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This paper studies the set cover problem under the semi-streaming model. The underlying set system is

formalized in terms of a hypergraph G = (V,E) whose edges arrive one-by-one and the goal is to construct

an edge cover F ⊆ E with the objective of minimizing the cardinality (or cost in the weighted case) of F .
We further consider a parameterized relaxation of this problem, where given some 0 ≤ ε < 1, the goal is to

construct an edge (1− ε)-cover, namely, a subset of edges incident to all but an ε-fraction of the vertices (or

their benefit in the weighted case). The key limitation imposed on the algorithm is that its space is limited
to (poly)logarithmically many bits per vertex.

Our main result is an asymptotically tight trade-off between ε and the approximation ratio: We design
a semi-streaming algorithm that on input hypergraph G, constructs a succinct data structure D such that

for every 0 ≤ ε < 1, an edge (1 − ε)-cover that approximates the optimal edge (1-)cover within a factor of

f(ε, n) can be extracted from D (efficiently and with no additional space requirements), where

f(ε, n) =

{
O(1/ε), if ε > 1/

√
n

O(
√
n), otherwise

.

In particular for the traditional set cover problem we obtain an O(
√
n)-approximation. This algorithm is

proved to be best possible by establishing a family (parameterized by ε) of matching lower bounds.
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1. INTRODUCTION
Given a set system consisting of a universe of items and a collection of item sets, the goal
in the set cover problem is to construct a minimum cardinality subcollection of sets that
covers the whole universe. This problem is fundamental to combinatorial optimization
with applications ranging across many different domains. It is one of the 21 problems
whose NP-hardness was established by Karp [Karp 1972] and its study has led to
the development of various techniques in the field of approximation algorithms (see,
e.g., [Vazirani 2001]).

In this paper, we investigate the set cover problem under the semi-streaming model
[Feigenbaum et al. 2005], where the sets arrive one-by-one and the algorithm’s space
is constrained to maintaining a small number of bits per item (cf. the set-streaming
model [Saha and Getoor 2009]). In particular, we are interested in the following two
questions: (1) What is the best approximation ratio for the set cover problem under
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A:2 Emek and Rosén

such memory constraints? (2) How does the answer to (1) change if we relax the set
cover notion so that the set subcollection is required to cover only a δ-fraction of the
universe?

On top of the theoretical interest in the aforementioned questions, studying the set
cover problem under the semi-streaming model is also justified by several practical ap-
plications. For example, Saha and Getoor [Saha and Getoor 2009] describe the setting
of a web crawler that iterates a large collection of blogs, listing the topics covered by
each one of them. A user interested in a certain set of topics can run a semi-streaming
set cover algorithm with relatively small memory requirements to identify a subcollec-
tion of blogs that covers the desired topics.

The model. In order to fit our terminology to the graph theoretic terminology tradi-
tionally used in the semi-streaming literature (and also to ease the presentation), we
use an equivalent formulation for the set cover problem in terms of edge covers in hy-
pergraphs: Consider some hypergraph G = (V,E), where V is a set of n vertices and E
is a (multi-)set of m hyperedges (henceforth edges), where each edge e ∈ E is an arbi-
trary non-empty subset e ⊆ V . Assume hereafter that G does not admit any isolated
vertices, namely, every vertex is incident to at least one edge. We say that an edge
subset F ⊆ E covers G if every vertex in V is incident to some edge in F . The goal of
the edge cover problem is to construct a subset F ⊆ E of edges that covers G, where
the objective is to minimize the cardinality |F |.

A natural relaxation of the covering notion seeks to cover some fraction of the ver-
tices in V : Given some 0 < δ ≤ 1, we say that an edge subset F ⊆ E δ-covers G
if at least δn vertices are incident to the edges in F , namely, |V (F )| ≥ δn, where
V (F ) = {v ∈ V | ∃e ∈ F s.t. v ∈ e}. Under this terminology, a cover of G is referred
to as a 1-cover. This raises a bi-criteria optimization version of the set cover problem,
where the goal is to construct an edge subset F ⊆ E that δ-covers G with the objective
of minimizing |F | and maximizing δ. In this paper, we focus on approximation algo-
rithms, where the cardinality of F is compared to that of an optimal edge (1-)cover of
G.

In the weighted version of the edge cover problem, the hypergraph G is augmented
with vertex benefits b : V → Q>0 and edge costs c : E → Q>0. The edge cover definition
is generalized so that edge subset F ⊆ E is said to δ-cover G if the benefit of the
vertices incident to the edges in F is at least a δ-fraction of the total benefit, namely,
b(V (F )) ≥ δ · b(V ), where b(U) =

∑
v∈U b(v) for every vertex subset U ⊆ V . The goal is

then to construct an edge subset F that δ-covers G = (V,E, b, c), where the objective is
to maximize δ and minimize the cost of F , denoted c(F ) =

∑
e∈F c(e).

Under the semi-streaming model, the execution of an algorithm is partitioned into
discrete time steps and the edges in E are presented one-by-one so that edge et ∈ E
is presented at time t = 0, 1, . . . ,m − 1, listing all vertices v ∈ et;1 in the weighted
version, the cost of et and the benefits of the vertices it contains are also listed. The key
limitation imposed on the algorithm is that its space is limited; specifically, we allow
the algorithm to maintain logO(1) |G| bits per vertex, where |G| denotes the number of
bits in the standard binary encoding of G. Each edge e ∈ E is associated with a unique
identifier id(e) of size O(logm) bits, say, the time t at which edge et is presented. We
may sometimes use the identifier id(e) when we actually refer to the edge e itself, e.g.,
replacing c(e) with c(id(e)); our intention will be clear from the context.

In contrast to the random access memory model of computation, where, given a col-
lection I of identifiers, one can verify that all vertices in V are covered by the the edges

1With the exception of our related work discussion, all semi-streaming algorithms in this paper make a
single (one way) pass over the input hypergraph.
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Semi-Streaming Set Cover A:3

whose identifiers are in I (and also determine which vertex in V is incident to which
of the edges), under the semi-streaming model, the collection I by itself typically fails
to provide this information. Therefore, instead of merely returning the identifiers of
some edge δ-cover, we require that the algorithm’s output encodes the collection I of
edge identifiers together with, for each vertex v, an identifier in I of an edge incident to
v (or null if v is not covered by the edge δ-cover). Formally, the algorithm is required to
output a δ-cover certificate χ for G which is a partial function from V to {id(e) | e ∈ E}
with domain

Dom(χ) = {v ∈ V | χ is defined over v}
and image

Im(χ) = {id(e) | ∃v ∈ Dom(χ) s.t. χ(v) = id(e)}
that satisfies (1) if v ∈ Dom(χ) and χ(v) = id(e), then v ∈ e; and (2) b(Dom(χ)) ≥ δ ·b(V ).
By definition, the image of χ consists of the identifiers of the edges in some edge δ-
cover F of G and the quality of the δ-cover certificate χ is thus measured in terms of
c(Im(χ)) = c(F ).

Our contributions. Consider some unweighted hypergraph G = (V,E) with optimal
edge 1-cover OPT. We design a deterministic semi-streaming algorithm, referred to as
SSSC (acronym of the paper’s title), for the edge (δ-)cover problem that, given some
0 ≤ ε < 1, outputs a (1 − ε)-cover certificate χε for G with image of cardinality
|Im(χε)| = O(min{1/ε,

√
n} · |OPT|).2 This result is extended to the weighted case, where

G = (V,E, b, c), showing that c(Im(χε)) = O(min{1/ε,
√
n} · c(OPT)) (see Thm. 2.2

and Thm. 2.3). In particular, for the edge (1-)cover problem, we obtain an O(
√
n)-

approximation for both the weighted and unweighted cases.
On the negative side, we prove that for every ε ≥ 1/

√
n, if a randomized semi-

streaming algorithm for the set cover problem outputs a (1−ε)-cover certificate χ forG,
then it cannot guarantee that E[|Im(χ)|] = o(|OPT|/ε) (see Thm. 3.1). This demonstrates
that the approximation guarantee of our algorithm is asymptotically optimal for the
whole range of parameter 0 ≤ ε < 1 even for randomized algorithms.

We note that SSSC has the attractive feature that the (near-linear size) data struc-
ture that it maintains is oblivious to the parameter ε. That is, the algorithm processes
the stream of edges with no knowledge of ε, generating a data structure D, and the
promised (1 − ε)-cover certificate χε can be efficiently extracted from D (with no addi-
tional space requirements) for every 0 ≤ ε < 1 (in fact several such covers for different
values of ε can be extracted). From a bi-criteria optimization perspective, our lower
bound implies that the parameterized collection {χε}0≤ε<1 encoded in D is an (asymp-
totically) optimal solution frontier (cf. Pareto optimality).

