
Packet-Mode Policies for Input-Queued Switches

Dan Guez
Dept. of Computer Science

Technion
Haifa, Israel

guezd@cs.technion.ac.il

Alex Kesselman
Max Planck Institut fur

Informatik
Saarbrucken, Germany

akessel@mpi-sb.mpg.de

Adi Rosén
Dept. of Computer Science

Technion
Haifa, Israel

adiro@cs.technion.ac.il

ABSTRACT
This paper considers the problem of packet-mode scheduling of in-
put queued switches. Packets have variable lengths, and are divided
into cells of unit length. Each packet arrives to the switch with a
given deadline by which it must traverse the switch. A packet suc-
cessfully passes the switch if the sequence of cells comprising it
is contiguouslytransmitted out of the switch before the packet’s
deadline expires. A packet transmission may be preempted and
restarted from the beginning later. The scheduling policy has to
decide at each time step which packets to serve. The problem is
online in nature, and thus we use competitive analysis to measure
the performance of our scheduling policies.

First we consider the case where the goal of the switch policy
is to maximize the total number of successfully transmitted pack-
ets. We derive two algorithms achieving the competitive ratios of
(22

p
log L+1) andN+1, respectively, whereL is the ratio between

the longest and the shortest packet lengths andN is the number of
input/output ports. We also show that any deterministic online al-
gorithm has a competitive ratio of at leastmin(blog Lc+ 1;N).

Then we study the general case in which each packet has an in-
trinsic value representing its priority, and the goal is to maximize
the total value of successfully transmitted packets. We derive an al-
gorithm which achieves a competitive ratio of2�+2

p
�+ 1=2 +

2�+
p
�+1=2+1p
�+1=2

+ 3, where� is the ratio between the maximum

and the minimum value per cell. We note that [4] gives a lower
bound of
(�) on the performance of any deterministic online al-
gorithm. In particular, our algorithm achieves a competitive ratio
of approximately11:123 for � = 1, which improves upon the pre-
vious best-known upper bound for this problem [17].

We complement our results by studying the offline version of
the problem, which is NP-hard We give a pseudo-polynomial3-
approximation algorithm for the general case and a polynomial3-
approximation algorithm for the case of unit value packets.

Categories and Subject Descriptors
C.2.1 [Packet-switching networks, Store and forward networks];
F.2.2 [Routing and layout,Sequencing and scheduling]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

General Terms
Algorithms, Performance, Theory

Keywords
Input-Queued Switches, Packet-Mode Scheduling, Competitive Anal-
ysis

1. INTRODUCTION
The explosive growth of voice and video traffic in the Internet

generates new Quality of Service (QoS) requirements. QoS mech-
anisms can generally be described as mechanisms for a network to
satisfy the varied grade of service, such as maximum delay or min-
imum bandwidth, required by different applications. In a packet-
switched network, multiple traffic streams pass through a sequence
of switches. Due to the high variability of the Internet traffic, sim-
ple scheduling strategies such as FIFO or Round-Robin might not
guarantee the adequate QoS to all applications. The problem is
that packets of real-time applications such as voice and video can-
not be delayed outside of a small pre-defined time window, i.e.,
there is a maximum permissible delay of such a packet at a router.
In addition, packets may have different priorities. For example, a
packet carrying an Independent (I) frame of an MPEG video stream
is more important than a packet carrying a Predicted (P) frame, al-
though they have the same delay requirements. In this paper we
consider switch policies that take into account the permissible de-
lay and the priority of the various packets.

We consider the input queuing (IQ) switch architecture, where
packets arriving from the input lines are queued at the input ports.
The packets are then extracted from the input queues to cross the
switch fabric and to be forwarded to the output ports. An IQ switch
operates on fixed-size cells and the time that elapses between two
consecutive switching decisions is called a time slot. Each arriv-
ing IP packet is divided into cells at the input, and these cells are
scheduled across the switch fabric separately. A major issue in the
design of IQ switches is the scheduler that controls the access to
the switching fabric in order to avoid contention at the input ports
and at the output ports. A large number of cell scheduling algo-
rithms have been proposed in theliterature for the IQ switch ar-
chitecture: these are PIM [2], IRRM [23], iSLIP [21], iOCF [22],
RPA [20] and Batch [8], to name just a few. All the above men-
tioned works consider the scheduling problem on the cell level; the
underlying architecture is such that the various cells comprising a
given IP packet are buffered at the output port, and when all cells
comprising a packet are collected, the packet is re-assembled and
transmitted on the output line [9].

Cell-mode scheduling has a number of drawbacks. First, one
must keep a packet-reassembly buffer at each output port. Second,

traditional cell-mode schedulers are typically unaware of the exis-
tence of packets, and thus different cells of the same packet may
experience different delays. This may badly affect the QoS per-
ceived by the user because the actual delay of a packet is the delay
of the last cell. As a result,packet-modescheduling of input queued
switches, where the whole packet rather than a single cell becomes
the switching unit, has received considerable attention. In packet-
mode switching the scheduling policy is constrained to schedule all
cells of a given packetscontiguously. The main advantage of this
architecture is that the reassembly overhead is saved. In addition,
a packet-based scheduler, which is aware of the packet entity, may
use this information to provide better performance through sched-
uling. The works in [19, 24, 9] consider scenarios where pack-
ets (with no specific deadlines) arrive to the switch over time, and
study the throughput of the switch. Scheduling of packets with in-
dividual deadlines in the context of a single buffer is considered in
[15].

In the present paper we study the problem of packet-mode sched-
uling in IQ switches, where each packet has a length, a deadline by
which it must be sent out of the switch, and a value. This model is
warranted by networks that guarantee end-to-end delay and support
different packet priorities (cf. the DiffServ model [5]). A schedul-
ing policy is presented with packet arrivals and has to serve pack-
ets online, i.e., without knowledge of future arrivals. We do not
make any assumptions about the incoming traffic. To the best of
our knowledge, the present work is the first to consider the general
setting of this problem, where packets may have arbitrary values,
lengths, and deadlines.

A packet is said to successfully complete its transmission if it
is contiguously scheduled for a number of time slots equal to its
length, and the last cell is scheduled by the packet’s deadline. In
this case the packet value is accrued by the system. The scheduler
may preempt the transmission of a packet and restart it laterfrom
the beginning(The ability to preempt packets helps in situations
in which arriving voice or video packets require immediate service
while the switch fabric is busy transferring a large data packet). The
aim of the system is that of maximizing the total value of the suc-
cessfully transmitted packets. For the case of unit-value packets,
the goal is that of maximizing the number of successfully transmit-
ted packets.

We use competitive analysis [25, 6] to study the performance of
our algorithms. In competitive analysis, an online algorithmALG
is compared with an optimal offline algorithmOPT , that knows
the entire input sequence in advance. The advantage of competi-
tive analysis is that a uniform performance guarantee is provided
over all input instances. Denote the benefit accrued byALG and
byOPT on an input sequence� by V ALG(�) andV OPT (�), re-
spectively. We say thatALG is c-competitive if for every sequence
of packets�, V OPT (�) � c �V ALG(�)+a, wherea is a constant
independent of�.

