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Abstract. In this paper we prove a theorem that gives an (almost) tight upper bound on the
sensitivity of a multiple-output Boolean function in terms of the sensitivity of its coordinates and
the size of the range of the function. We apply this theorem to get improved lower bounds on the
time (number of rounds) to compute Boolean functions by private protocols. These bounds are given
in terms of the sensitivity of the function being computed and the amount of randomness used by
the private protocol. These lower bounds are tight (up to constant factors) for the case of the xor

function and together with the results in [E. Kushilevitz and A. Rosén, SIAM J. Discrete Math., 11
(1998), pp. 61–80.] establish a tight (up to constant factors) tradeoff between randomness and time
in private computation.
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1. Introduction. An important characteristic of a Boolean function is its sen-
sitivity. Informally, the sensitivity of a function is the maximum number of input
variables such that changing the value of just one variable at a time changes the value
of the function as well. The sensitivity of Boolean functions and its relation to other
complexity measures have been studied extensively. A number of important results
have been achieved via arguments about sensitivity. For example, lower bounds on
the time required for CREW PRAM computation [33, 10, 28] and lower bounds on
the size of reliable circuits from unreliable gates [11, 30, 31, 14, 15] were given in
terms of the sensitivity of the function being computed. A generalization of sensitiv-
ity, block sensitivity, was defined by Nisan [28]. Studying block sensitivity revealed
that sensitivity provides lower bounds for several other measures, including Boolean
decision tree complexity [28] and the degree of real polynomials representing Boolean
functions [29]. The relation between sensitivity and block sensitivity has been studied
in a number of papers [28, 17, 32, 20]. In several settings, average sensitivity is an
important measure. It has been shown that the average sensitivity of a function is
related to its Fourier coefficients [19] and that the average sensitivity of functions
computable by constant depth circuits must be low [26]. Bounds on the sensitivity of
various classes of functions were given in [34, 35].

In this paper we prove a theorem on the sensitivity of multiple-output Boolean
functions. We give an almost tight upper bound on the sensitivity of such functions,
in terms of the sensitivity of each coordinate, and the size of the range of the function.
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More formally, we prove the following theorem:
Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with coordinate func-

tions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m, where s(f) is the
sensitivity of f . If the range of F contains D different values, then the sensitivity of
F is at most k · 4(log2 D + 2).

Note that the restriction on the size of the range of F can be interpreted as a
condition on the “correlation” between the coordinate functions fj . Without this
restriction, the number of possible values of an m-output Boolean function is 2m. It
is easy to see that s(F ) ≤ km must always hold. Similarly, if we restrict the range
of F to be a q-dimensional subcube of {0, 1}m, that is, we require that m − q of the
m coordinate functions are constants (and the other q coordinate functions can be
arbitrary functions), then s(F ) ≤ kq must hold. Our results show that even if the
range of F is an arbitrary subset of size 2q of {0, 1}m, the sensitivity of F cannot
be much larger. Our bound is almost tight, as for q independent coordinates the
sensitivity kq is achieved.

We use the above theorem to prove lower bounds in information-theoretic private
computation. We believe, however, that the theorem is of independent interest and
may find additional applications. Using the above theorem and the machinery of
[25] we prove improved lower bounds on the number of rounds required to privately
compute a Boolean function. The lower bound is given in terms of the sensitivity
of the function being computed and the amount of randomness used by the protocol
overall. For the case of the function xor (exclusive or) these lower bounds are tight,
up to a small constant factor. A private protocol to compute a Boolean function f
allows a number of players, each possessing a single input bit, to compute the value
of the function f on their combined input in a way that no single player learns any
“unnecessary” information (in particular, the inputs of the other players).1 Private
computation in this setting was first considered by Yao [36] and has been the subject
of a considerable amount of research [1, 2, 4, 5, 7, 8, 9, 12, 13, 16, 22, 21, 23].

Using randomness any function can be computed privately if the number of players
is at least three. On the other hand, for most functions (except very simple ones),
randomness is necessary in order to compute the function privately. Randomness as a
resource has been the subject of extensive research in the past decade. In the context
of private computation, the main questions addressed about randomness as a resource
have been the minimum number of random bits required for private computation of
different functions and tradeoffs between the amount of randomness and the amount
of time (i.e., number of rounds) required for the computation [5, 22, 25, 24, 6]. It is
worthwhile to note that one can also characterize the class of functions computable
by linear size circuits in terms of the amount of randomness required for their private
computation [24]. The question of whether private computations in general can be
carried out in constant number of rounds was addressed in [1, 3, 18].