Using a simple adjustment of the randomized rounding technique for set cover (see,
e.g., [Vazirani 2001]), it is not difficult to show that a basic feasible solution to the
linear program relaxation P of a given set cover instance also serves as a compact
data structure from which a (1 − ε)-cover certificate χε can be extracted for every 0 ≤
ε < 1. In fact, the approximation ratio obtained this way is better than ours, namely,
O(log(1/ε)). However, our lower bound shows that this approach cannot be applied —
and in passing, that the linear program relaxation P cannot be solved — under the
semi-streaming model.

Can our tight lower bound be an artifact of the requirement that the algorithm out-
puts a cover certificate? We nearly eliminate this possibility by proving that for every
constant c > 0 and for every ε ≥ n−1/2+c, even if the randomized algorithm has to

2Define min{1/x, y} = y when x = 0.
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return only an “uncertified” output, i.e., only the identifiers of the edges in some edge
(1− ε)-cover F of G are returned, then the expected cardinality of F must still be large,
specifically, E[|F |] = Ω

(
log logn

logn · |OPT|/ε
)

, where OPT in this case is proportional to ε2n

(see Thm. 3.2).3

Related work. The work most closely related to the present paper is probably the one
presented in Saha and Getoor’s paper [Saha and Getoor 2009] that also considers
the set cover problem under a variant of the streaming model called set-streaming,
formulated as the edge cover problem in hypergraphs. Saha and Getoor design a 4-
approximation algorithm for the maximum coverage problem that, given a hypergraph
G = (V,E) and a parameter k, looks for k edges that cover as many vertices as possi-
ble, where the algorithm stores (explicitly) at most k edges at any given time. Based
on that, they observe that an O(log n)-approximation for the optimal set cover can be
obtained in O(log n) passes over the input (this can be achieved based on our semi-
streaming algorithm as well). Using the terminology of the present paper, Saha and
Getoor’s maximum coverage algorithm is very efficient for obtaining edge (1−ε)-covers
as long as ε is large, but it does not provide any (single pass) guarantees for ε < 3/4.
In contrast, our algorithm has asymptotically optimal (single pass) guarantees for any
0 ≤ ε < 1.

Subsequent to the initial publication of the present work [Emek and Rosén 2014], a
series of papers considered the set cover problem in the streaming setting, under the
semi-streaming space constraint (i.e., space in O(n polylog(n,m))), or the sublinear
space constraint (i.e., space in o(mn)).

Assasi, Khanna, and Li [Assadi et al. 2016] generalize our upper and lower bounds
for 1-cover and show that in order to achieve α-approximation (α = o(

√
n)), Θ̃(mn/α)

space is necessary and sufficient for deterministic and randomized one-pass streaming
algorithms. If only an estimation of the size of the optimal set cover is sought (rather
than finding the cover itself), then Θ̃(mn/α2) space is necessary and sufficient for ran-
domized one-pass streaming algorithms.

Chakrabarti and Wirth [Chakrabarti and Wirth 2016] give essentially tight
bounds on the approximation ratio achievable by deterministic and randomized semi-
streaming algorithms that use p ≥ 1 passes. They show that the smallest α for
which a (deterministic or randomized) semi-streaming algorithm can compute an α-
approximation (1− ε)-cover for unweighted instances is Θ

(
min

{
n

1
p+1 , ε−

1
p

})
(ignoring

multiplicative factors involving p). Their results imply for our one-pass setting a some-
what better lower bound than ours in that they show a lower bound on the approx-
imation ratio of algorithms that only have to approximate the size of the minimum
(partial) set cover rather than finding one.

Demaine et al. [Demaine et al. 2014] study sublinear-space streaming algorithms
and consider the interplay between the number of passes and the approximation ratio
as well as the space requirements. They show that for any δ = Ω(1/ log n), an approx-
imation ratio of O(4

1
δ ) can be achieved in O(4

1
δ ) passes using Õ(mnδ) space, if expo-

3By using a rather simple reduction from the index function studied in communication complexity [Kremer
et al. 1999], one can show that there does not exist a semi-streaming algorithm that distinguishes between
hypergraphs admitting a constant size edge cover and hypergraphs that cannot be covered by less than nα
edges for any constant 0 < α < 1/2. This lower bound is more attractive in the sense that it applies already
to the decision version of the set cover problem. However, to the best of our understanding, in contrast to the
constructions of the present paper, this simple reduction cannot be generalized to (1 − ε)-covers for values
of ε � 1/

√
n. We note that subsequent to the initial publication of the present work [Emek and Rosén

2014], Chakrabarti and Wirth [Chakrabarti and Wirth 2016] obtained such a generalization using more
complicated combinatorial structures than those used for the simpler reduction.
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nential time is allowed. A multiplicative factor of ρ is added to the space and approxi-
mation bounds, if the run-time is polynomial and a ρ-approximation standard off-line
algorithm for set cover is used as a subroutine (rather than using as a subroutine an
exponential time optimal algorithm for set cover). They further give lower bounds for
deterministic streaming algorithms showing that whatever the number of passes is,
with space in o(mn), one cannot achieve a constant approximation ratio. These results
were later improved by Indyk, Mahabadi, and Vakilian [Indyk et al. 2015], who gave an
O(1/δ)-pass randomized algorithm that achieves an O(ρ/δ)-approximation ratio using
Õ(mnδ) space.

The semi-streaming model was introduced by Feigenbaum et al. [Feigenbaum et al.
2005] for graph theoretic problems, where the edges of an n vertex input graph arrive
sequentially and the algorithm is allowed to maintain only logO(1) n bits of memory
per vertex. Since the number of bits required to encode an n vertex graph is nO(1), the
space-per-vertex bound used in the present paper can be viewed as a generalization of
the bound used by Feigenbaum et al. from graphs to hypergraphs. In any case, if one
restricts attention to hypergraphs with m ≤ 2logO(1) n edges then the two bounds are
identical (refer to Sec. 2 for further discussions on the space bounds of our algorithm).

A large number of graph theoretic problems have been treated under the stream-
ing model in recent years, cf. [McGregor 2014]. For example, matching problems (e.g.,
[McGregor 2005; Epstein et al. 2011; Konrad et al. 2012; Esfandiari et al. 2015]), con-
nectivity and minimum spanning tree problems (e.g., [Feigenbaum et al. 2005]), diam-
eter and shortest path problems (e.g., [Feigenbaum et al. 2008]), min-cut, max-cut, and
sparsification problems (e.g., [Ahn and Guha 2009; Kelner and Levin 2013; Kapralov
et al. 2014; Kapralov et al. 2015]), problems related to the construction of graph span-
ners (e.g., [Baswana 2008; Elkin 2011]), and the maximum independent set problem
(e.g., [Halldórsson et al. 2010; Emek et al. 2012]), to name a few.

Several variants of the set cover problem have been investigated under the model of
online computation. Alon et al. [Alon et al. 2009] focus on the online problem in which
some master set system is known in advance and an unknown subset of its items arrive
online; the goal is to cover the arriving items, minimizing the number of sets used for
that purpose. Another online variant of the set cover problem is studied by Fraigniaud
et al. [Fraigniaud et al. 2016], where the sets arrive online, but not all items have to
be covered. Here, each item is associated with a penalty and the cost incurred by the
algorithm is the sum of the total cost of the sets chosen for the partial cover plus the
total penalty of the non-covered items.

The set cover version studied in the present paper can also be considered under the
online computation model with the requirement that the algorithm maintains a cover
for the items seen so far. This is meaningful only if preemption is allowed (i.e., a set can
be added to the cover only at the time of its arrival, but can be excluded from the cover
at all times afterwards) and under a slightly stronger definition for the competitive
ratio: The performance of the algorithm is measured via the maximum, over time t, of
the ratio ALGt/OPTt, where OPTt is the cost of an optimal set cover for the set system
presented up to time t, and ALGt is the cost of the set cover maintained by the algorithm
for that set system at time t. The set cover algorithm presented in the present paper
is, in fact, also an online algorithm for this problem with competitive ratio O(

√
n). The

lower bound(s) established in the present paper can be slightly modified to show that
this is optimal.

Closely related to our notion of cover certificate is the universal set cover problem [Jia
et al. 2005; Grandoni et al. 2013], where, given a set system, the goal is to construct a
mapping f from the items to the sets containing them so that for every subset of items,
X, the cost of the image of X under f is as close as possible to the cost of a minimum
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set cover for X. This problem resembles our guarantee that the promised (1− ε)-cover
certificate can be extracted from the data structure for every ε. However, it is much
stronger in the sense that it guarantees a small cover for every item subset, rather
than the existence of a “good” item subset for every ε. To the best of our knowledge, the
universal set cover problem has not been studied under the semi-streaming model.