Our results. The the sequel we use the following terms. The
slackof a packet is the number of time slots the scheduler may wait
before starting to transmit the packet so as to finish its transmission
before its deadline expires. Thevalue densityof a packet is its value
divided by its length (in cells). Theimportance ratio� is the ratio
of the maximal to the minimal value density (the special case of
� = 1 is called the uniform value density case). Thelength ratio,
L, is the length (in cells) of the longest packet assuming that the
shortest one has just one cell.

First we consider the special case of unit value packets. We
derive two algorithms: the first algorithm achieves a competitive
ratio of (22

p
logL + 1) and the second algorithm achieves a com-

petitive ratio ofN + 1, whereN is the number of input/output

ports. We also show a lower bound ofmin(blog Lc + 1;N) on
the competitive ratio of any deterministic online algorithm. We
further give a stronger lower bound that pertains to a class of de-
terministic algorithms based on maximum length-weighted match-
ing. Then we study the general case of variable value packets.
We present an algorithm that achieves a competitive ratio of2�+

2
p
�+ 1=2 +

2�+
p
�+1=2+1p
�+1=2

+ 3. We note that there is a lower

bound of(
p
� + 1)2 in a related model [4], which holds in our

model as well. For� = 1, the competitive ratio of our algorithm
is approximately11:123, which improves upon the previous best-
known upper bound of11:656 due to [17]. The work in [17] also
gives a lower bound of8 � � on the competitive ratio of any on-
line scheduling algorithm for the continuous time model for� = 1.
This lower bound can be also transformed to our model. For the
special case of unit length packets, we show an upper bound of
2 while a result in [1] implies a lower bound of the golden ratio
� � 1:614 for this case.

We also analyze the offline version of the problem. For the case
of variable value packets, we give a3-approximation algorithm.
The algorithm is pseudo-polynomial and fits the general scheme
introduced in [3]. For the case of unit value packets, we derive
a3-approximation algorithm which is a simplification of the above
algorithm and has a polynomial running time. We note our problem
is NP-Hard even for the case of unit value packets andN = 1 (by
a reduction from the Partition Problem [11]).

Related work. The present paper is most closely related to the
work of Lee and Chwa [17], where they study the parallel com-
munication problem assuming the uniform value density (i.e. the
value of a packet is proportional to its length). They present a2-
competitive algorithm and establish a lowerbound of1:5 for the
case of unit length jobs under the slotted model of time. For the
case of arbitrary length jobs, they derive a11:656-competitive al-
gorithm and show a lower bound of8 � � under the continuous
time model. In the present paper we extend their work to the case
of variable value density, but in contrast to [17], we consider only
the slotted time model. Some of our algorithms are in the spirit of
[17], however, we try to maximize the totalvaluerather than the
total lengthof the successfully transmitted packets.

An enormous amount of research has been done on the single
processor scheduling problem. Baruah et al. [4] and Koren and
Shasha [16] considered the preemptive version of the real-time sched-
uling problem and gave upper bounds of4 and (

p
� + 1)2 for

variable length jobs with uniform and non-uniform value density,
respectively. Baruah et al. [4] presented matching lower bounds
showing that these upper bounds are tight. Lipton and Tomkins [18]
considered the non-preemptive version of the interval scheduling
problem in which jobs have zero slack and uniform value density.
This model was later generalized by Goldman et al. [12] to include
delays. Dolev and Kesselman [7] studied non-preemptive schedul-
ing of tasks with uniform value density. Garay et al. [10] consid-
ered the effect of job interleaving by preemption on the throughput.
Differently from the above works, in our model time is slotted and
each job (packet) requires two resources, namely the input port and
the output port. We call this problem thebipartite schedulingprob-
lem.

The bipartite scheduling problem arises in many contexts. In a
satellite switched time division multipleaccess (SS/TDMA) sys-
tem, the goal is to schedule all traffic demands in a minimum num-
ber of time slots (i.e., minimize the makespan of the schedule).
Gopal and Wong [13] proposed heuristic algorithms for this prob-
lem. Jain et al. [14] studied parallel scheduling of I/O tasks, where
the set of disks must be matched to the set of I/O processors. In

contrast to these works, we consideronline algorithms and try to
satisfy the deadline constraints ofindividualpackets.

Organization The rest of the paper is organized as follows. The
model is described in Section 2. We study unit and variable value
packets in Section 3 and Section 4, respectively. In Section 5 we
consider the offline version of the problem. Due to space limita-
tions, some proofs are omitted from this abstract.

2. MODEL DESCRIPTION
We consider anN �N IQ switch (see Figure 1). Packets arrive

at input ports, and each packet is labeled with the output port on
which it has to leave the switch. A packet is divided into a number
of unit length cells that must be transmitted contiguously. Time is
slotted and during a time slot, up to one cell can be removed from
each input and up to one cell can be transmitted toeach output (note
that multiple cells can be transmitted in parallel as long as they are
transmitted along a matching between input ports and output ports).
Next we introduce some useful definitions.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

1 1

N N

R

RR

R

Figure 1: An example of IQ switch.

DEFINITION 2.1. For a packetp, we denote byl(p) the length
of p, measured in cells, byw(p) thevalueof p, by r(p) the timep
arrives to the switch, i.e., therelease timeofp, byd(p) thedeadline
of p, byin(p) theinput portof p and byout(p) theoutput portof p.
We denote by�(p) = w(p)=l(p) thevalue densityofp and by� the
ratio of the maximal to the minimal value density. We denote byL
the ratio between the length of the longest and that of the shortest
packet. For a set of packetsS, we denote byw(S) the total value
of the packets inS.

DEFINITION 2.2. We define theremaining lengthof a packetp
that is being transmitted at timet to be the number ofp’s cells that
have not yet been transferred to the output port.

Note that the scheduling problem of an IQ switch can be reduced
to a matching problem in a bipartite graph, i.e., ineach time slot
the scheduler must compute a matching between the input and the
output ports. We represent the state of a switch at a given time as an
N�N bipartite graph. The set ofnodesVI[VO corresponds to the
input and the output ports, and each packetp waiting in the queue
of input i to be transferred to outputj creates an edgeep = (i; j).
(Note that a packet is present in the queue until its transmission is
complete.)

The scheduler maypreemptthe transmission of a packet at any
time, and possibly restart it later. However, the transmission of
that packet must start from the beginning, and thus the time spent
for the aborted transmission is wasted. A packetp is said to be
successfully transmittedif it has been contiguously scheduled for
l(p) time slots by timet = d(p). The system accrues the value
of a packet if the packet is successfully transmitted and gains no
value otherwise. The aim of the scheduling algorithm is that of
maximizing the total value of successfully transmitted packets.

DEFINITION 2.3. We define atransmission intervalof a packet
p to be a maximal continuous interval in whichp is scheduled. We
say that a packet isavailableat time t if its deadline is at least
t+l(p)�1 andp has not yet been successfully transmitted. We also
say that two packetsconflictwith each other if they share either the
same input port or the same output port.

Note that a packetmay have multiple transmission intervals (if its
transmission is preempted and then restarted). W.l.o.g., we assume
that an optimal offline algorithmOPT never preempts packets.

3. UNIT VALUE PACKETS
In this section we consider the case of unit value packets. Note

that the goal of the scheduling policy is to maximize the total num-
ber of packets successfully transmitted. First we show a lower
bound as a function of the maximum packet length,L, and the num-
ber of input/output ports,N . Thus, in contrast to the related prob-
lem of single processor scheduling, a constant competitive ratio is
not achievable for our problem. Then we present two algorithms
whose competitive ratios are given in terms ofL andN .