A lower bound on the number of rounds required for the private computation
of Boolean functions was given by Kushilevitz and Rosén [25]. They proved that it
takes at least Ω(log s(f)/d) rounds to privately compute a function f of sensitivity
s(f) using d random bits overall. They also gave protocols to compute the function
xor that use a small number of random bits and at the same time are efficient in
terms of rounds: for any d ≥ 2, they provided a protocol to privately compute the

1In the literature, a more general notion of t-privacy is used, requiring that no coalition of t
players learns extra information. Here we discuss the case of t = 1. See section 3 for a formal
definition of private protocols.
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xor of n bits, using O(log n/ log d) = O(log s(xor)/ log d) rounds and d random bits.
However, the exact tradeoff between randomness and rounds was left as an open
question. Using our theorem on sensitivity we prove that it takes Ω(log s(f)/ log d)
rounds to privately compute a Boolean function f using d random bits overall.

2. A theorem on sensitivity. In this section we prove a theorem that gives an
upper bound on the sensitivity of a Boolean function F : {0, 1}n → {0, 1}m, in terms
of the sensitivity of the coordinate functions fj : {0, 1}n → {0, 1}, and the size of the
range of F .

Definition 2.1 (sensitivity).
• For a binary vector y, denote by y(i) the binary vector obtained from y by

flipping the ith entry.
• A function f is sensitive to its ith variable on input y if f(y) 6= f(y(i)).
• sy(f) is the number of variables to which the function f is sensitive on input

y.
• The sensitivity of a function f is s(f) = maxy sy(f).
• The average sensitivity of a function f is as(f) = 1

2n

∑
y∈{0,1}n sy(f).

Note that for a multiple-output Boolean function F : {0, 1}n → {0, 1}m the value
of F on each input x ∈ {0, 1}n is a binary vector of length m, and F (x) 6= F (y) if
and only if fj(x) 6= fj(y) for at least one of the coordinate functions fj , 1 ≤ j ≤ m.

Fact 1. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with coor-
dinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m. Then
s(F ) ≤ km.

Proof. The statement follows from the simple fact that s(F ) ≤
∑m

j=1 s(fj).
Note that this bound is tight: taking fj(x) = xj , we have s(fj) = 1 = k and

s(F ) = m = km.
The proof of Fact 1 shows that if we restrict the range of F to be a q-dimensional

subcube of {0, 1}m, then s(F ) ≤ kq must hold. In the following theorem we prove
that the sensitivity of F cannot be much larger, even if the range of F is an arbitrary
subset of size 2q of {0, 1}m.

Theorem 2.2. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with
coordinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m.
If the range of F contains D different values, then the sensitivity of F is at most
k · 4(log2 D + 2).

We observe that this bound is almost tight. Consider again the functions fj(x) =
xj , each of sensitivity k = 1. In this case the sensitivity of F is k · log2 D, as D =
2n = 2m. Note that our bound holds for every k and D, independent of the values of
n and m.

In the following the function F and the functions fj are as defined in the above
theorem. In particular, we always assume that s(fj) ≤ k.

For our argument it is convenient to use the following definition.
Definition 2.3 (sensitivity restricted to a set). For F (x) = (f1(x), . . . , fm(x))

and x ∈ {0, 1}n, let S(x) denote the set of vectors y ∈ {0, 1}n that are at Hamming
distance 1 from x and for which F (y) 6= F (x). Let U ⊆ {0, 1}n. We use the notation
S(x, U) = S(x) ∩ U and say that |S(x,U)| is the sensitivity of F on x restricted to
the set U .

Notation. Let V ⊆ {0, 1}n be a subset of input vectors. We partition the set
V into levels with respect to a fixed vector v0 ∈ V . The set Vi is the set of vectors
in V that are at Hamming distance i from v0 and is called the ith level of V with
respect to v0. Note that V0 = {v0}. The notation used for the levels Vi does not
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indicate their dependence on the choice of v0. This should nevertheless be clear from
the context. For x ∈ Vi we use the notation σV,v0(x) = |S(x, Vi+1)| and σV,v0(Vi) =
minx∈Vi

σV,v0(x). Note that σV,v0 depends on the choice of both V and v0 ∈ V ,
since the levels Vi are defined with respect to v0, and if x ∈ Vi, then σV,v0(x) is
the sensitivity of F on x restricted to the set Vi+1. We omit from our notation the
dependence of the set S(x) and σV,v0(x) on F .

2.1. The proof. Our argument proceeds in two stages. First we choose a subset
V ⊆ {0, 1}n of inputs with certain properties that we define below. Informally these
properties say that if F has sensitivity s on some input v0, then we can start with v0

and build a set of inputs V such that for “many” levels Vi of V (partitioning V into
levels with respect to v0) the following holds: on each input from Vi the sensitivity of
F restricted to Vi+1 is “high” (in terms of s). That is, not only the sensitivity of F
is high on each selected input, but it remains high even when restricted to the next
level of the set V .

In the second stage we use the set V to demonstrate a large number (in terms of
s) of different values for F . This will give us the relation between the sensitivity s
and the number of possible values D.