Techniques’ overview.

Streaming algorithm. Consider some hypergraph G = (V,E, b, c) and assume for
simplicity that the vertex benefits are uniform, i.e., b(v) = 1 for every vertex v ∈
V . Translated to the terminology of edge covers in hypergraphs, the classic greedy
approximation algorithm for minimum set cover [Johnson 1974] (see also [Vazirani
2001]) associates a price variable with each vertex v ∈ V . This variable is set upon the
first time v is covered by some picked edge e ∈ E and it captures the cost of covering
v by e, that is, c(e) divided by the number of newly covered vertices. The crux of this
classic algorithm is that it picks the edges so that the vertices are covered in non-
decreasing order of prices.

Under the (semi-)streaming model, we have no control over the arrival order of the
edges and, thus, we cannot hope to mimic the greedy algorithm. Instead, we maintain
for each vertex v ∈ V , an effectiveness variable eff(v) and a variable eid(v). The variable
eid(v) stores the identifier id(et) of the edge et that is (currently) intended to cover v.
The effectiveness variable is analogous to the price variable of the greedy algorithm
in the sense that it captures the quality of et in covering v (unlike the price variables,
higher values of eff(v) indicate better quality, but the logic is similar). Another differ-
ence is that in our algorithm a vertex v, after first being covered, may later change
the edge that covers it, and thus also its price. More formally, if T ⊆ et is the subset
of vertices v for which the algorithm assigned eid(v) ← id(et) at time t, then the effec-
tiveness variables are set to be eff(v) =

⌈
log |T |

c(et)

⌉
.4 The key idea behind our streaming

algorithm is that T is taken to be the largest subset T ⊆ et such that the effectiveness
variable eff(v) of every vertex v ∈ T strictly increases at time t.

A careful analysis shows that upon termination of the input stream, there exists
some threshold ρ such that the total benefit of vertices v ∈ V with eff(v) ≤ ρ is at
most εn, whereas the total cost of the edges whose identifiers are stored in the eid(v)
variables of vertices v with eff(v) > ρ is O(c(OPT)/ε). This provides the desired approx-
imation for ε > 1/

√
n.

If ε ≤ 1/
√
n, then our algorithm leaves at most

√
n uncovered vertices and we cover

them using the cheapest possible edge for each vertex individually. The promised
approximation ratio is obtained since the total cost of these extra edges is at most√
n · c(OPT).

Lower bounds. The hard hypergraphs that lie at the heart of our lower bound are
constructed based on an affine plane A = (P,L) with q2 points and q(q + 1) lines (see,
e.g., [Lindner and Rodger 2011]). By randomly partitioning each line in L into two
edges (or more edges in the “uncertified” version of the lower bound), we obtain the
probability distribution over hypergraphs that lies at the heart of the lower bound
proofs. The hard input sequence for the lower bound proof starts by presenting, for
each line in L, the two edges that correspond to that line. Then the adversary presents
one additional edge e∗ that contains the points of all but r ≈ εq random lines, where all
those lines belong to some single random angle Ai ofA (refer to Figure 1 for an illustra-
tion). An optimal edge cover for such instance consists of the edge e∗ and the 2r = O(εq)

4Throughout, log denotes logarithm to the base of 2.
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edges corresponding to the r lines missing from e∗. Using careful information theoretic
arguments, we show that any low-space deterministic algorithm must use, on expec-
tation, many lines from angles other than Ai in order to construct a (1 − ε)-cover F .
The properties of affine planes guarantee that the expected cardinality of F is Ω(q). By
Yao’s principle, this argument is translated to a lower bound for randomized low-space
algorithms.

2. A SEMI-STREAMING ALGORITHM
Our goal in this section is to design a semi-streaming algorithm for the edge (δ-)cover
problem in hypergraphs. The algorithm, referred to as SSSC (acronym of the paper’s
title), is presented in Sec. 2.1 and its approximation ratio is analyzed in Sec. 2.2. For
the sake of simplicity, we first assume that all numerical values (vertex benefits and
edge costs) are encoded using O(log n) bits. Under this assumption, the space bounds
of SSSC are quite trivial and together with the analysis in Sec. 2.2 yield Theorem 2.1.

THEOREM 2.1. On a weighted input hypergraph G = (V,E, b, c) with numerical
values encoded using O(log n) bits, our algorithm uses O(n log(n+m)) space, processes
each input edge et ∈ E in O(|et| log |et|) time, and produces a data structure D with the
following guarantee: For every 0 ≤ ε < 1, a (1− ε)-cover certificate χε for G such that

c(Im(χε)) = O
(
min

{
1/ε,
√
n
}
· c(OPT)

)
can be extracted from D in time O(n log n) with no additional space requirements, where
OPT stands for an optimal edge (1-)cover of G.

Sec. 2.3 is dedicated to lifting the assumption on the numerical values. The follow-
ing definitions are necessary for the discussion of the results we obtain without this
assumption:

blog =

⌈
log max

v∈V

{
b(v), b(v)−1

}⌉
clog =

⌈
log max

e∈E

{
c(e), c(e)−1

}⌉
c∆ =

⌈
log

maxe∈E c(e)

mine∈E c(e)

⌉
,

where the last parameter captures the number of bits required to encode the edge
costs aspect ratio. Note that the encoding size |G| of the input weighted hypergraph
G = (V,E, b, c) is of size at least blog + clog. Moreover, c∆ is always at most 2clog, but it
may be much smaller than that.

Our results are cast in Thm. 2.2 and in Thm. 2.3, where the former generalizes
Thm. 2.1 and the latter has a better space bound, but a slightly worse run-time guar-
antee. Another drawback of Thm. 2.3 is that it requires that the parameters n and ε
are known to the algorithm in advance in contrast to Thm. 2.1 and Thm. 2.2 that do
not require an a priori knowledge of any global parameter.

THEOREM 2.2. On a weighted input hypergraphG = (V,E, b, c), our algorithm uses
O
(
n log

(
n+m+ blog + clog

))
space, processes each input edge et ∈ E in O(|et| log |et|)

time, and produces a data structureD with the following guarantee: For every 0 ≤ ε < 1,
a (1− ε)-cover certificate χε for G such that

c(Im(χε)) = O
(
min

{
1/ε,
√
n
}
· c(OPT)

)
can be extracted from D in time O(n log n) with no additional space requirements, where
OPT stands for an optimal edge (1-)cover of G.

THEOREM 2.3. On a weighted input hypergraph G = (V,E, b, c), for any 0 ≤ ε < 1,
our algorithm (knowing n and ε in advance) usesO

(
log
(
blog + clog

)
+ n log

(
n+m+ c∆

))
space, processes each input edge et ∈ E in O(n log n) time, and outputs a (1 − ε)-cover
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A:8 Emek and Rosén

certificate χε for G such that

c(Im(χε)) = O
(
min

{
1/ε,
√
n
}
· c(OPT)

)
,

where OPT stands for an optimal edge (1-)cover of G.

2.1. The Algorithm
In what follows we consider some weighted hypergraph G = (V,E, b, c) with optimal
edge (1-)cover OPT. The main building block of algorithm SSSC is a procedure referred
to as COVER. This procedure processes the stream of edges and outputs for every node
v ∈ V , an identifier of an edge e that covers it, together with an integer variable
that intuitively captures the quality of edge e in covering v. Algorithm SSSC uses two
parallel invocations of COVER, one on the input graph G and one on some modification
of G, and upon termination of the input stream, extracts the desired cover certificate
from the output of these two invocations.

2.1.1. Procedure COVER. The procedure maintains for each vertex v ∈ V , the following
variables:

— eid(v) = an identifier id(e) of some edge e ∈ E; and
— eff(v) = a (not necessarily positive) integer refereed to as the effectiveness of v.

We denote by eidt(v) and efft(v) the values of eid(v) and eff(v), respectively, at time t
(i.e., just before et is processed). Procedure COVER that relies on the following definition
is presented in Algorithm 1.

Definition 2.4 (level, effectiveness). Consider edge et presented at time t and some
subset T ⊆ et. The level of T at time t, denoted levt(T ), is defined as

levt(T ) =

⌈
log

b(T )

c(et)

⌉
.

Subset T is said to be effective at time t if for every v ∈ T , it holds that

levt(T ) > efft(v) .

Note that ∅ is always vacuously effective.

Algorithm 1 COVER(G = (V,E, b, c))

Initialization ∀v ∈ V : eid(v)← ⊥ and eff(v)← −∞
for t = 0, 1, . . . do

Read edge et ∈ E from the stream
Compute an effective subset T ⊆ et of largest benefit b(T )
for all v ∈ T do

eid(v)← id(et)
eff(v)← levt(T )

end for
end for
return eid(·) and eff(·)
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2.1.2. Algorithm SSSC. We are now ready to present our algorithm SSSC. The first part
of the algorithm is composed of four procedures referred to as P1, P2, P3, and P4, exe-
cuted in parallel on the the input stream, in order to produce a certain data structure.
Then, given 0 ≤ ε < 1, the algorithm can extract from that data structure the desired
(1− ε)-cover.