3.1 Lower Bound
In this section we present a lower bound ofK = minfblog Lc+

1;Ng on the competitive ratio of any deterministic online algo-
rithm. Given a deterministic online algorithmALG, the input
sequence toALG is created by the adversaryADV (see Figure
2). All packets generated byADV have zero slack and thus each
packet has a unique possible scheduling interval.

Initialize:
used 1 /* used is a port used byALG.*/
i 1 /* i; i+ 1 are ports for whichADV

currently generates packets.*/

For (l = K � 1; : : : ; 2; 1) do

Release two packetspa andpb with slack 0 such that:

l(pa) = l(pb) = 2l;
If i is odd: in(pa) = i ; in(pb) = i + 1 ; out(pa) =

out(pb) = used;
Else (i is even): in(pa) = in(pb) = used ;

out(pa) = i ; out(pb) = i+ 1;

Wait one time slot;

If (ALG schedulespa or pb) :

used
�

i if ALG schedulespa,
i+ 1 if ALG schedulespb;

i i+ 1;

Else, wait2l � 1 time slots;

End for;

Release packetpc with slack 0 such that:

l(pc) = 1;

If i is odd: in(pc) = i, out(pc) = used;

Else (i is even): in(pc) = used, out(pc) = i.

Figure 2: AdversaryADV for algorithm ALG.

ADV has two variables,used andi. If i is even (resp. odd) then
the variableused holds the input (resp. output) port that is currently

used byALGwhile i andi+1 are the output (resp. input) ports to
whichADV generates the next packets. In each iteration,ADV

generates two packetspa andpb with length (approximately) half
the remaining length of the packetp currently transmitted byALG.
Packetpa uses ports(used; i) and packetpb uses ports(used; i+
1) (see Figure 3). Now all three packetsp; pa; pb are conflicting
at the portused andALG can choose at most one of them. If
ALG continues to schedule the longer packetp, ADV schedules
to completion one of the short packets and then continues to the
next iteration. IfALG schedules a short packetpa (resp.pb) then
ADV schedulespb (resp.pa), updatesused to bei (resp.i+ 1),
increasesi by one and then continues to the next iteration (one
time step later). Thus, in each iterationADV adds one packet to
the set of packets that it can successfully transmit, whileALG can
successfully transmit only one packet overall.

with remaining length2l+1
� 1

lenght2lg
i+ 1

i

Packet from previous iteration

Two new packets with

Iterationl (i is even).

pb

pa

p
used

Figure 3: ADV - basic step

In what follows we refer to a particular iteration by the value of
the variablel during this iteration. First we show thatALG can
have at most one scheduled packet at any time and cannot success-
fully transmit any packet beforeADV generates its last packet.

LEMMA 3.1. At the end of any iterationl, ALG has not yet
successfully transmitted any packet, and has at most one packetp
that is being scheduled. Ifp exists then (1)p has a remaining length
of 2l � 1, (2) if i is even thenused = in(p), (3) if i is odd then
used = out(p).

PROOF. The proof is by reverse induction onl.

Basis (l = K � 1) . If ALG chooses not to schedule any packet,
the claim holds. Otherwise,ALG schedulespa or pb, both
of length2K�1 = 2l. Denote the packet scheduled byALG
by p. By the definition ofADV , it waits one time unit, sets
used = in(p), increasesi by one and the iteration ends.
Thus, at the end of iterationK�1 the claim holds, sincei =
2, used = in(p) andp has remaining length of2K�1 � 1.

Step : Assume that the claim holds for iterationl. We prove that
it holds for iterationl � 1. By the induction hypothesis, at
the beginning of iterationl � 1 (i.e., at the end of iteration
l) ALG has not yet successfully scheduled any packet, and
ALG has at most one scheduled packetp and if p exists, it
has remaining length of2l � 1. W.l.o.g., assume thati is
even at the beginning of iterationl � 1. We obtain that at
the beginning of iterationl � 1, the new packetspa andpb
require the input portused, andin(p) = used. There are
two cases:

� ALG scheduledpa (resp.pb). First we note that in this
caseALG must preemptp (if it exists). NowADV

waits one time slot, updatesused to be the output port

of pa (resp. pb) and incrementsi. Therefore, at the
end of iterationl � 1, ALG has not yet successfully
scheduled any packet and the remaining length ofpa
(resp. pb) is 2l�1 � 1, i is odd andused holds the
output port ofpa (resp.pb), which yields the claim.

� ALG did not schedule eitherpa or pb. In this case
ADV waits2l�1 time slots (first, one time slot and then
another2l�1 � 1 time slots). IfALG has a packetp
scheduled at the beginning of iterationl�1, then by the
induction hypothesis at the end of iterationl� 1,ALG
has not yet successfully scheduled any packet andp has
remaining length of2l�1�((2l�1�1)+1) = 2l�1�1.
The claim holds for iterationl�1 sinceADV does not
changeused andi. Note that ifALG does not have the
packetp at the beginning of iterationl � 1, the claim
holds trivially by the induction hypothesis.

Note that the packet generated byADV in the last step,pc, con-
flicts with the single packet thatALG may have (by Lemma 3.1)
at the end of the last iteration. We get the following corollary.

COROLLARY 3.2. ALG successfully transmits at most one packet
out of the sequence generated byADV .

We now give a lower bound on the number of packets that can be
scheduled byOPT . The next lemma demonstrates thatOPT can
gain at least one packet per iteration.

LEMMA 3.3. Consider iterationl that ends at time slott. There
exists a set of packetsSl s.t. jSlj = K� l and all packets inSl can
be successfully transmitted. Ifi is even (resp. odd) at the end of
time slott, then the input (resp. output) portsfusedg [fi+1; i+
2; : : : ;Kg and the output (reps. input) portsfi; i+1; : : : ;Kg are
not used by the packets inSl after time slott in this schedule.

The proof of the above lemma proceeds by reverse induction on
l. It is omitted from this abstract.

Note that from Lemma 3.3 it follows that there is a setS1 of
K � 1 packets that can be successfully transmitted without using
portsi andused after the end of the last iteration. Thus, the packet
pc presented in the last step ofADV does not interfere with the
packets inS1 and therefore the setS1[fpcg has a feasible schedule
and containsK packets. We obtain the following corollary.

COROLLARY 3.4. OPT can successfully transmitK packets
out of the sequence generated byADV .

We get that the competitive ratio ofALG is at leastK. Note that
K cannot be larger thanN since during each iterationADV may
need to use a new port. On the other hand,K cannot be larger than
blog Lc+ 1, since in iterationK � 1, ADV generates a packet of
length2K�1.

THEOREM 3.5. The competitive ratio of any deterministic on-
line algorithm for the case of unit value packets is at least
minfblog Lc+ 1; Ng.

3.2 A (22
p
log L + 1)-Competitive Algorithm

The Length-Sort and Schedule (LSS) algorithm is described in
Figure 4. At each time slot, we assign to an edgeep representing
packetp a weight which is inversely proportional top’s length. The
parameterr specifies the preemption ratio. Specifically, we multi-
ply the weight of a packet currently in transmission by a factor of

Each time slott do the following:

Remove all packets that can no longer be fully scheduled by
their deadlines.