We start with a lemma stating that if the sensitivity of F on an input x is s, then
the sensitivity must be “almost” s on many inputs from the set S(x). Moreover, this
holds even if we consider the sensitivity with respect to a partition of the inputs into
levels.

Lemma 2.4. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with
coordinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for 1 ≤ j ≤ m. Let
S(x, U) be defined with respect to F as above. Let B = {0, 1}n, and let v0 ∈ B. Let
Bi denote the ith level of B with respect to v0, that is, the set of vectors in B that
are at Hamming distance i from v0. Let x ∈ Bi, and let S ⊆ S(x, Bi+1) such that
|S| = σ. Then there are at least σ/2 nodes v ∈ S such that |S(v, Bi+2)| ≥ σ − 4k.

Proof. We think of B as the n-dimensional hypercube, with an edge connecting
two nodes if and only if their Hamming distance is exactly 1. We number the nodes
in S from 1 to σ and name them v`, 1 ≤ ` ≤ σ. (Recall that S ⊆ Bi+1.) Let v(`,j) for
1 ≤ `, j ≤ σ, ` 6= j, be the node in Bi+2 whose Hamming distance to both v` and vj

is 1. (Note that by our notation v(`,j) and v(j,`) denote the same node.) Let e`,j be
the edge that connects v` to v(`,j).

Call an edge sensitive if it connects nodes x and y such that F (x) 6= F (y). First
we show that among the σ(σ− 1) edges e`,j at most σ2(k− 1) are not sensitive edges.
To this end we partition the σ(σ−1) edges into σ sets. The set E` contains the edges
ej,` for j 6= `, 1 ≤ j ≤ σ; that is, the set E` contains for each node vj , j 6= `, the edge
that connects vj to the node v(j,`).

Now we claim that in each set E` there are at most 2(k− 1) edges which are not
sensitive. Since v` ∈ S, there is some coordinate t such that ft(v`) 6= ft(x). Without
loss of generality assume that ft(x) = 0 and ft(v`) = 1. For an edge ej,` which is
not sensitive, we have that F (vj) = F (v(`,j)), and, in particular, ft(vj) = ft(v(`,j)).
There can be at most k − 1 such edges with ft(vj) = 1, since the sensitivity of ft is
at most k, and together with v` there are at most k nodes adjacent to x on which ft

is 1. Similarly, together with x there are at most k nodes adjacent to v` on which ft

is 0. It follows that in E` there are at most 2(k − 1) edges which are not sensitive.
Thus, among the σ(σ− 1) edges e`,j at most σ2(k− 1) are not sensitive. By a simple
averaging argument there are at most σ/2 nodes in S which are adjacent to at least
4(k − 1) nonsensitive edges in ∪σ

`=1E`.
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It follows that there are at least σ/2 nodes in S which are adjacent to more than
σ − 1 − 4(k − 1) ≥ σ − 4k sensitive edges in ∪σ

`=1E`. That is, there are at least σ/2
nodes in S such that the sensitivity of F restricted to Bi+2 is at least σ− 4k on each
of them.

Now we are ready to prove the existence of a set V of input vectors with the
desired properties.

Lemma 2.5. If the sensitivity of F on v0 is s, then there is a set V ⊆ B = {0, 1}n

such that σV,v0(Vi) ≥ s/4 for i = 0, . . . , ds/(8k)e − 1.
Proof. We construct the set V by building its levels Vi inductively. (Recall that

Vi denotes the ith level of V with respect to v0; that is, Vi is the set of vectors from
V that are at Hamming distance i from v0.) We have V0 = {v0}. We also partition
the set B into levels with respect to v0.

We prove by induction on i that we can build sets V0, . . . , Vi such that
• for 0 ≤ j < i and any x ∈ Vj , we have σV,v0(x) ≥ (1/2)s− j2k;
• for any x ∈ Vi, we have σB,v0(x) ≥ s− i4k.

If the sensitivity of F on v0 is s, then by Lemma 2.4 there is a set V1 ⊆ S(v0, B1)
of at least s/2 nodes such that for any x ∈ V1 we have |S(x,B2)| = σB,v0(x) ≥ s−4k.
This proves the statement for i = 1.

Now assume we have built the set V by levels up to level i. We now build level i+1.
Consider a node x ∈ Vi. By the induction hypothesis σB,v0(x) ≥ s − i4k for x ∈ Vi,
that is, |S(x, Bi+1)| ≥ s−i4k. By Lemma 2.4 there is a set Gx of at least (1/2)(s−i4k)
nodes v ∈ S(x, Bi+1) such that |S(v, Bi+2)| ≥ (s− i4k)− 4k = s− (i + 1)4k.

To build the set Vi+1 we let

Vi+1 = ∪x∈Vi
Gx .