The first procedure (P1) is Procedure COVER, executed on the original stream. The
result of this procedure is used to extract the desired cover when ε ≥ 1/

√
n. The second

procedure (P2) is Procedure COVER, executed on the input stream, but assuming that
all vertex benefits are uniform (as if our aim is to maximize the number of covered
vertices rather than their total weight). The result of this procedure is used to extract
the desired cover when ε < 1/

√
n. The last two procedures are quite trivial and they are

needed only for technical purposes: procedure P3 stores the identifier of the minimum-
cost set that contains vertex v for every v ∈ V ; and procedure P4 stores the benefit
b(v) of vertex v for every v ∈ V . We note that if ε is known in advance, then one may
run only one of the first two procedures. Nevertheless, running all four procedures
in parallel allows us to go over the stream only once, and then extract a number of
different covers for different values of ε. We now formally define the algorithm.

On input weighted graph G = (V,E, b, c), algorithm SSSC runs in parallel the follow-
ing procedures that process the stream of edges:

P1: (eid∞(·), eff∞(·))← COVER(G = (V,E, b, c)).
P2: (eid1

∞(·), eff1
∞(·)) ← COVER(G = (V,E,1, c)), where 1 stands for the function that

assigns a unit benefit to all vertices v ∈ V .
P3: A procedure that maintains for every vertex v ∈ V , a variable emin(v) that stores

the identifier of the minimum cost edge that covers v, seen so far.
P4: A procedure that stores for every vertex v ∈ V , its benefit b(v).

Upon termination of the input stream, SSSC takes some parameter 0 ≤ ε < 1 and
extracts the desired (1 − ε)-cover certificate for G from the variables returned by pro-
cedures P1–P4. We distinguish between the following two cases.

— Case ε ≥ 1/
√
n:

The algorithm looks for the largest integer r∗ such that b(I(≤ r∗)) ≤ εb(V ), where

I(≤ r∗) = {v ∈ V : eff∞(v) ≤ r∗} ,

and returns the partial function χ : V → id(E) that maps every vertex v ∈ V − I(≤
r∗) to eid∞(v).

— Case ε < 1/
√
n:

The algorithm looks for the largest integer r∗ such that |I1(≤ r∗)| ≤
√
n, where

I1(≤ r∗) = {v ∈ V : eff1
∞(v) ≤ r∗} ,

and sets χ′ to be the partial function χ′ : V → id(E) that maps every vertex v ∈
V − I1(≤ r∗) to eid1

∞(v). Then, it returns the (complete) function χ′′ : V → id(E)
extended from χ′ by mapping every vertex v ∈ I1(≤ r∗) to emin(v).

Notice that the unweighted case is much simpler: If G = (V,E), then procedure
P2 is identical to procedure P1; moreover, procedures P3 and P4 are redundant since
all vertices/edges admit a unit benefit/cost. Further note that procedures P1–P4 are
oblivious to ε. Upon termination of the input stream, the algorithm extracts, for the
given 0 ≤ ε < 1, the desired (1−ε)-cover certificate for G from the variables returned by
procedures P1–P4. In fact, several such cover certificates can be extracted for different
values of ε.
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2.2. Analysis
We begin our analysis with some observations regarding our main procedure COVER.

OBSERVATION 2.5. If T ⊆ et is effective at time t and v ∈ T , then T ∪{u} is effective
at time t for every u ∈ et such that efft(u) ≤ efft(v).

Notice that COVER’s updating rule guarantees that the effectiveness eff(v) is non-
decreasing throughout the course of the execution. Employing Obs. 2.5, we can now
derive Obs. 2.6 and Obs. 2.7 (the former follows by sorting the vertices v ∈ et in non-
decreasing order of the value of the effectiveness eff(v) and looking for the largest
effective prefix).

OBSERVATION 2.6. The run-time of COVER on edge et is O(|et| log |et|).

OBSERVATION 2.7. If T ⊆ et is effective at time t, then for every v ∈ T , it holds that

efft+1(v) ≥ levt(T ) .

We are now ready to establish the following lemma.

LEMMA 2.8. Consider some integer r. Procedure COVER guarantees that

b ({v ∈ et | efft+1(v) ≤ r}) < 2r+1 · c(et) .

PROOF. Assume towards a contradiction that there exists a subset R ⊆ et, b(R) ≥
2r+1 · c(et), such that efft+1(v) ≤ r for every v ∈ R. Since the effectiveness is non-
decreasing, it follows that efft(v) ≤ r for every v ∈ R, hence the assumption that
b(R) ≥ 2r+1 ·c(et) ensures that R is effective at time t. But by Obs. 2.7, the effectiveness
efft+1(v) should have been at least r + 1 for every v ∈ R, in contradiction to the choice
of R.

In accordance with the notation defined in Sec. 2.1.2, let eff∞(v) denote the value of
the variable eff(v) upon termination of the input stream. Given some integer r, define

I(r) = {v ∈ V | eff∞(v) = r} and S(r) = {e ∈ E | ∃v ∈ I(r) s.t. eid(v) = id(e)} .

We further extend these two definitions to intervals of integers in the natural way, and
denote the intervals (−∞, r] and (r,∞) in this context by ≤ r and > r, respectively.
Thus, we use below the notations I(≤ r) and S(> r) where I(≤ r) = {v ∈ V | eff∞(v) ≤
r} and S(> r) = {e ∈ E | ∃v ∈ I(> r) s.t. eid(v) = id(e)}.

LEMMA 2.9. Procedure COVER guarantees that

b(I(≤ r)) < 2r+1 · c(OPT) .

PROOF. Since the effectiveness is non-decreasing, Lem. 2.8 ensures that for every
edge e ∈ E, it holds that

b ({v ∈ e | eff∞(v) ≤ r}) < 2r+1 · c(e) .

The assertion is established by observing that

b(I(≤ r)) ≤
∑
e∈OPT

b ({v ∈ e | eff∞(v) ≤ r}) <
∑
e∈OPT

2r+1 · c(e) = 2r+1 · c(OPT) ,

where the first inequality is due to the fact that OPT is an edge cover of G.

Lem. 2.9 will be used to bound from above the benefit of the vertices that are not
covered by the edges returned by our algorithm. We now turn to bound from above the
cost of these edges.
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LEMMA 2.10. Consider some integer r. The edge collection S(r) satisfies

c(S(r)) < b(V )/2r−1 .

PROOF. If et ∈ S(r), then there exists some subset R = R(et) ⊆ et with levt(R) = r
such that for every vertex v ∈ R, we have (1) efft(v) < r; and (2) efft+1(v) = r. By
definition, the fact that levt(R) = r implies that c(et) < b(R)/2r−1. Since the variable
eid(v) is updated only when eff(v) increases and since eff(v) is non-decreasing, it follows
that if et, et′ ∈ S(r), et 6= et′ , then the subsets R(et) and R(et′) are disjoint. Therefore,∑

et∈S(r)

c(et) <
1

2r−1

∑
et∈S(r)

b(R(et)) ≤ b(V )/2r−1

which completes the proof.

The following corollary is obtained by applying Lem. 2.10 to the integers r + 1, r +
2, . . .

COROLLARY 2.11. Consider some integer r. The edge collection S(> r) satisfies

c(S(> r)) < b(V )/2r−1 .

The following crucial lemma shows that we can extract from the variables returned
by COVER an edge subset of low total cost which covers many of the items.

LEMMA 2.12. Consider some 0 < ε < 1 and let r∗ be the largest integer such that
b(I(≤ r∗)) ≤ ε · b(V ). The edge collection S(> r∗) satisfies

c(S(> r∗)) < 8 · c(OPT)/ε .

PROOF. Let r be an integer such that 2r+1 < ε · b(V )
c(OPT) ≤ 2r+2. Lem. 2.9 guarantees

that b(I(≤ r)) < 2r+1 · c(OPT) < ε · b(V ), hence r ≤ r∗. It follows by Cor. 2.11 that
c(S(> r∗)) ≤ c(S(> r)) < b(V )/2r−1 ≤ 8 · c(OPT)/ε.

We are now ready to establish the approximation guarantees of algorithm SSSC. The-
orem 2.1 (stated under the assumption that all vertex benefits and edge costs are en-
coded using O(log n) bits) follows immediately from Theorem 2.13.

THEOREM 2.13. For any 0 ≤ ε < 1, our algorithm outputs a (1− ε)-cover certificate
for G whose image has cost O

(
min

{
1
ε ,
√
n
}
· c(OPT)

)
.

