R′T | ≥ |R̂T |, and the theorem follows.
We now describe how the feasible subset R̂T is constructed. Consider a subset S of the

vertices in the SW quadrant of T . Let dem(S) denote the number of requests whose origin
is in S. Let cap(S) denote the capacity of the edges in the network N(RT) that emanate
from S. By the min-cut max-flow theorem, a set of requests X ⊆ RT is feasible if and only
if dem(S) ≤ cap(S) for every cut S ∪ {s̃} in the network N(X).

In fact, it is not necessary to consider all the cuts. It suffices to consider only axis parallel
rectangles contained in the quadrant T . The reason is that, without loss of generality, the set

7 The e in the RHS is the base of the natural logarithm.

Even, Medina, and Rosén 19

S is connected in the underlying undirected graph of the grid (i.e., consider each connected
components of S separately). Every “connected” set S can be replaced by the smallest
rectangle Z(S) that contains S. We claim that cap(S) ≥ cap(Z(S)) and dem(S) ≤ dem(Z(S)).
Indeed, there is an injection from the edges in the cut of Z(S) to the edges in the cut of S. For
example, a vertical edge e in the cut of Z(S) is mapped to the topmost edge e′ in the cut of S
that is in the column of e. Hence, cap(Z(S)) ≤ cap(S). On the other hand, as S ⊆ Z(S), it
follows that dem(S) ≤ dem(Z(S)). Hence if dem(S) > cap(S), then dem(Z(S)) > cap(Z(S)).

We say that a rectangle Z is overloaded if dem(Z) > cap(Z). The set R̂T is defined to
be the set of requests ri ∈ RT such that the source of ri is not included in an overloaded
rectangle. Namely,

R̂T , {ri ∈ RT | ∀ rectangles Z : Z is overloaded ⇒ (ai, ti) 6∈ Z}

Consider an x× y rectangle Z. We wish to bound the probability that dem(Z) > cap(Z).
Note that cap(Z) = x+ y. Since requests that start in Z must exit the quadrant, it follows
that dem(Z) is bounded by the number of paths in RT that cross the top or right side of Z
(there might be additional paths that do not start in Z but cross Z.). The amount of flow
that emanates from Z is bounded by λ · (x+ y) (the initial capacities are λ and there are
x+ y edges in the cut). By Claim ??, Pr [e ∈ pi] = fi(e). Summing up over all the edges in
the cut of Z and the requests in RT , the expected number of paths in RT that cross the cut
of Z equals the flow which, in turn, is bounded by the capacity λ · (x+ y). As the paths of
the requests are independent random variables, we apply Coro. ?? to obtain

Pr [dem(Z) > cap(Z)] ≤ Pr
[∑
i∈RT

|pi ∩ cut(Z)| > (x+ y)
]

≤ (λ · e)x+y

Each source (ai, ti) is contained in at most x · y rectangles with side lengths x× y. By
applying a union bound, the probability that (ai, ti) is contained in an overloaded rectangle
is bounded by

Pr [∃ overloaded rectangle Z : (ai, ti) ∈ Z] ≤
∞∑
x=1

∞∑
y=1

xy · (λ · e)x+y

≤ (λ · e)2

(1− λ · e)4 ≤ 0.07,

and the theorem follows. J