It follows that each node x ∈ Vi has at least (1/2)s− i2k neighbors y in Vi+1 for which
F (x) 6= F (y); that is, for any x ∈ Vi it holds that

σV,v0(x) ≥ (1/2)s− i2k .

Moreover, for all the nodes y ∈ Vi+1, it holds that σB,v0(y) ≥ s− (i + 1)4k. Thus our
induction step is complete. Now, as long as i ≤ s/(8k) we have that σV,v0(x), for any
x ∈ Vi, is at least (1/2)s− (s/(8k))2k = (1/4)s.

This completes the first stage of our proof. Next we will show, using the set V
guaranteed by the above lemma, that F must take many different values. We start
by a claim that selects a number of different values among the neighbors of a single
input vector.

Claim 1. Let x ∈ {0, 1}n and S ⊆ S(x). If |S| ≥ ξ, then for some `, such that
ξ/k ≤ ` ≤ m, we can find ` vectors y1, . . . , y` among the vectors in the set S, and `
coordinates j1, . . . , j` among the m coordinates of F , such that fja(ya) 6= fja(x) for
a = 1, . . . , ` and fja(yb) = fja(x) for 1 ≤ a < b ≤ `.

The above claim says, for example, that if F (x) is 0 in all coordinates, then we
can find ` vectors y1, . . . , y` in S, for ξ/k ≤ ` ≤ m, and a set of ` coordinates such
that if we appropriately reorder the coordinates of F , then the values of F on these
vectors have the following form: F (y1) = (1.....), F (y2) = (01....), F (y3) = (001...),
F (y4) = (0001..), and so on.

Proof of Claim 1. We can take any vector from S as y1, and let j1 be the first
coordinate where F (y1) and F (x) differ, that is, fj1(y1) 6= fj1(x). Since the sensitivity
of each fj is at most k, there are at most k−1 other vectors in S on which the value of
F differs from F (x) in the same coordinate j1. Pick any of the remaining vectors from
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S as y2, and let j2 be the first coordinate where F (y2) and F (x) differ. Thus we can
continue this process for at least ` ≥ ξ/k steps and find the vectors and coordinates
required by the claim. Note that ` ≤ m, since there are only m coordinates.

Selecting different values. We now define a procedure to select input vectors from
the set V guaranteed by Lemma 2.5 in a way that F has a different value on each
selected vector.

Definition 2.6.

• A signature of a node x is a subset T ⊆ [1...m] of coordinates, and a set of
cardinality |T | of binary values εj ∈ {0, 1}, such that fj(x) = εj for j ∈ T .
The signature of x serves as a witness of the value of F on x. We say that
the length of the signature is |T |.

• We say that the signatures of the nodes x and y are inconsistent if there is a
coordinate j that participates in both signatures but fj(x) 6= fj(y).

• We say that a node z preserves the signature of the node x if for each coor-
dinate j participating in the signature of x it holds that fj(z) = fj(x).

• For x ∈ Vi, let Sx ⊆ S(x, Vi+1) be the subset of S(x, Vi+1) consisting of the
nodes that preserve the signature of x.

The following observation follows directly from the definitions above.
Observation 1. For any two nodes x and y, if the signatures of x and y are

inconsistent, then Sx ∩ Sy = ∅.
The next observation requires a simple proof.
Observation 2. If the length of the signature of a node x ∈ Vi is ν, then

|Sx| ≥ |S(x, Vi+1)| − νk.
Proof. Since the sensitivity of each fj is at most k, there are at most νk vectors

in S(x, Vi+1) on which F takes a value that differs from F (x) in at least one of the ν
coordinates that belong to the signature of x.

We now describe the procedure for selecting input vectors with different values. In
this process we will assign to each selected vector a signature (defined above) and an
address, which is a sequence of integers, representing the way the vector was selected,
as defined in what follows. The procedure selects from each level Vi a subset of the
nodes that we denote by Zi. The procedure starts with selecting the node v0 to which
we assign a signature of size 0 and address of size 0 (i.e., an empty signature and an
empty address). We thus have Z0 = {v0}. For any i, the procedure selects the set
Zi+1 after the set Zi has been determined. To determine the set Zi+1 we start with the
sets Sx ⊆ S(x, Vi+1) for x ∈ Zi. (Recall that the nodes in Sx preserve the signature
of x by definition.) If Sx is not empty, we apply Claim 1 to x and Sx to get nodes to
be included in Zi+1. We get a set Yx of at least ` ≥ |Sx|/k vectors, Yx = {y1, . . . , y`}.
Note that Claim 1 selects ` coordinates, such that for every 1 ≤ a ≤ ` the value of
F (ya) differs from the value of F (x) on the ath selected coordinate, and the value of
a coordinates are fixed. On the other hand, since for each vector y ∈ Sx the value
F (y) must be consistent with the signature of x, none of the ` coordinates chosen by
Claim 1 participates in the signature of x. We thus set the signature of ya by adding
the additional a coordinates and their values fixed by Claim 1 to the signature of x
(which is consistent with F (ya)). Thus, if the length of the signature of x is ν, then
the length of the signature of ya is ν + a. We obtain the address of ya by appending
the integer a to the address of x. The set Zi+1 is defined to be the union of the vectors
selected for each node x ∈ Zi, that is, Zi+1 = ∪x∈ZiYx. We continue this procedure
as long as the last set Zi is not empty.