PROOF. If ε ≥ 1/
√
n, then the assertion follows immediately from Lem. 2.12, so it

remains to consider the case of ε < 1/
√
n. We show that χ′′ is a 1-cover certificates

for G such that c(Im(χ′′)) = O(
√
n · c(OPT)). Observe first that since OPT covers all

vertices in V , it is also an optimal edge 1-cover of G1. Thus, Lem. 2.12 guarantees that
c(Im(χ′)) < 8

√
n ·c(OPT). The vertices v ∈ V −Dom(χ′) are mapped under χ′′ to emin(v).

Since |V −Dom(χ′)| ≤
√
n and since c(emin(v)) ≤ c(OPT) for every v ∈ V , it follows that

c(Im(χ′′)) < 8
√
n · c(OPT) + |V −Dom(χ′)| · c(OPT) ≤ 9

√
n · c(OPT) .

The assertion follows.

2.3. Lifting the assumption on the numerical values
We now turn to lift the assumption that all numerical values are encoded usingO(log n)
bits and establish Thm. 2.2 and Thm. 2.3, starting with the former. To that end, con-
sider the hypergraph G̃ = (V,E, b̃, c̃) defined by setting b̃(v) = 2blog b(v)c for every
vertex v ∈ V and c̃(e) = 2blog c(e)c for every edge e ∈ E. Since b̃(U) and c̃(F ) are 2-
approximations of b(U) and c(F ), respectively, for every U ⊆ V and F ⊆ E, it follows

ACM Journal Name, Vol. V, No. N, Article A, Publication date: August 2016.



A:12 Emek and Rosén

that a (1−O(ε))-cover certificate for G with image of cost O
(
min

{
1
ε ,
√
n
}
· c(OPT)

)
can

be obtained by running SSSC on G̃.
So, in what follows, we assume that b(v) and c(e) are (not necessarily positive) in-

tegral powers of 2 for every vertex v ∈ V and edge e ∈ E. This implies that every
benefit b(v) (resp., cost c(e)) in G can be encoded using O(log blog) (resp., O(log clog))
bits simply by taking the standard binary representation of log b(v) (resp., log c(e))
(see the beginning of Sec. 2 for the definition of blog and clog). Therefore, procedures P3
and P4 can be implemented using O

(
log
(
n+m+ blog + clog

))
bits per vertex, as de-

sired. Procedure COVER can also be implemented with that many bits per vertex since
the level at time t of each subset T ⊆ et is an integer whose absolute value satis-
fies |levt(T )| = O(blog + clog + log n), thus establishing Thm. 2.2 due to Obs. 2.6 and
Thm. 2.13.

For Thm. 2.3, we need two additional features. First, we scale in an online fashion
all vertex benefits and edge costs so that minv∈V b(v) and mine∈E c(e) are always 1.
We do the same thing with the effectiveness variables eff(v), only that, this time, we
ignore those variables with eff(v) = −∞. This is carried out by maintaining the true
values of minv∈V b(v), mine∈E c(e), and minv∈V :eff(v)>−∞ eff(v) — denote them by bmin,
cmin, and effmin, respectively — and scaling all values of b(v), c(e), and eff(v), stored
in the data structures maintained by the procedures of our algorithm, by bmin, cmin,
and effmin, respectively. Notice that this online scaling requires updating the existing
values stored in the data structures whenever bmin, cmin, or effmin are updated, thus
resulting in the less favorable run-time promised in Thm. 2.3.

This online scaling feature ensures that the space needed for the variables of each
vertex v is now

O
(
log
(
n+m+ b∆ + c∆

))
, (1)

where b∆ = log
⌈

maxv∈V b(v)
minv∈V b(v)

⌉
is the number of bits required to encode the vertex bene-

fits aspect ratio. We also need additional O(log(blog + clog)) bits to store the variables
bmin, cmin, and effmin.

In order to get rid of the dependency on log b∆ in (1) and obtain the space bound
promised in Thm. 2.3, we use the following feature: Let σ =

∑
v∈V ′ b(v), where V ′ is

the set of vertices v ∈ V encountered by the algorithm so far. Whenever it becomes
clear that the contribution of some vertex v ∈ V to b(V ) is at most ε · b(V )/n, which is
indicated by b(v) ≤ εσ/n, the algorithm marks vertex v as insignificant. Insignificant
vertices are treated as if they are not part of the input hypergraph G; in particular,
upon marking vertex v as insignificant, the algorithm erases any variable associated
with v and updates bmin so that it does not take b(v) into account.

Notice that the total contribution of all insignificant vertices to b(V ) is bounded
from above by ε · b(V ). Therefore, ignoring insignificant vertices cannot decrease our
guaranteed coverage by more than an additive term of ε · b(V ). The key observation
now is that by ignoring insignificant vertices, we keep the parameter b∆ bounded by
b∆ = O(log(n/ε)) as the benefit of any vertex encountered by the algorithm so far
is clearly at most σ. Recalling that ε is always at least 1/

√
n, we conclude that the

dependency on log b∆ in (1) is replaced by a dependency on log log n. Thm. 2.3 now
follows by Thm. 2.13.

3. LOWER BOUNDS
We start with a number of definitions that simplify the statements of our lower bounds.
A randomized semi-streaming algorithm ALG for the edge cover problem in hyper-
graphs is said to be an (n, s, ε, ρ)-algorithm (resp., an uncertified (n, s, ε, ρ)-algorithm) if
given any n-vertex unweighted hypergraph G, ALG is guaranteed to maintain a mem-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: August 2016.



Semi-Streaming Set Cover A:13

ory of size at most s bits and to output a (1 − ε)-cover certificate for G with image of
expected cardinality at most ρ · |OPT| (resp., to output the identifiers of an edge (1− ε)-
cover of G whose expected size is at most ρ·|OPT|), where OPT is an optimal edge cover of
G. Our goal in this section is to establish Thm. 3.1 and Thm. 3.2, proved in Sec. 3.1 and
Sec. 3.2, respectively. Observe that the constructions that lie at the heart of Theorems
3.1 and 3.2 are based on hypergraphs whose number of vertices and number of edges
are polynomially related, that is, m = nΘ(1).

THEOREM 3.1. For every integer n0, there exists an integer n ≥ n0 such that for
every ε = Ω(1/

√
n), the existence of an (n, o(n3/2), ε, ρ)-algorithm implies that ρ = Ω(1/ε).

THEOREM 3.2. Fix some constant real α > 0. For every integer n0, there exists
an integer n ≥ n0 such that for every ε ≥ n−1/2+α, the existence of an uncertified
(n, o(n1+α), ε, ρ)-algorithm implies that ρ = Ω

(
log logn

logn
1
ε

)
.

3.1. The certified case
We shall establish Thm. 3.1 by introducing a probability distribution G over n-vertex
hypergraphs that satisfy the following two properties: (1) Every hypergraph in the sup-
port of G admits an edge cover of cardinality O(ε

√
n). (2) For every deterministic semi-

streaming algorithm ALG that, given an n-vertex hypergraph G, maintains a memory
of size o(n3/2) and outputs a (1 − ε)-cover certificate χ for G, when ALG is invoked on
a hypergraph chosen according to G, the expected cardinality of Im(χ) is Ω(

√
n). The

theorem then follows by Yao’s principle.

3.1.1. The construction of G. Let q be a large prime power. Our construction relies on
the affine plane A = (P,L), where P is a set of q2 points and L ⊆ 2P is a set of q(q + 1)
lines satisfying the following properties:
(1) every line contains q points;
(2) every point is contained in q + 1 lines;
(3) for every two distinct points, there is exactly one line that contains both of them;
and
(4) every two lines intersect in at most one point.
Two lines with an empty intersection are called parallel. The line set L can be parti-
tioned into q + 1 clusters A1, . . . , Aq+1, referred to as angles, where Ai = {`1i , . . . , `

q
i }

for i = 1, . . . , q + 1, such that two distinct lines are parallel if and only if they belong
to the same angel. For example, Refer to [Lindner and Rodger 2011] for an explicit
construction of such a combinatorial structure.