SetSt = �;

Letwt(ep) =

(
r 1
l(p)

if p 2 St�1;
1

l(p)
otherwise;

Scan the packets in order of non-increasingwt(ep):

Add ep to St if possible;

Schedule the packets inSt.

Figure 4: Algorithm LSS(r).

r � 1. The intuition is that we try to avoid wasting time spent on
preempted packets unless much shorter packets arrive.

We now analyze the performance of theLSS algorithm. In what
follows we fix an input sequence�. We consider the schedule of
LSS and that ofOPT . We denote bySLSS and bySOPT the
set of packets successfully transmitted byLSS andOPT , respec-
tively. We also denote byDROP = SOPT n SLSS the set of
packets successfully transmitted byOPT and lost byLSS.

Next we introduce a few useful definitions. We denote byPLSS

the set of all transmission intervals of packets transmitted byLSS.
For eachI 2 PLSS, denote bypI the packet which is transmitted
duringI. For eachp 2 SOPT , denote byIOPTp the transmission
interval ofp in OPT .

OBSERVATION 3.6. If LSS(r) preempts a packetp scheduled
during transmission intervalI which ends at time slott � 1, then
there exists a packetq scheduled during transmission intervalJ 2
PLSS which begins at time slott such that: (1)p conflicts withq,
and (2)l(q) � l(p)=r.

For each packetp and transmission intervalI of p which does
not end successfully, we denote bypreempt(p,I)the transmission
interval guaranteed by Observation 3.6. Note that there may be
more than one such intervals and we arbitrarily choose one of them.

OBSERVATION 3.7. For everyp 2 DROP , there is a trans-
mission intervalJ 2 PLSS of a packetq with the following prop-
erties: (1)J \ IOPTp 6= �, (2) p conflicts withq, and (3)l(q)=r �
l(p).

Note that ifLSS(r) started a transmission ofp and then pre-
empted it in favor of a packetq thenr=l(p) � 1=l(q) and since
1 � r we have thatl(q)=r � rl(q) � l(p).

For eachp 2 DROP , we denote byblock(p)the transmission
interval guaranteed by Observation 3.7. Observe that there may be
more than one such interval and we arbitrarily select one of them.

Now we define theblame forestF . The idea is to build trees in
which a vertex is the transmission interval of a packet inPLSS or in
DROP . The root of each tree inF is the transmission interval of
a packet inSLSS . To derive the competitive ratio ofLSS, we will
bound the number of packets fromDROP in such a tree. More
formally, the blame forestF = (V; E) has the set of nodesV =

fvI jI 2 PLSSg [fvpjp 2 DROPg and the set of edgesE =

f(vp; vI)jI = block(p)g [f(vI ; vJ)jJ = preempt(pI ; I)g. For
each edge(vI; vJ) s.t. J = preempt(p; I), we say thatvJ is the
parent ofvI (or vI is a child ofvJ). For each edge(vp; vI) s.t.
J = block(p) we say thatvI blocksvp.

CLAIM 3.8. F = (V;E) is a directed forest.

PROOF. Since the outdegree of all vertices is at most 1, we need
to show that there are no cycles inF . Assume towards a contradic-
tion that there is a cyclev1; v2; : : : ; vk; v1 in F . By the definition
of E andblock(p), we have that8p 2 DROP , vp is a leaf and
therefore the cycle contains only vertices of the formvI s.t. I 2
PLSS. Let I1; I2; : : : ; Ik be the intervals inPLSS corresponding
to the verticesv1; v2; : : : ; vk; respectively. Since the outdegree of
all vertices is one, the cycle must be directed. Let1 � j � k be in-
dex such thatl(pIj) is minimal. But by the definition ofE, the exis-
tence of edge(Ij�1; Ij), implies thatIj = preempt(pIj�1 ; Ij�1).
Observation 3.6 implies thatl(pIj�1) � l(pIj)=r, which contra-
dicts to the minimality ofl(pIj) .

CLAIM 3.9. 8I 2 PLSS: (1) there are at most two different
intervalsJ; J 0 preempted byI and (2) there are at most2r packets
in DROP blocked byI.

PROOF. By Observation 3.6, the intervals preempted byI must
end exactly at the time slot beforeI starts. They also must share at
least one port withpI . Therefore,I preempts at most two intervals.

By Observation 3.7, each packetq blocked byI must have length
of at leastl(q)=r. Moreover, all packets blocked byI must share at
least one port withpI . Therefore,I blocks at most2r packets.

LEMMA 3.10. The number of verticesvp s.t. p 2 DROP in

each treeT � F is at most2rL
1

log(r) .

PROOF. LetT be a tree inF . Recall thatT contains verticesvI
s.t. I 2 PLSS and verticesvp s.t. p 2 DROP . By the definition
of E, every vertexvp is a leaf inT . Let us consider the sub-tree
T 0 � T that contains only vertices of the formvI. By Claim 3.9,
each vertexvI has at most two children and by the definition of
E andpreempt(pI ; I), vI has at most one parent. According to
Observation 3.6, ifvI is the parent ofvJ then l(pI) � l(pJ)=r.
Thus, the depth ofT 0 is at mostlog

r
L and the size ofT 0 is at

most2logr(L) = L
1

log(r) . Claim 3.9 implies that each vertex inT 0

blocks at most2r verticesvp and therefore the number of vertices

vp s.t.p 2 DROP in T is at most2rL
1

log(r) .

THEOREM 3.11. LSS(r) is (2rL
1

log(r) + 1)-competitive.

PROOF. Note that the root of each treeT 2 F corresponds to
a packet transmitted successfully byLSS. By the definition of
F , for each packet inDROP there is a vertex inF . Obviously,
jSOPT j � jDROP j+ jSLSSj, and by Lemma 3.10jDROP j �
2rL

1
log(r) jSLSS j. Thus we obtain that

jSOPT j � (1 + 2rL
1

log(r))jSLSS j :

For a givenL, we can optimize the value ofr. We obtain that the
competitive ratio ofLSS(r) is minimized whenr = 2

p
log L.

COROLLARY 3.12. LSS(2
p
log L) is (22

p
logL+1+1)-competitive.

3.3 A (N + 1)-Competitive Algorithm
The Shortest Remaining Time First (SRTF) algorithm is pre-

sented in Figure 5. TheSRTF algorithm always gives priority to
packets with the closest completion time. The idea behind the proof
is that every packet successfully transmitted byOPT and lost by
SRTF must share the last time slot of its transmission interval
in OPT with some packetp successfully transmitted bySRTF .
Hence,OPT can schedule at mostN packets per every packet
scheduled bySRTF .

The proof of the next theorem is omitted from this abstract.

Each time slott do the following:

Remove all packets that can no longer be fully scheduled by
their deadlines.

SetSt = �.

Scan the packets in order of non-increasing remaining length
and add them toSt if possible.

Schedule the packets given inSt.

Figure 5: Algorithm SRTF .

THEOREM 3.13. SRTF is (N + 1)-competitive.

3.4 Lower Bound for Length-Oriented Algo-
rithms

In this section we define a class of algorithms that generalizes
the algorithms given in this paper. We give a lower bound for those
algorithms which is stronger than the general lower bound proved
above for the case of unit value packets. We characterize those
algorithms in the following way. In each time slot the algorithm
assigns a weight for every packet and determines a schedule for
the next time slot by selecting packets greedily or by computing a
maximum matching based on the weight function.