Next we analyze the properties of our procedure. First note that the address
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of a node x ∈ Zi consists of exactly i integers. We also have the following simple
observation.

Observation 3. For x ∈ Zi, the length of the signature of x is exactly
∑i

u=1 tu
if the address of x is (t1, t2, . . . , ti).

The following two claims show that the values of F on all inputs in Z = ∪i≥0Zi

are all different.
Claim 2. For any two vectors y and z from the same level Zi (i ≥ 1), the

signatures of y and z are inconsistent.
Proof. We prove the claim by induction on i. The statement holds for i = 1,

since the vectors in Z1 and their signatures were selected by applying Claim 1 to v0.
Now assume that we have proved the statement for i; that is, for any x1, x2 ∈ Zi the
signatures of x1 and x2 are inconsistent. Then by Observation 1 we have Sx1∩Sx2 = ∅.
Recall that every y ∈ Zi+1 must belong to a set Sx for some x ∈ Zi. Thus for every
y ∈ Zi+1 we have a unique x ∈ Zi such that y ∈ Sx. Let y, z ∈ Zi+1. If y, z ∈ Sx

for x ∈ Zi, then the signatures of y and z must be inconsistent in the part that was
appended to the signature of x after applying Claim 1 to x and Sx. If y ∈ Sx1 and
z ∈ Sx2 , for x1 6= x2, then the signatures of y and z must be inconsistent in the part
that was “inherited” from x1 and x2, respectively.

Corollary 1. For any two vectors y and z from the same level Zi (i ≥ 1), we
have F (y) 6= F (z).

We will think of the set Z = ∪i≥0Zi as a tree rooted at v0. For a node z ∈ Zi+1,
we define its parent to be the node x ∈ Zi such that z ∈ Sx. Note that there is exactly
one such node since for any x, y ∈ Zi we have Sx∩Sy = ∅ by Observation 1 and Claim
2. Thus Z indeed forms a rooted tree. We say that y is an ancestor of z if there is
a path from z to y in Z such that each step along the path leads from a node to its
parent.

Claim 3. For any two vectors from different levels y ∈ Zi1 and z ∈ Zi2 , i1 6= i2,
we have F (y) 6= F (z).

Proof. Assume that there are vectors y ∈ Zi and z ∈ Zj for i < j such that
F (y) = F (z). This is only possible if y is an ancestor of z, since each vector we
select must preserve the signature of its parent and by Claim 2 the signatures are all
inconsistent within each level. For the case that y is an ancestor of z, note that z
must preserve the signature of each of its ancestors on the path in Z from z to y,
in particular the signature of y′ for some y′ ∈ Sy ⊆ S(y, Vi+1). However, this is not
possible if F (y) = F (z) because y′ and its signature were selected by applying Claim
1 to y; thus the signature of y′ contains a coordinate ` ∈ [1...m] such that f`(y′) 6=
f`(y).

Counting the number of selected values. Since no two selected input vectors are
mapped to the same value by F , it remains to show that we select a “large” number
of vectors. We will prove the following theorem.

Theorem 2.7. If for a set V ⊆ {0, 1}n and vector v0 ∈ V the sensitivity of F
restricted to the levels of V satisfies σV,v0(Vi) ≥ ξ = ∆k for i = 0, . . . , i∗ − 1, then F

takes at least
∑i∗

i=0

(
∆
i

)
different values.

Proof. Let V be a set that satisfies the conditions set forth in the theorem. We
will show that by applying the procedure described above to the set V , we select at
least

∑i∗

i=0

(
∆
i

)
input vectors. Let Z = ∪i≥0Zi be the set obtained by applying our

procedure to the set V .
We say that the degree of a node z ∈ Z is the number of vectors selected by our

procedure from the set Sz (by applying Claim 1 to z and Sz), that is, the number of
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z’s children in the tree.
Observation 4. If for some 0 ≤ i ≤ i∗−1 and x ∈ Zi the length of the signature

of x is ν, then the degree of x is at least ∆− ν.
Proof. Since σV,v0(Vi) ≥ ξ = ∆k for i = 0, . . . , i∗−1, we have that |S(x, Vi+1)| ≥ ξ.

Thus, |Sx| ≥ ξ − νk = k(∆− ν) must hold by Observation 2. It follows from Claim 1
that the degree of x is at least ∆− ν.