Consider some 1
3q ≤ ε ≤

1
66−

1
3q and let r = d3εqe. We construct a random hypergraph

G = (V,E) based on the affine plane A = (P,L) as follows (refer to Figure 1 for an
illustration). Fix V = P . Randomly partition each line ` ∈ L into 2 edges e1(`)∪e2(`) = `
by assigning each point in L to one of the 2 edges u.a.r. (and independently of all other
random choices).5 It will be convenient to denote the set of edges corresponding to the
lines in angle Ai by Ei = {e1(`), e2(`) | ` ∈ Ai}. Let

e∗ = P −
r⋃
t=1

`
j(t)
i ,

where i is an index chosen u.a.r. (and independently of all other random choices) from
[q + 1], and 1 ≤ j(1) < · · · < j(r) ≤ q are r distinct indices chosen u.a.r. (and indepen-
dently of all other random choices) from [q]. In other words, e∗ is constructed by ran-

5Throughout, we use u.a.r. to abbreviate “uniformly at random”.
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(a) a (b) b

Fig. 1: The hypergraph G for q = 7. (The requirements on ε actually imply that q must
be larger, but we set q = 7 for the sake of a clearer illustration.) The gray rectangles in
(a) depict the 7 parallel lines in angle Ai for some i ∈ [q + 1], whereas the black/white
circles in each line `ji depict the points in e1(`ji )/e2(`ji ). Edge e∗, depicted by the white
rectangles in (b), consists of all points except those in r = 2 lines of angle Ai.

domly choosing an angle Ai and then randomly choosing r distinct lines `j(1)
i , . . . , `

j(r)
i

from Ai; the edge e∗ consists of all points except those contained in these r lines.
Fix

E = E1 ∪ · · · ∪ Eq+1 ∪ {e∗} .

Observe that n = |P | = q2 andm = 1+2·|L| = 1+2·q(q+1). The input stream is divided
into two stages, where in the first stage the edges in E1 ∪ · · · ∪ Eq+1 are presented in
an arbitrary order, and in the second stage, edge e∗ is presented.

3.1.2. Analysis. We start the analysis by observing that G can be covered by the edge
e∗ and the edges in {e1(`

j(t)
i ), e2(`

j(t)
i ) | 1 ≤ t ≤ r}. Therefore,

|OPT| ≤ 2r + 1 = O(εq) , (2)

where the equation follows from the definition of r = d3εqe and the requirement that
ε ≥ 1

3q .
Let s be the size of the space used by the deterministic semi-streaming algorithm

ALG. Thm. 3.1 is established by combining (2) with the following lemma that ensures
an Ω(q) expected image cardinality whenever s = o(n3/2).

LEMMA 3.3. If s ≤ q2(q+1)/48, then w.p. ≥ 1/8, the (1− ε)-cover certificate returned
by ALG has image of cardinality at least q/3.6

The remainder of this section is dedicated to proving Lem. 3.3 based on the following
information theoretic arguments.

6Throughout, we use w.p. and w.h.p. to abbreviate “with probability” and “with high probability”, respec-
tively.
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Bounding from below the expected entropy. Let Xj
i be a random variable that depicts

the partition (e1(`ji ), e2(`ji )) of line `ji = e1(`ji ) ∪ e2(`ji ) for every i ∈ [q + 1] and j ∈ [q].
Let Xi = (X1

i , . . . , X
q
i ) and X = (X1, . . . , Xq+1). The independent random choices in

the construction of the hypergraph G guarantee that H (Xj
i ) = q, H (Xi) = q2, and

H (X) = q2(q + 1), where H (·) denotes the entropy function.7 Before we can proceed
with our proof, we have to establish the following lemma whose restriction to the case
k = 1 is a basic fact in information theory. It will not strike us as a surprise if this
lemma was already proved beforehand although we are unaware of any such specific
proof; for the sake of completeness, we provide in Appendix A a full proof of this lemma
based on Baranyai’s Theorem.

LEMMA 3.4. Let X1, . . . , Xn, Y be n + 1 arbitrary random variables and let 1 ≤
j(1) < · · · < j(k) ≤ n be 1 ≤ k ≤ n distinct indices chosen u.a.r. from [n]. Then,⌈n

k

⌉
Ej(1),...,j(k)

[
H
(
Xj(1), . . . , Xj(k) | Y

)]
≥ H (X1, . . . , Xn | Y ) .

Let M be a random variable that depicts the memory image of ALG upon completion
of the first stage of the input stream. Since M is fully determined by X, it follows that
H (X,M) = H (X), hence H (X | M) = H (X)− H (M). Recalling that M is described by
s bits, we conclude that H (M) ≤ s ≤ q2(q + 1)/48, thus

H (X |M) ≥ 47

48
· q2(q + 1) =

47

48
·H (X) . (3)

We are now ready to establish the following lemma.

LEMMA 3.5. Our construction guarantees that

Pi,j(1),...,j(r)

(
H
(
X
j(1)
i , . . . , X

j(r)
i |M

)
≥ 5

6
· rq
)
≥ 1/4 ,

where i ∈ [q+ 1] and 1 ≤ j(1) < · · · < j(r) ≤ q are the random indices chosen during the
construction of edge e∗.

PROOF. By combining (3) with an application of Lem. 3.4 to the random choice of
index i ∈ [q + 1], we derive the inequality

Ei [H (Xi |M)] ≥ 47

48
· q2 .

Since H (Xi |M) ≤ q2, we can apply Markov’s inequality to conclude that

H (Xi |M) ≥ 23

24
· q2 (4)

w.p. ≥ 1/2.
Conditioned on the event that (4) holds, we can apply Lem. 3.4 to the random choice

of indices 1 ≤ j(1) < · · · < j(r) ≤ q, deriving the inequality⌈q
r

⌉
Ej(1),...,j(r)

[
H
(
X
j(1)
i , . . . , X

j(r)
i |M

)]
≥ 23

24
· q2 ,

which means that

Ej(1),...,j(r)

[
H
(
X
j(1)
i , . . . , X

j(r)
i |M

)]
≥ 23

24

rq2

q + r
.

7The entropy of a discrete random variable Z is defined to be H (Z) = −
∑
z P(Z = z) · log P(Z = z), where

the summation runs over all values z in the support of Z.
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Since ε ≤ 1
66 −

1
3q , it follows that r = d3εqe ≤ 3εq + 1 ≤ q/22. This, in turn, implies that

23
24

rq2

q+r ≥
11
12rq, hence

Ej(1),...,j(r)

[
H
(
X
j(1)
i , . . . , X

j(r)
i |M

)]
≥ 11

12
· rq .

Since H (X
j(1)
i , . . . , X

j(r)
i |M) ≤ rq, we can apply Markov’s inequality to conclude that

H
(
X
j(1)
i , . . . , X

j(r)
i |M

)
≥ 5

6
· rq

w.p. ≥ 1/2. The assertion follows as (4) holds w.p. ≥ 1/2.

Introducing the random variable Z. Let i ∈ [q+1] and 1 ≤ j(1) < · · · < j(r) ≤ q be the
random indices chosen during the construction of edge e∗. Let µ be the actual memory
image of ALG upon completion of the first stage of the input stream, and recall that µ is
some instantiation of the random variable M . Let Z be a real valued random variable
that maps the event M = µ to the entropy in the joint random variable Xj(1)

i , . . . , X
j(r)
i ,

given M = µ; in other words, Z(µ) = H (X
j(1)
i , . . . , X

j(r)
i |M = µ).8 Observe that by the

definition of conditional entropy, we have E[Z] = H (X
j(1)
i , . . . , X

j(r)
i | M). If the event

described in the statement of Lem. 3.5 occurs, then E[Z] ≥ 5
6 · rq and since Z is never

larger than rq, we can apply Markov’s inequality to conclude that

P
(
Z ≥ 2

3
· rq
)
≥ 1/2 .

The following corollary is established since the event described in Lem. 3.5 holds w.p.
≥ 1/4.

COROLLARY 3.6. W.p. ≥ 1/8, the entropy that remains in Xj(1)
i , . . . , X

j(r)
i after e∗ is

exposed to ALG, given that M = µ, is at least 2
3 · rq bits.

High entropy implies a large expected edge cover. Condition hereafter on the event
described in the statement of Cor. 3.6. Consider the (1− ε)-cover certificate χ returned
by ALG and let P ′ =

⋃r
t=1 `

j(t)
i = P − e∗ be the set of points not covered by e∗. Let

R = {p ∈ P ′ | p ∈ Dom(χ) ∧ χ(p) ∈ Ei}

be the set of points, not covered by e∗, that are mapped under χ to some edge in Ei
(recall that Ei is the set of edges corresponding to the lines in angle Ai, i.e., the angle
chosen in the random construction of e∗). We can now establish the following lemma.

LEMMA 3.7. Our construction guarantees that |R| ≤ rq/3.

PROOF. The joint random variable X
j(1)
i , . . . , X

j(r)
i conditioned on M = µ can be

viewed as a probability distribution π over the matrices T ∈ {1, 2}r×q, where T (t, k) ∈
{1, 2} indicates whether the kth point in line `j(t)i belongs to edge e1(`

j(t)
i ) or to edge

e2(`
j(t)
i ) for every k ∈ [q] and 1 ≤ t ≤ r.