DEFINITION 3.1. Let ALG be an online deterministic algo-
rithm. ALG is length-orientedif it works in the general scheme
described in Figure 6 and for each packetp, the weightwp is a
function ofl(p) and/or the remaining length ofp. The weight func-
tion is a non-increasing function of the remaining length (i.e, the
weight of a packet cannot decreases while it is being transmitted).

Each time slott do the following:

Remove all packets that can no longer be fully scheduled by
their deadlines.

Assigns a weightwp to every packetp.

Compute a schedule for the next time slot as a maximum
weight matching or as a greedy selection of edges.

Figure 6: Length-Oriented Algorithms, general scheme.

We start by showing some properties of length-oriented algo-
rithms.

LEMMA 3.14. LetALG be ac-competitivelength-orientedal-
gorithm. Letr = b2c+ 1c. Suppose that there are three packets
p; q; s eligible for scheduling such that:

� the remaining length ofp andq is `,

� l(s) = b`=rc,
� in(s) = in(p) 6= in(q),

� out(s) = out(q) 6= out(p),

� there are no other packets conflicting withp; q ands.

ThenALG scheduless, and rejectsp andq.

PROOF. Assume thatALG does not schedules. In this case it
must schedulep andq. Consider the following scenario. In the
next time slot arrives a set of packetss2; s3; : : : ; sr such that8i =
2; : : : ; r in(si) = in(s); out(si) = out(s); l(si) = l(s) and
d(si) = `. Note that all these packets conflict withp andq. Since
ALG is length-oriented, the weight ofp andq can only increase
over time and thereforeALG continues to schedulep andq. Now
observe that it is possible to schedules ands2; : : : ; sr sequentially
becauser b`=rc � `. Thus,OPT schedulesr packets, namelys
ands2; : : : ; sr , whileALG schedules only two packets, namelyp
andq. Therefore,ALG has a competitive ratio of at leastr=2 =

b2c+ 1c =2 > c, which contradicts our assumption.

THEOREM 3.15. The competitive ratio of anylength oriented
algorithm for the case of unit value packets is at least

min

�
1

2
(2
p
log L � 1); N

�
:

PROOF. LetALG be ac-competitivelength orientedalgorithm
and letr = b2c+ 1c. Letk be the largest integer such that2k � N

and
P

k

i=0
ri � L. For0 � i � k we define setSi of packets:

S
i
=
n
p
i

j j0 � j � 2
k�i � 1

o
:

The parameters of packetpij are defined as follows:
l(pij) =

P
i

t=0
rt; in(pij) = 1 + j2i; out(pij) = (j + 1)2i and

r(pij) = i. All packets have zero slack and thus we do not specify
their deadlines.

At time t = 0,ALGwill schedule all packets fromS0. Note that
every packetpij in the setSi s.t. 1 � i � k, conflicts with exactly
two packets in the setSi�1, namelypi�1

2j�1 andpi�1
2j . In addition,

packetspi�1
2j�1, pi�1

2j andpij satisfy the condition of Lemma 3.14
as the packetsp, q ands, respectively. Therefore, at timet = i,
ALG schedules the packets inSi and preempts the packets from
Si�1. In this way,ALG successfully transmits only one packetpk1
overall. On the other hand,OPT schedules2k packets, namely all
the packets fromSk. We get that the competitive ratio ofALG is
at least2k.

If the value ofk was determined by the constraint2k � N then
c � 2k = N . If the value ofk was determined by the constraint
L � Pk

i=0
ri then, sincek is the largest integer for which the

constraint holds, we get thatk = blog
r
(L(r � 1) + 1)c � 1 �

log
r
(L)�1. Hence,2k � 1

2
L

1
log(r) . SinceALG is c-competitive,

it must be the case that2k � c and thus1
2
L

1
log(r) � c. There-

fore, log L � log(r)(1 + log(c)). Assigningr = b2c+ 1c gives
log L � log(2c + 1)(1 + log(c)), and log L � log2(2c + 1).
Finally, we obtain:

1

2
2
p
log L�1 � c :

Therefore,

c � min

�
1

2
(2
p
log L � 1); N

�
:

4. VARIABLE VALUE PACKETS
In this section we consider the case of variable value packets.

Thus, the goal of the scheduling policy is to maximize the total
value of the packets successfully transmitted.

In Figure 7 we describe the preemptive maximum weight match-
ing (PMV) algorithm. Each edge representing a packet is assigned

a weight equal to the value of the packet. The parameterr specifies
the preemption ratio. Namely, we multiply the weight of any edge
representing a packetcurrently in transmission by a factor ofr. The
intuition is that we allow the preemption of a packet transmission
only if ‘significantly more valuable packets’ can be scheduled af-
ter the packet is preempted, thus justifying the time wasted for the
aborted transmission.

Each time slott do the following:

Remove all packets that can no longer be fully scheduled by
their deadlines.

Letwt(ep) =

�
r �w(p) if p 2Mt�1;

w(p) otherwise.

Compute a maximum weight matchingMt.

Schedule the packets corresponding to the edges inMt.

Figure 7: ThePMV (r) algorithm for variable length packets.

Next we analyze the performance of thePMV algorithm. In
what follows we fix an input sequence� and let the latest deadline
of a packet in� be dl. We consider the schedule ofPMV and
OPT . We denote bySPMV and bySOPT the set of packets suc-
cessfully transmitted byPMV andOPT , respectively. We also
denote byDROP = SOPT n SPMV the set of packets success-
fully transmitted byOPT and lost byPMV . LetDROPt be the
set of packets fromDROP thatOPT starts to schedule at timet.

The following claim states that whenOPT starts to schedule a
packetp from DROPt, some packets with non-negligible value
that conflict withp are being scheduled byPMV .

CLAIM 4.1. Consider a packetp 2 DROPt and letS be the
set of packets conflicting withp that are scheduled byPMV at
timet. We have thatrw(S) � w(p).

PROOF. Observe thatp is available toPMV at timet. If p itself
is scheduled at timet, we are done. Otherwise, suppose towards a
contradiction thatrw(S) < w(p). In this case the weight ofMt

can be increased by removing the edges corresponding to packets
in S and addingep. That contradicts with the fact thatPMV com-
putes a maximum weight matching.

Note that the packetp may be itself in the setS. In the next
claim we consider the situation in whichPMV preempts a packet
transmission.

CLAIM 4.2. Consider the set of packetsR preempted byPMV
at timet and letS be the set of new packets thatPMV starts to
schedule at timet. We have thatw(S) � r �w(R).

PROOF. Suppose towards a contradiction thatw(S) < r �w(R).
We argue that in this case the weight ofMt can be increased by re-
moving the edges corresponding to packets inS and adding the
edges corresponding to packets inR, which contradicts the maxi-
mality of the matching computed byPMV . Note that packets inR
do not conflict with the rest of the packets that have been scheduled
byPMV at timet� 1.

We now introduce the following definitions.

DEFINITION 4.1. Consider the transmission intervalI of an
OPT packetp. For a time slott 2 I, let pi(p; t) be the packet

conflicting withp at the input that is scheduled byPMV at timet
if any, or a dummy packet with zero value otherwise. Similarly, we
definepo(p; t) w.r.t. the output ofp.