As described in the above selection procedure, we number the children of a given
node by the number of additional coordinates we fix when applying Claim 1 to this
node. Thus the address (t1, t2, . . . , ti) of a node in Zi specifies the path to follow on
the tree from v0 to reach this node. The path contains one node from each level Z`

for 0 ≤ ` ≤ i such that the node from Zj on the path is the tjth child of the node
from Zj−1.

The following lemma is helpful in counting the number of vertices in Zi.
Lemma 2.8. If tu ≥ 1 is an integer for 1 ≤ u ≤ i ≤ i∗ and (t1, t2, . . . , ti) satisfies

i∑
u=1

tu ≤ ∆ ,(2.1)

then (t1, t2, . . . , ti) is a valid address in the tree Z.
Proof. We prove by induction on i that if (t1, t2, . . . , ti) is a solution of (2.1) such

that tu ≥ 1 is an integer for 1 ≤ u ≤ i ≤ i∗, then (t1, t2, . . . , ti) is a valid address in
the tree.

To prove the statement for i = 1, we need to observe that v0 has at least ∆
children; thus if t1 ≤ ∆, then (t1) is a valid address.

Assume the statement is true for i ≤ i∗ − 1, and let (t1, t2, . . . , ti, ti+1) be a
solution to

∑i+1
u=1 tu ≤ ∆. It follows that

i∑
h=1

th ≤ ∆− ti+1 < ∆ ;

thus by our induction hypothesis (t1, t2, . . . , ti) is a valid address that leads to a node
v. By Observation 3, the length of the signature of v is

∑i
h=1 th, and by Observation

4 its degree in the tree is at least ∆−
∑i

h=1 th. If (t1, t2, . . . , ti, ti+1) is a solution to∑i+1
u=1 tu ≤ ∆, then 1 ≤ ti+1 ≤ ∆−

∑i
h=1 th, thus v has indeed at least ti+1 children

and (t1, t2, . . . , ti+1) is a valid address.
We now prove the following lemma.
Lemma 2.9. The number of nodes selected in level i ≤ i∗, |Zi|, satisfies

|Zi| ≥
(

∆
i

)
.

Proof. The number of nodes |Zi| at level i is the number of different sequences
of length i (t1, t2, . . . , ti), where tu ≥ 1 is an integer for 1 ≤ u ≤ i, and such that
(t1, t2, . . . , ti) corresponds to a valid address in the tree.

There are exactly
(
∆
i

)
different solutions for (2.1) where tu ≥ 1 is integer for

1 ≤ u ≤ i (cf. [27]). To see this, note that we can specify a solution for (2.1)
by choosing i distinct integers between 1 and ∆, and this gives a bijection between
solutions of (2.1) with the required properties and sets of i distinct integers between
1 and ∆. Suppose that the i distinct integers are 1 ≤ n1 < · · · < ni ≤ ∆. Then
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by taking t1 = n1 and tu = nu − nu−1 we get a solution for (2.1) with the required
properties. Thus by Lemma 2.8 we have that the number of nodes selected at level
i ≤ i∗ is |Zi| ≥

(
∆
i

)
.

Since we have shown that F takes different values on each input in Z, Theorem
2.7 follows from the above lemma.

We can now conclude this section with the following proof.
Proof of Theorem 2.2. Let the sensitivity of F be s. Then there is at least one

node v0 that has sensitivity s. Using Lemma 2.5 we construct a set V ⊆ {0, 1}n such
that σV,v0(Vi) ≥ s/4 for any 0 ≤ i ≤ ds/(8k)e − 1.

We apply Theorem 2.7 to the set V with parameters i∗ = ds/(8k)e and ∆ =
bs/(4k)c.

We get that the number of values that F takes is at least

ds/(8k)e∑
i=0

(
bs/(4k)c

i

)
≥ 2bs/(4k)c−1 .

Since by the hypothesis of the theorem the number of values that F takes is D,
we get

2bs/(4k)c−1 ≤ D

and

s ≤ k · 4(log2 D + 2) .

3. Applications to private computation. In this section we apply the the-
orem on sensitivity of the previous section to give improved lower bounds on the
number of rounds required for the private computation of Boolean functions, given
a certain amount of randomness. Comparing our results with known protocols [25]
shows that our lower bounds are tight (up to a small constant factor) in terms of the
sensitivity of the functions and the amount of randomness. We first briefly define
private protocols and the complexity measures that we are interested in.

Let f : {0, 1}n → {0, 1} be any Boolean function. A set of n players Pi (1 ≤
i ≤ n), each possessing a single input bit xi (known only to Pi), collaborate in a
protocol to compute the value of f(x). The protocol operates in rounds. In each
round each player may toss some coins and then sends messages to the other players.
(Messages are sent over private channels so that other than the intended receiver no
other player can listen to them.) After sending its messages, each player receives the
messages sent to it by the other players in the current round. In addition, each player
chooses to locally output the value of the function at a certain round. We say that the
protocol computes the function f : {0, 1}n → {0, 1} if for every input x ∈ {0, 1}n the
output produced by each player is f(x). Sometimes it is more convenient to model
the coin tossing done by each player, as a set of binary random tapes Ri, each Ri

being provided to player Pi. The number of random coins tossed by player Pi is the
number of random bits it reads from its random tape.