Consider some point p ∈ P ′ and suppose that this is the kth point in line `j(t)i . The
key observation is that if p ∈ R, then all matrices T in the support of π must agree on

8Note that the notation H (X
j(1)
i , . . . , X

j(r)
i | µ) is sometimes used in the literature for the same quantity.
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T (t, k).9 Therefore, the entropy that remains in X
j(1)
i , . . . , X

j(r)
i after e∗ is exposed to

ALG can only arrive from points in P ′ − R. The assertion follows by Cor. 3.6 since each
such point contributes at most 1 bit of entropy.

The cardinality of Dom(χ) is at least |Dom(χ)| ≥ (1 − ε)q2. The choice of r = d3εqe
ensures that εq2 ≤ rq/3, thus |Dom(χ)| ≥ q2 − rq/3. The key observation now is that
even if all these rq/3 missing points from Dom(χ) are in P ′, it still leaves us with
|Dom(χ) ∩ (P ′ −R)| ≥ rq/3 by Lem. 3.7.

Every point in Dom(χ)∩(P ′−R) is covered by some edge e ∈ Ej , j 6= i. The properties
of the affine plane guarantee that each such edge e covers at most one point in line
`
j(t)
i , which sums up to at most r points in P ′. Thus, the image of χ must contain

(the identifiers of) at least q/3 different edges. This concludes the proof of Lem. 3.3.
Thm. 3.1 then follows by combining (2) and Lem. 3.3.

3.2. The uncertified case
Similarly to the proof of Thm. 3.1, we shall establish Thm. 3.2 by introducing a proba-
bility distribution G′ over n-vertex hypergraphs that, this time, satisfies the following
two properties: (1) every hypergraph in the support of G′ admits an edge cover of cardi-
nality O(ε2n); and (2) for every deterministic semi-streaming algorithm ALG that, given
an n-vertex hypergraph G = (V,E), maintains a memory of size o(n1+α) and outputs
the identifiers of an edge (1−ε)-cover F ⊆ E of G, when ALG is invoked on a hypergraph
chosen according to G′, the expected cardinality of F is Ω

(
εn log logn

logn

)
. The theorem then

follows by Yao’s principle.

3.2.1. The construction of G′. We construct a random hypergraph Ĝ = (V̂ , Ê) as follows.
Let q be a large power of 2 and fix some real constant α > 0. Consider some q−(1−α) ≤
ε ≤ 1

66 −
1
3q and let r = d3εqe. The main building block of Ĝ is very similar to the

random hypergraph G = (V,E) constructed in Sec. 3.1.1 based on the affine plane
A = (P,L). Specifically, fix V̂ = P and let E′ be a random edge set constructed just like
the construction of the random edge set E presented in Sec. 3.1.1 with the following
exception: Instead of randomly partitioning each line ` ∈ L into 2 edges e1(`) ∪ e2(`) =
` by assigning each point in ` to one of the 2 edges u.a.r. (and independently), we
randomly partition each line ` ∈ L into r edges e1(`) ∪ · · · ∪ er(`) = ` by assigning each
point in ` to one of the r edges u.a.r. (and independently).

The edge e∗ is constructed in the same manner as in Sec. 3.1.1, i.e., we choose an
angle Ai u.a.r. and then choose r distinct lines `j(1)

i , . . . , `
j(r)
i u.a.r. from Ai; the edge e∗

consists of all points except those contained in these r lines. Notice that the parameter
r is now used for both the partition of each line into r edges and the construction of
edge e∗. For every i ∈ [q+ 1], denote the set of edges corresponding to the lines in angle
Ai by E′i = {e1(`), . . . , er(`) | ` ∈ Ai} and fix E′ = E′1 ∪ · · · ∪ E′q+1 ∪ {e∗}.

The edge multi-set Ê is obtained from E′ by augmenting it with dummy edges: fix
Ê = E′ ∪ Ed, where the dummy edges, i.e., e ∈ Ed, are all empty e = ∅. (Concerns
regarding the usage of empty edges can be lifted by augmenting V̂ with a dummy
vertex vd and taking all dummy edges e ∈ Ed to be singletons e = {vd}.)

9In fact, even if we relax the requirement from ALG so that χ is allowed to err on some vertices in its domain
but the coverage is measured only with respect to the vertices for which χ is correct, we can still achieve the
desired (asymptotic) bound by using a line of arguments similar to that used in the proof of Lemma 6.2 in
[Alon et al. 2013].
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Identifier assignment. Recall that the identifiers of the edges are determined by their
arrival order so that the edge et arriving at time t is assigned with identifier id(et) = t.
In contrast to the construction presented in Sec. 3.1.1, where the identifier assign-
ment is arbitrary (with the exception that id(e∗) should be the largest identifier), the
assignment of identifiers to the edges in Ê plays a key role in the current construction.
Specifically, for every i ∈ [q+1], j ∈ [q], and k ∈ [r], the identifier assigned to edge ek(`ji )
is

id(ek(`ji )) = 0 ◦ i ◦ j ◦ k ◦Xj,k
i ,

where i, j, and k are encoded as bitstrings of lengths dlog(q + 1)e, log q (recall that q
is a power of 2), and dlog re, respectively, ◦ denotes the string concatenation operator,
and Xj,k

i is a bitstring of length 3 log q chosen u.a.r. (and independently). Notice that
each identifier contains ι = 1 + dlog(q + 1)e+ log q + dlog re+ 3 log q bits encoding some
integer (with the most significant bit on the left) in [0, 2ι−1 − 1] and, by design, each
edge in E′1 ∪ · · · ∪ E′q+1 is assigned with a unique identifier.

The identifier assigned to edge e∗ is id(e∗) = 1 ◦ 0ι−1, which encodes the integer 2ι−1.
The dummy edges are used for filling up the gaps between the identifiers assigned to
the edges in E′ so that id(·) is a bijection from Ê = E′∪Ed to

[
0, 2ι−1

]
. As e∗ is assigned

with the highest identifier, this is the last edge to arrive. Observe that n = q2 and
m = 2ι−1 + 1 = O(q6).

3.2.2. Analysis. We start the analysis by observing that Ĝ can be covered by edge e∗

and the edges in {e1(`
j(t)
i ), . . . , er(`

j(t)
i ) | 1 ≤ t ≤ r}. Therefore,

|OPT| ≤ r2 + 1 = O(ε2q2) , (5)

where the equation follows from the definition of r = d3εqe and the requirement that
ε = ω(q−1).

Let s be the size of the space used by the deterministic semi-streaming algorithm
ALG. Thm. 3.2 is established by combining (5) with the following lemma that ensures
an Ω̃(εq2) expected set cover cardinality whenever s = o(εn3/2).

LEMMA 3.8. If s ≤ rq(q + 1)/16, then w.p. ≥ 1/9, the edge (1 − ε)-cover returned by
ALG has cardinality Ω

(
εq2 log log q

log q

)
.

The remainder of this section is dedicated to proving Lem. 3.8 based on the following
information theoretic arguments. Recall thatXj,k

i is a random bitstring of length 3 log q

used in the construction of id(ek(`ji )) for every i ∈ [q + 1], j ∈ [q], and k ∈ [r]. Let Xj
i =

(Xj,1
i , . . . , Xj,r

i ), Xi = (X1
i , . . . , X

q
i ), and X = (X1, . . . , Xq+1). The independent random

choices in the construction of the identifiers of Ê guarantee that H (Xj,k
i ) = 3 log q,

H (Xj
i ) = 3r log q, H (Xi) = 3rq log q, and H (X) = 3rq(q + 1) log q.

As in the analysis in Sec. 3.1.2, let i ∈ [q + 1] and 1 ≤ j(1) < · · · < j(r) ≤ q be the
random indices chosen in the construction of edge e∗. Let M be a random variable that
depicts the memory image of ALG before the last edge e∗ arrives and let µ be its actual
instantiation. Observing that H (X | M) ≥ 47

48 · H (X) (cf. inequality (3)), we can repeat
the line of arguments used in Sec. 3.1.2 to derive the following corollary (analogous to
Cor. 3.6).

COROLLARY 3.9. W.p. ≥ 1/8, the entropy that remains in Xj(1)
i , . . . , X

j(r)
i after e∗ is

exposed to ALG, given that M = µ, is at least 2r2 log q bits.
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Notice that the requirement ε ≥ q−(1−α) ensures that r = d3εqe and q are polyno-
mially related and so are r and n = q2 + 1. Therefore, an event that holds w.h.p. with
respect to the parameter r also holds w.h.p. with respect to the parameters q and n; in
what follows, whenever we use the term w.h.p., we refer to w.h.p. with respect to these
three parameters.

LEMMA 3.10. W.h.p., all edges ek(`
j(t)
i ), t ∈ [r], k ∈ [r], satisfy (5/6)q/r ≤ |ek(`

j(t)
i )| ≤

2q/r.