DEFINITION 4.2. Consider the transmission intervalI of an
OPT packetp and a transmission intervalI 0 of a PMV packet
p0 conflicting withp at the input. We define theoverlapping input
transmission intervalof I andI 0 to be their intersection, if any, or
an empty interval otherwise. Similarly, we define theoverlapping
output transmission intervalw.r.t. the output ofp.

DEFINITION 4.3. Consider a sub-intervalI 0 of the transmis-
sion intervalI of anOPT packetp and let the length ofI 0 be `.
We say thatOPT gainsthe value of̀ � �(p) on I 0.

We will show that the competitive ratio ofPMV is at most2r+
2� + r+2�

r�1
+ 1 (recall thatr is the preemption factor and� is

the importance ratio). We will assign the value of all packets in
DROP to the packets successfully transmitted byPMV so that
eachPMV packet is assigned at most2r + 2� + r+2�

r�1
times its

value, and show that such an assignment is feasible.
The assignment routine is described in Figure 8. Consider a

packetp 2 DROPt and letI be its transmission interval. (Re-
member that by our assumption eachOPT packet has a unique
transmission interval.) At Sub-Step 1(a) we assign the value gained
by OPT on all sub-intervals ofI which overlap at the input or at
the output with a transmission interval ofPMV ; at Sub-Step 1(b)
we assign the rest of the value gained byOPT on I; at Step 2
we re-assign the value currently assigned to the packets preempted
by PMV . Note that at iterationt, we may assign some value to
packets scheduled byPMV at timet0 > t.

The following claims demonstrate that only packets that are suc-
cessfully transmitted byPMV are assigned some value and that
the assignment routine is feasible and the total value assigned is at
leastw(DROP).

CLAIM 4.3. After the assignment routine finishes, the total as-
signed value is assigned to packets that are successfully transmitted
byMPV .

PROOF. Note that at iterationt of the assignment routine, only
packets that are scheduled byPMV at timet0 � t are considered
for assignment. In case a packet is preempted at some timet�, all
the value that has been assigned to it due to its current transmission
interval is re-assigned att� when Step 2 of the assignment routine
is executed. This value is assigned to new packets thatPMV starts
to schedule att�. Thus, when the assignment routine finishes, no
value is assigned to packets that are not successfully scheduled.
By the finiteness of the input sequence, the total assigned value is
assigned to packets that are eventually successfully transmitted by
MPV .

CLAIM 4.4. The assignment routine is feasible and after it fin-
ishes, the total value assigned is at leastw(DROP).

PROOF. Observe that the value of any packetp in DROPt is
processed by the assignment routine at iterationt. Sincep is avail-
able toPMV at timet, we have thatw(pi(p; t)) + w(po(p; t)) >

0. Thus, the assignment is well-defined and the value ofp will be
fully assigned by steps 1(a) and 1(b) of the assignment routine.

The following lemma establishes an upper bound on the total
value that can be assigned to aPMV packet that is successfully
transmitted.

For t = 0 up todl Do:

1. For each packetp fromDROPt Do:
Let I = [ts = t; tf] be the transmission interval ofp in
OPT .

(a) For t0 = ts up totf Do:

If w(pi(p; t
0)) + w(po(p; t

0)) > 0 then assign

�(p)
w(pi(p;t

0))

w(pi(p;t
0))+w(po(p;t0))

to pi(p; t
0) and the

value of�(p) w(po(p;t
0))

w(pi(p;t
0))+w(po(p;t0))

to po(p; t0).

(b) If pi(p; t) is successfully transmitted, let̂pi(p; t) be
pi(p; t). Else, if pi(p; t) is preempted, let̂pi(p; t) be
the last packet in the sequence of preempting packets
with value of at leastw(pi(p; t)) whose overlapping
input transmission intervals withI areconsecutiveand
non-empty. In a similar way, we definêpo(p; t) w.r.t.
to the output ofp. Let the value ofp minus the value
already assigned at Sub-Step 1(a) bev. If v > 0 then
assign the value ofv w(pi(p;t))

w(pi(p;t))+w(po(p;t))
to p̂i(p; t)

and the value ofv w(po(p;t))

w(pi(p;t))+w(po(p;t))
to p̂o(p; t).

2. Consider the set of packetsR preempted byPMV at time
t and the setS of new packets thatPMV starts to schedule
at this time. Letv be the total value assigned to packets inR
due to their current transmission intervals (*) and letv0 be the
total value of packets inS. Assign to each packetp in S the
value ofw(p) � v=v0.

(*) For a transmission intervalI of a PMV packetp, the value
assigned top due toI is the total value assigned top in the context
of a time slot̂t 2 I.

Figure 8: The assignment routine for variable length packets.

LEMMA 4.5. After the assignment routine finishes, noPMV

packet that is successfully transmitted is assigned more than2r +
2�+ r+2�

r�1
times its value for anyr � 2.

PROOF. Consider a transmission intervalI = [ts; tf] of aPMV
packetp. Let v be the value assigned top due toI by Step 1. We
will show that if p is successfully transmitted duringI thenv is
bounded by(2r+2�)�w(p) and ifp is preempted thenv is bounded
by (r + 2�) �w(p).

Clearly, the total value assigned top by Sub-Step 1(a) is bounded
by 2� � w(p) since the sum of the lengths of the overlapping in-
put and output transmission intervals ofI with that of packets in
DROP is bounded by2l(p). (Note that transmission intervals of
packets inDROP conflicting with each other cannot overlap.)

Now let us consider Sub-Step 1(b). We claim thatp can be
assigned fully or partially the value of at most two packets from
DROP conflicting with p at the input and at the output, namely,
the two packets ofDROP whose transmission intervals overlap
with the last time slot ofI. To see that, consider a packetp̂ from
DROP conflicting with p at the input whose value has been as-
signed top by Sub-Step 1(b). Let̂I = [t̂s; t̂f] be the transmission
interval ofp̂ in OPT . Suppose towards a contradiction thatÎ does
not overlap with the last time slot ofI. Obviously, if t̂s > tf , the
value of p̂ cannot be assigned top sinceI and Î do not overlap.
Thus, assume that̂ts � tf . If t̂s � ts then the value of̂p is com-

pletely assigned by Sub-Step 1(a) sinceÎ is contained inI. In case
t̂s < ts, the only way that the value of̂p can be assigned top by
Sub-Step 1(b) is thatp is the last packet in the sequence of preempt-
ing packets whose overlapping input transmission intervals withÎ

are consecutive and non-empty. However, in this case the value of
p̂ is still completely assigned by Sub-Step 1(a) becausêI is entirely
covered by the transmission intervals of thePMV packets in this
sequence. We get a contradiction to our assumption. Therefore,Î
overlaps with the last time slot ofI.