Notation. We denote by Ri a specific random tape provided to player Pi and by
~R = (R1, . . . , Rn) the vector of the random tapes of all the players. By ~r = (r1, . . . , rn)
we denote the random variable for these tapes and vector of tapes. Note that if we
fix ~R, we obtain a deterministic protocol. By Ci we denote a specific sequence of
messages received by Pi, and ci denotes the random variable (depending on ~r) for the
sequence of messages received by Pi.
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Informally, privacy with respect to player Pi means that player Pi cannot learn
anything (in particular, the inputs of the other players) from the messages it receives,
except what is implied by its input bit, and the value of the function computed.
Formally,

Definition 3.1 (privacy). A protocol A for computing a function f is private
with respect to player Pi if for any two input vectors x and y, such that f(x) = f(y)
and xi = yi, for any sequence of messages Ci, and for any random tape Ri provided
to Pi,

Pr[ci = Ci|Ri, x] = Pr[ci = Ci|Ri, y],

where the probability is over the random tapes of all other players.
A protocol is said to be private if it is private with respect to all players.
Definition 3.2 (randomness complexity). A d-random protocol is a protocol

such that for any input assignment the total number of coins tossed by all players in
any execution is at most d.

Let V iewt
i be the view of player i at round t, that is, the input bit to this player

and all the messages it has seen until round t. Note that V iewt
i, for any i and t, is a

function of the input assignment x and the random tapes of all the players. We can
thus write it as V iewt

i(x,~r). We denote by Ti(x,~r) the round number in which player
Pi outputs its result as a function of the input to all players and of the random tapes
given to all players.

Definition 3.3 (rounds complexity). A ρ-round protocol is a protocol such that
for all i, x, ~R we have Ti(x, ~R) ≤ ρ.

We will also make use of the following definition.
Definition 3.4 (expected rounds complexity).2 An expected ρ-round protocol is

a protocol such that there exists a player Pi such that, for all x, E~r[Ti(x,~r)] ≤ ρ.
We are interested in tradeoffs between the rounds complexity (and expected

rounds complexity) and the randomness complexity of private protocols.
Our proof follows the line of proof of [25]. We get (almost) tight lower bounds by

using our result of the previous section on the sensitivity of multiple-output Boolean
functions. For completeness we give below the full proof. We will prove the following
theorem.

Theorem 3.5. Let A be a ρ-round d-random (d ≥ 2) private protocol to compute
a Boolean function f . Then, ρ ≥ Ω( log s(f)

log d ), where s(f) is the sensitivity of f .
To prove the above theorem we use the following lemma from [25].
Lemma 3.6 ([25, Lemma 4.11]). Consider a private d-random protocol to com-

pute a Boolean function f . Fix random tapes ~R = (R1, . . . , Rn). Then, for any Pi,
V iewt

i(x, ~R) can assume at most 2d+2 different values (over the values of x).
Using the above lemma we can prove our next lemma, following the proof in [25],

but using our tight bound on the sensitivity of multiple-output Boolean functions.
Lemma 3.7. Consider a private d-random protocol to compute a Boolean function

f , and consider a specific vector of random tapes ~R and the deterministic protocol
derived by it. Then for every player Pi, the function V iewt

i(x, ~R) (as a function of x

only) has sensitivity at most Q(t)
4
= (4(d + 4))t−1.

Proof. First note that since we fix the random tapes the views of the players
are functions of the input assignment x only. (We regard each bit of the view as a

2We adopt this weak definition, rather than requiring the property to hold for all players, as we
are interested here in lower bounds.
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Boolean function of x.) We prove the lemma by induction on t. For t = 1 the view
of any player depends only on its single input bit. Thus, the claim is obvious. For
t > 1 assume the claim holds for any ` < t and for any player. For t > 1 the view of
any Pi is composed of the input bit of Pi, and bits that were received as messages,
each one in some round ` < t. Each such message bit is a function of the view of the
player that sent it at the round in which it was sent. That is, each such message bit
is a function of a view with sensitivity at most Q(t − 1), and hence the sensitivity
of each such message bit (regarded as a Boolean function of x) is at most Q(t − 1).
Clearly the input bit of Pi has sensitivity 1 which is at most Q(t − 1). Thus, the
view under consideration is composed of coordinates each having sensitivity at most
Q(t − 1). Moreover, by Lemma 3.6 the view can assume at most 2d+2 values. It
follows from Theorem 2.2 that the sensitivity of the view under consideration is at
most Q(t− 1) · 4(d + 4) = Q(t).