PROOF. Fix some t ∈ [r] and k ∈ [r]. The random partition of line `
j(t)
i into the

r edges e1(`
j(t)
i ) ∪ · · · ∪ er(`j(t)i ) = `

j(t)
i implies that E[|ek(`

j(t)
i )|] = q/r. By Chernoff ’s

bound, we have (5/6)q/r ≤ |ek(`
j(t)
i )| ≤ 2q/r w.h.p. The assertion follows by the union

bound.

Identifiers with large entropy. Condition hereafter on the events described in the
statements of Cor. 3.9 and of Lem. 3.10. Since Cor. 3.9 ensures that

r∑
t=1

r∑
k=1

H (X
j(t),k
i |M = µ) ≥ H (X

j(1)
i , . . . , X

j(r)
i |M = µ) ≥ 2r2 log q ,

and since H (X
j(t),k
i | M = µ) ≤ 3 log q for every (t, k) ∈ [r] × [r], it follows that there

exists a subset Ψ ⊆ [r]× [r] such that (1) |Ψ| ≥ r2/2; and (2) H (X
j(t),k
i | M = µ) ≥ log q

for every (t, k) ∈ Ψ.
Consider some pair (t, k) ∈ Ψ. The definition of Ψ guarantees that at least log q bits

of entropy remain in the identifier id(ek(`
j(t)
i )) of edge ek(`

j(t)
i ) after e∗ is exposed to ALG

given that M = µ. Thus, ALG must have at least q different candidates for id(ek(`
j(t)
i )).

The design of the identifier assignment function id(·) guarantees that all but one of
these candidate identifiers are assigned to dummy edges and that the candidate iden-
tifiers of edge ek(`

j(t)
i ) and the candidate identifiers of edge ek′(`

j(t′)
i ) are disjoint for

every (t, k), (t′, k′) ∈ Ψ, (t, k) 6= (t′, k′). Therefore, every edge ek(`
j(t)
i ) with (t, k) ∈ Ψ

that is guaranteed to belong to the edge (1 − ε)-cover F output by ALG contributes at
least q distinct identifiers to the output of ALG.

On the other hand, Lem. 3.10 ensures (w.h.p.) that all points in each line ek(`
j(t)
i ) can

be covered by at most 2q/r � q edges belonging toE′−i = E′1∪· · ·∪E′i−1∪E′i+1∪· · ·∪E′q+1,
that is, edges corresponding to lines of angles other than Ai. Hence, for the sake of
proving the lower bound on the number of edges used, we may assume hereafter that,
for every (t, k) ∈ Ψ, ALG covers the points in ek(`

j(t)
i ) by edges belonging to E′−i.

Coverage from another angle. Let N =
⋃

(t,k)∈Ψ ek(`
j(t)
i ) be the set of points contained

in the edges corresponding to the index pairs in Ψ. Since |Ψ| ≥ r2/2 and since Lem. 3.10
guarantees that |ek(`

j(t)
i )| ≥ (5/6)q/r for every (t, k) ∈ Ψ, it follows that |N | ≥ 5qr/12.

Recall that the edge (1 − ε)-cover F may leave at most εq2 uncovered points. The
choice of r = d3εqe ensures that εq2 ≤ qr/3, thus at most qr/3 points are not covered
by F . The key observation now is that even if all these uncovered points belong to N ,
then F should still cover at least 5qr/12− qr/3 = qr/12 points in N ; let N ′ ⊆ N be the
subset consisting of these (at least) qr/12 covered points.

We argue that in order to cover the points in N ′ with edges belonging to E−i, one
needs Ω

(
εq2 log log q

log q

)
= Ω

(
qr log log q

log q

)
distinct edges w.h.p. The proof of Lem. 3.8 is com-

pleted by the union bound since the events described in the statements of Cor. 3.9 and
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of Lem. 3.10 (i.e., the events on which our analysis is conditioned) hold w.p. ≥ 1/8 and
w.h.p., respectively. To that end, consider some line ` ∈ L − Ai, namely, a line from an
angle other than Ai. The properties of the affine plane A ensure that the intersection
I(`) = ` ∩ (`

j(1)
i ∪ · · · ∪ `j(r)i ) contains exactly |I(`)| = r points. The assignment of these

r points to the edges e1(`), . . . , er(`) is determined by the random partition of ` into
e1(`) ∪ · · · ∪ er(`) = ` and it can be viewed as a balls-into-bins process with r balls and
r bins. By a known result on balls-into-bins processes (see, e.g., [Mitzenmacher and
Upfal 2005]), we conclude that w.h.p., maxk∈[r] |ek(`) ∩ I(`)| = O

(
log r

log log r

)
and by the

union bound, this holds for all lines ` ∈ L − Ai w.h.p.; in particular, every edge in E′−i

covers O
(

log r
log log r

)
points in N ′ . The argument follows since |N ′| = Ω(qr).

This concludes the proof of Lem. 3.8. Thm. 3.2 then follows by combining (5) and
Lem. 3.8.

4. CONCLUSIONS
We provide a deterministic O(min{1/ε,

√
n})-approximation for the edge (1 − ε)-cover

problem in hypergraphs under the (single pass) semi-streaming model of computation.
The algorithm maintains a data structure of size O(n log |G|) (where |G| denotes the
number of bits in the standard binary encoding of the input hypergraph G) from which
the desired (1 − ε)-cover certificate can be extracted for any 0 ≤ ε < 1. We prove
that the tradeoff between the coverage parameter ε and the approximation ratio is
asymptotically tight: single-pass algorithms with better approximation ratio must use
Ω(n3/2) space. The algorithm is simple to implement and the hidden constants are
relatively small, so it may be useful in practice.

The benchmark used in the present paper for the approximation algorithm is the
optimal edge 1-cover even when ε > 0. This leaves the following interesting open ques-
tion: How well can one approximate the edge (1 − ε)-cover problem under the semi-
streaming model when the benchmark is the optimal edge (1 − ε)-cover (which, in
general, can be significantly smaller than the optimal edge 1-cover)?
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APPENDIX
A. PROOF OF LEMMA 3.4
Assume first that n/k = d for some integer d ≥ 1. Let S(n, k) be the collection of all

(
n
k

)
subsets S ⊆ [n] of cardinality |S| = k. By Baranyai’s Theorem (see, e.g., [van Lint and
Wilson 2001]), there exists a partition P of S(n, k) into

(
n
k

)
/d pairwise disjoint clusters

such that every cluster C of P consists of d subsets S ∈ S(n, k) whose union satisfies⋃
S∈C S = [n]. Note that by definition, the subsets in C must be pairwise disjoint.
Given some subset S = {j1, . . . , j`} ⊆ [n], let XS denote the joint random variable

(Xj1 , . . . , Xj`). Fix some cluster C = {S1, . . . , Sd} of P. The chain rule of conditional
entropy implies that

H (X1, . . . , Xn | Y ) = H (XS1 | Y ) + H (XS2 | XS1 | Y ) + · · ·+ H
(
XSd | XS1∪···∪Sd−1

| Y
)

≤ H (XS1
| Y ) + H (XS2

| Y ) + · · ·+ H (XSd | Y ) .

Denoting the clusters of P by C1, . . . , C(nk)/d and letting Ci = {Si1, . . . , Sid} for i =
1, . . . ,

(
n
k

)
/d, we can sum over all clusters of P to conclude that(

n
k

)
d

H (X1, . . . , Xn | Y ) ≤
(nk)/d∑
i=1

d∑
j=1

H
(
XSij

| Y
)
. (A-1)

The assertion follows since the right hand side of (A-1) has
(
n
k

)
terms, each identified

with a unique subset S ∈ S(n, k), hence if we pick one term u.a.r., then its expected
value is at least H (X1, . . . , Xn | Y )/d.

Now, assume that n = k · d − r for some integers d ≥ 1 and 0 < r < k and let
n′ = k · d. Let Xn+1, . . . , Xn′ be r dummy random variables with 0 entropy. We have
already shown that if subset S ⊆ [n′] is chosen u.a.r. from S(n′, k), then

d · ES [H (XS | Y )] ≥ H (X1, . . . , Xn′ | Y ) = H (X1, . . . , Xn | Y ) .

Since H (XS | Y ) = H
(
XS∩[n] | Y

)
for every S ∈ S(n′, k), it follows that shifting the

probability mass in a uniform manner from subsets S containing dummy variables to
subsets S that do not contain dummy variables cannot decrease the expected entropy.
In other words, if subset S ⊆ [n] is chosen u.a.r. from S(n, k) and subset S′ ⊆ [n′] is
chosen u.a.r. from S(n′, k), then

ES [H (XS | Y )] ≥ ES′ [H (XS | Y )] .

The assertion follows since d = dn/ke.
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