Let p0 be theOPT packet whose transmission intervalI 0 =

[t0s; t
0
f] overlaps with the last time slot ofI at the input, if any, or a

dummy packet with zero value otherwise. Similarly, we definep00

andI 00 w.r.t. the output ofp.
By Claim 4.1, the total value of packets conflicting withp0 at

time t0s whenOPT starts to schedule it is at leastw(p0)=r. It
follows that if p does not take part in a sequence of preempting
packets (in this caset0s � ts), it can be assigned at mostr times its
value whenp0 is processed by Sub-Step 1(b). Ifp is the last packet
in a sequence of preempting packets (in this caset0s < ts), by the
definition of Sub-Step 1(b), the value ofp is greater than or equal
to that of the packet scheduled byPMV at the input ofp at time
t0s. Hence,p can still be assigned at mostr times its value whenp0

is processed by Sub-Step 1(b). A similar analysis can be done for
p00. Therefore, in casep is successfully transmitted duringI, it is
assigned at most2r times its value by Sub-Step 1(b).

If p is preempted, at least one of the new packets conflicting with
p thatPMV starts to schedule at this time has value greater than
or equal tow(p); denote this packet bŷp0. To see that, observe that
otherwise the weight of the matching scheduled byMPV can be
increased by removing the edges corresponding to the new packets
conflicting with p and inserting backep, since by our assumption
r � 2. By the definition of Sub-Step 1(b), the unassigned value of
eitherp0 or p00 will be assigned tôp0 (or maybe to another packet
that preemptŝp0). Thus,p can be assigned by Sub-Step 1(b) only
the value of oneOPT packet. This value is at mostr times its own
value, as we argued in the previous case.

Now let us proceed to Step 2 of the assignment routine. Suppose
thatp is successfully transmitted duringI. Note thatI is considered
by Step 2 only once, namely at timets. LetR be the set of packets
preempted byPMV and letS be the set of new packets thatPMV
starts to schedule at timets. By Claim 4.2,w(S) � r � w(R). If
any packet inR has been assigned at mostf times its value due to
its current transmission interval then by the definition of Step 2, any
packet inS is assigned at mostf=r times its value. Since initially
any preempted packet is assigned at mostr+2� times its value by
Step 1, we obtain a geometric progression whose sum is bounded
by r+2�

r�1
, which yields the lemma.

Now we are ready to prove the main theorem.

THEOREM 4.6. The competitive ration ofPMV (r) is at most
(2r + 2�+ r+2�

r�1
+ 1).

PROOF. Obviously,w(SOPT) � w(DROP) + w(SPMV):
Lemma 4.5, Claim 4.3 and Claim 4.4 imply thatw(DROP) �
(2r+2�+ r+2�

r�1
) �w(SPMV):We obtain thatw(SOPT) � (2r+

2�+ r+2�
r�1

+ 1) �w(SPMV); which establishes the theorem.

For a given�, we optimize the value ofr obtaining that the com-
petitive ratio ofPMV is minimized whenr = 1 +

p
�+ 1=2.

Observe thatr � 2 since� � 1 and the condition of Lemma 4.5 is
satisfied.

COROLLARY 4.7. The competitive ratio ofPMV (1+
p
�+ 1=2)

is at most2�+ 2
p
�+ 1=2 +

2�+
p
�+1=2+1p
�+1=2

+ 3.

We note that for� = 1 we get a competitive ratio of approxi-
mately11:123, which improves upon the results of [17]. We also
observe that for the case of unit length packetsPMV (1) is 2-
competitive. Observe that in this case packets are not preempted,
which significantly simplifies the analysis.

THEOREM 4.8. The competitive ratio ofPMV (1) is at most2
for the case of unit length packets.

5. OFFLINE ALGORITHMS
In this section we consider the offline version of our problem.

The problem is NP-hard even for the special case of unit value
packets andN = 1, which is also known as thesequencing within
intervalsproblem [11]. We present a pseudo-polynomial3-approximation
algorithm for the general case. This algorithm falls into the general
framework introduced in [3]. We note that [3] also gives a3

1�� -
approximation algorithm with running time polynomial in1=�. For
the case of unit value packets, we derive a3-approximation poly-
nomial time algorithm based on our algorithm for the general case.

5.1 Variable Value Packets
The input to our algorithm is a set of packetsS. To define our

algorithm we first define a new set of packetsP . For each packet
p 2 S, we define a set of packetsdup(p) that includes zero slack
packets corresponding to all possibilities to schedulep. Specifically

dup(p) =

s(p)[
i=0

fqijr(qi) = r(p) + i; d(qi) = r(qi) + l(qi)g :

Wheres(p) is the slack of a packet and is defined ass(p) = d(p)�
l(p) � r(p) + 1. The new setP is defined asP =

S
p2S dup(p).

Note that the the number of packets inP depends on the slack of
the packets inS and thus is pseudo-polynomial in the inputS.

The algorithmSCHED(P;w) is described in Figure 9. Since
all packets inP have zero slack, for everyp 2 P there is ex-
actly one possible transmission interval ofp, Ip. If the algorithm
SCHED(P;w) selects some packetp 2 P to be scheduled, this
means that in the actual solution the packetq 2 S s.t. p 2 dup(q)

will be scheduled on the transmission intervalIp.
We define the setC(p) to contain all the packets inP that cannot

be scheduled ifp 2 P is scheduled (includingp itself). There
are two types of such packets, packets that are indup(p) and are
actually just duplications of the original packet fromS, and packets
that are conflicting withp and share some time slot withIp. More
formally, we defineC(p) as follows:

C(p) = fq 2 P jIp \ Iq 6= � andq conflicts withpg [dup(p) :
With slight abuse of notation,dup(p) for p 2 P meansdup(s)

such thats 2 S andp 2 dup(s).
Next we analyze the performance of our algorithm.

LEMMA 5.1. Consider a setP of packets with zero slack and
an arbitrary weight functionw. Letp be a packet with the earliest
deadline selected bySCHED(P;w). Then a feasible solution
that includesp and a feasible solution to whichp cannot be added,
are both3-approximation w.r.t. the weight functionw1 (as defined
in Figure 9).

PROOF. Observe that only packets inC(p) contribute positive
weight to the solution. Sincep has the earliest deadline and all
packets have zero slack, each packetq 2 C(p) n dup(p) conflicts
with p and its transmission intervalIq contains the last time slot
of p’s transmission intervalIp. Therefore, any feasible solution
w.r.t. the weight functionw1 can include at most three packets from

Remove all packetsp with w(p) � 0 from P ;

If P = � return�;

Select a packetp in P with the minimald(p).

Letw1(x) =

�
w(p) 8x 2 C(p);

0 otherwise;

Letw2(x) = w(x)�w1(x);

T = SCHED(P;w2);

If T [fpg is a feasible solution thenR = T [fpg;
Else,R = T ;

ReturnR.

Figure 9: Algorithm SCHED(P;w).

C(p): at most one packet fromdup(p), and at most two packets
fromC(p) n dup(p). Thus, the weight of an optimal solution w.r.t.
the weight functionw1 is at most3w(p). If p is in the solution, then
the weight of that solution is at leastw(p). If p cannot be added
to the solution, then there is a packetp0 2 C(p) which is in the
solution. However,w1(p

0) = w(p). We obtain that both solutions
are3-approximation.

We are now ready to prove the main theorem.

THEOREM 5.2. The algorithmSCHED(P;w) is a 3-approximation
w.r.t. the weight functionw.

PROOF. The proof is by induction on the recursion depth.

Basis: Trivial.