We can now give the proof of the main theorem of this section.
Proof of Theorem 3.5. Consider the deterministic protocol obtained from a d-

random private protocol (d ≥ 2) by fixing the vector of random tapes to be a given
vector ~R.

We prove that for any player Pi there is at least one input assignment x such that

Ti(x, ~R) ≥ log s(f)/(2 + log(d + 4)) + 1 .

This proves our theorem, since for every player it shows a run of the protocol where
the player outputs its value only after log s(f)/(2 + log(d + 4)) + 1 rounds.

Let y be an input assignment on which the sensitivity s(f) is obtained. That is,
y has s(f) neighbors (in the inputs hypercube) where the value of f is different from
f(y). Denote this set of neighbors by S(y). Denote by t the value of Ti(y, ~R), i.e., the
time step at which Pi outputs the value of f when the input to all players is y.

Now consider the view of Pi at round t, denoted V iewt(x, ~R), and the sensitivity
of this view. Assume towards a contradiction that the sensitivity of V iewt(x, ~R) is
less than s(f). Then, in particular, the sensitivity of this view on y is less than s(f).
It follows that for at least one input assignment z ∈ S(y), V iewt(y, ~R) = V iewt(z, ~R),
and Pi would output the same value for f on inputs y and z, contradicting the fact
that it is a correct protocol.

Thus the sensitivity of V iewt(x, ~R) on input y is at least s(f), and t is such
that s(V iewt

i(x, ~R)) ≥ s(f). By Lemma 3.7, we get (4(d + 4))t−1 ≥ s(f), i.e., t ≥
log s(f)

2+log(d+4) + 1. It follows that Ti(y, ~R) ≥ log s(f)
2+log(d+4) + 1.

Using similar techniques, that also follow the proofs from [25], we can obtain the
following improved bound on the expected number of rounds of private protocols.

Theorem 3.8. Let A be an expected ρ-round, d-random (d ≥ 2) private protocol
to compute a Boolean function f . Then, ρ ≥ Ω(as(f)

n · log as(f)
log d ).

Proof. To prove the theorem we consider a protocol A and fix any player Pi. We
say that the protocol is late on input x and vector of random tapes ~R if Ti(x, ~R) ≥

log as(f)
4+2 log(d+4) + 1. We define a 0 − 1 random variable L(x,~r) to be 1 if and only
if the protocol is late on x and ~r. For the purpose of this proof we also define a
uniform distribution on the 2n input assignments. (This is not to say that the input
assignments are actually drawn according to such distribution.)

We first show that for any deterministic protocol to compute f , derived from a
private protocol by fixing ~R, not only is there at least one input on which the protocol
is late but that this happens for a large fraction of the inputs.
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Lemma 3.9. Consider a player Pi and any fixed vector of random tapes ~R =
(R1, . . . , Rn). Then

Ex[L(x, ~R)] ≥
as(f)−

√
as(f)

2n
.

Proof. Consider the views of Pi, V iewt
i, given the vector of random tapes ~R. For

any round t such that t < log as(f)
4+2 log(d+4) + 1, by Lemma 3.7, we get that s(V iewt

i) <

(4(d + 4))
log as(f)

4+2 log(d+4) =
√

as(f). Any function g computed from such a view can have
at most the same sensitivity and thus clearly an average sensitivity of at most

√
as(f).

Such function g can have the same values as f on at most 2n(1− as(f)−
√

as(f)

2n ) input

assignments. It follows that at least 2n as(f)−
√

as(f)

2n input assignments are late.
The lower bound on the expected number of rounds now follows. Since at least

2n as(f)−
√

as(f)

2n input assignments are late for any set of random tapes, E~r,x[L(x,~r)] ≥
as(f)−

√
as(f)

2n . Hence, there is at least one input assignment x for which E~r[L(x,~r)] ≥
as(f)−

√
as(f)

2n . For such x we get

E~r[Ti(x,~r)] ≥

(
as(f)−

√
as(f)

2n

)
·
(

log as(f)
4 + 2 log(d + 4)

+ 1
)

,

as needed.

4. Conclusions. In this paper we prove an almost tight upper bound on the
sensitivity of multiple-output Boolean functions, in terms of the sensitivity of each
output coordinate, and the size of the range of the function. Using this bound,
we establish improved lower bounds on the number of rounds of private protocols,
in terms of the sensitivity of the function that they compute, and the amount of
randomness that they use. These lower bounds are tight (up to a small constant
factor) for the function xor.

We believe that the theorem on the sensitivity is of independent interest, and
it would be interesting to see if it can find additional applications. Also, it would
be interesting to close the remaining (small constant factor) gap in our bound on
sensitivity. In fact, we conjecture that the right bound is kdlog2 De, which can be
achieved for D = 2q by a construction of q independent coordinate functions.
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