Step: Denote byOPT1 an optimal solution w.r.t. the weight func-
tion w1 and byOPT2 an optimal solution w.r.t. the weight
function w2. Note that the solution returned by the algo-
rithm, R, falls within one of the two categories considered
in Lemma 5.1 and thereforew1(R) � 3w1(OPT1). By the
induction hypothesis we have thatw2(T) � 3w2(OPT2).
Therefore,

w(R) = w1(R) +w2(R)

� w1(R) +w2(T)

� 3w1(OPT1) + 3w2(OPT2)

� 3w1(OPT) + 3w2(OPT)

= 3w(OPT):

THEOREM 5.3. The running time ofSCHED(P;w) is poly-
nomial in jP j.

PROOF. In each iteration we remove at least one packet fromP

and therefore the number of iterations is bounded byjP j. Finding
the minimald(p) can be done in timeO(jP j). Updatingw1 and
w2 takesO(1) time per packet and in each iteration we have at
mostjP j updates. Checking whetherT [fpg is a feasible solution
can be done inO(jT j) � O(jP j) time. Therefore, the time com-
plexity of each iteration isO(jP j) and the total time complexity is
O(jP j2).

We thus have a3-approximation pseudo-polynomial time algo-
rithm for the variable value case.

5.2 Unit Value Packets
For the unit value case, we will modify our algorithm in the fol-

lowing way. Note that when we use algorithmSCEHD on unit
value packets, in each iteration,SCEHD removes a packetp and
all the packets inC(p) completely. Therefore, the solution returned
from the recursive call will not contain any packet inC(p), and we
can always addp to this solution. Thus, we can instead addp im-
mediately to the solution, and then proceed to the recursive call.
Instead of creating the setdup(q) for a packetq, we maintain the
time window in which it can be scheduled and shrink it if neces-
sary to avoid interference with the packets already scheduled. The
algorithm is presented in Figure 10.

For eachp 2 S setr0(p) = r(p).

While S 6= � do

Remove all packets inS that can no longer be fully scheduled
by their time windows.

Select a packetp in S with minimal r0(p) + l(p).

Schedulep during the time window[r0(p); r0(p) + l(p)].

Removep from S.

For eachq 6= p with r0(p) � r0(q) � r0(p) + l(p) that
conflicts withp
Setr0(q) = r0(p) + l(p) + 1.

Figure 10: Algorithm SCHED � 1(S).

LEMMA 5.4. The running time ofSCHED � 1(S) is polyno-
mial in jSj.

PROOF. In each iteration we remove at least one packet fromS

and therefore the number of iterations is bounded byjSj. Finding
the minimalr(p) + l(p) can be done in timeO(jSj). Updating
a time window for a given packet requiresO(1) time and in each
iteration we have at mostjSj updates. Therefore, the time com-
plexity of each iteration isO(jSj) and the total time complexity is
O(jSj2).

6. REFERENCES
[1] N. Andelman, Y. Mansour and An Zhu, “Competitive

Queueing Policies for QoS Switches,”The 14th ACM-SIAM
SODA, Jan. 2003.

[2] T. Anderson, S. Owicki, J. Saxe and C. Thacker, “High speed
switch scheduling for local area networks”,ACM Trans. on
Computer Systems, pp. 319-352, Nov. 1993.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B.
Schieber, “A unified approach to approximating resource
allocation and scheduling”,Journal of the ACM, Vol. 48(5), pp.
1069-1090, 2001.

[4] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L.
Rosier, D. Shasha, and F. Wang, ”On the Competitiveness of
On-Line Real-Time Task Scheduling,”The Journal of Real
Time Systems, Vol. 4(2), pp. 124-144, 1992.

[5] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang and W.
Weiss, “An Architecture for Differentiated Services,”Internet
RFC 2475, December 1998.

[6] A. Borodin and R. El-Yaniv, “Online Computation and
Competitive Analysis,”Cambridge University Press, 1998.

[7] S. Dolev and A. Kesselman, ”Non-Preemptive Real-Time
Scheduling of Multimedia Tasks,”Journal of Real-Time
Systems, Vol. 17(1), pp. 23-39, July 1999.

[8] S. Dolev and A. Kesselman, ”Bounded Latency Scheduling
Scheme for ATM Cells,”Journal of Computer Networks, Vol
32(3), pp 325-331, March 2000.

[9] Y. Ganjali, A. Keshavarzian, and D. Shah, “Input-Queued
Switches : Cell Switching vs. Packet Switching,”Proceedings
of INFOCOM 2003.

[10] J. A. Garay, J. Naor, B. Yener and Peng Zhao, ”On-line
Admission Control and Packet Scheduling with Interleaving,”
Proceedings of INFOCOM 2002.

[11] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP Completeness,”W.
H. Freeman, San Francisco, 1979.

[12] S. Goldman, J. Parwatikar and S. Suri, ”On-line Scheduling
with Hard Deadlines,”Journal of Algorithms, Vol. 34, pp.
370-389, 2000.

[13] S. Gopal and C. K. Wong, ”Minimizing the Number of
Switchings in a SS/TDMA System,”IEEE Trans. Commun.,
Vol. COM-33, pp. 497-501, June 1985.

[14] R. Jain, K. Somalwar, J. Werth, and J. C. Browne,
“Heuristics for Scheduling I/O Operations,”IEEE Trans. on
Parallel and Distributed Systems, Vol. 8(3), 1997.

[15] A. Kesselmanm, Z. Lotker, Y. Mansour, B. Patt-Shamir, B.
Schieber and M. Sviridenko, “Buffer Overflow Management in
QoS Switches,”Proceedings of STOC 2001, pp. 520-529.

[16] G. Koren and D. Shasha, “Dover: An Optimal On-Line
Scheduling Algorithm for Overloaded Uniprocessor Real-Time
Systems,”SIAM J. Comput.Vol. 24(2), pp. 318-339, 1995.

[17] J. H. Lee and K. Y. Chwa, “Online Scheduling of Parallel
Communications with Individual Deadlines,”Proceedings of
ISAAC 1999, pp. 383-392.

[18] R. Lipton and A. Tomkins, ”Online Interval Scheduling,”
ACM-SIAM Symposium on Discrete Algorithms, pp. 302-311,
1994.

[19] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F.
Neri, ”Packet Scheduling in Input-Queued Cell-Based
Switches,”Proceedings of INFOCOM 2001, pp. 1085-1094.

[20] M. A. Marsan, A. Bianco, E. Leonardi and L. Milia, “RPA:
A Flexible Scheduling Algorithm for Input Buffered Switches,”
IEEE Transactions on Communications, Vol. 47(12),
pp.1921-1933, December 1999.

[21] N. McKeown, “Scheduling Algorithms for Input-Queued
Cell Switches,”Ph. D. Thesis, University of California at
Berkeley, 1995.

[22] N. Mckeown and A. Mekkittikul, “A Starvation Free
Algorithm for Achieving 100% Throughput in an Input Queued
Switch,” ICCCN 96, Oct. 1996.

[23] N. McKeown, P. Varaiya and J. Walrand, “Scheduling Cells
in an Input-Queued Switch”,IEEE Electronics Letters, pp.
2174-2175, Dec. 1993.

[24] H. Moon and D. K. Sung, ”Variable Length Packet
Scheduling Algorithm for IP Traffic,”Proceedings of JCCI
2001, April 2001.

[25] D. Sleator and R. Tarjan, “Amortized Efficiency of List
Update and Paging Rules,”CACM 28, pp. 202-208, 1985.

