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Abstract. We consider the amount of randomness necessary in information-theoretic private
protocols. We prove that at least Ω(log n) random bits are necessary for the t-private computation
of the function xor by n players, for any t ≥ 2. In view of the upper bound of O(t2 log(n/t)) [23],
this bound is tight, up to constant factors, for any fixed t. For a class of protocols obeying certain
restrictions, we give a stronger lower bound of Ω(t log(n/t)). We note that all known randomness
efficient private protocols designed specifically for xor belong to this class. In fact we prove slightly
stronger statements: we prove that on every input there is a run where the number of random bits
used is large, rather than only proving that on some input there is a run where the number of
random bits used is large. All our lower bounds hold for the “trusted dealer” model as well, and the
Ω(t log(n/t)) lower bound for restricted protocols is tight, up to constant factors, for any t ≥ 2 in
this model.

In comparison, the previous lower bounds on the amount of randomness required by t-private
computation of explicit functions did not grow with n for constant values of t, and our results improve
the previous lower bounds for xor for any 2 ≤ t = o(log n). Our results also show that already for
t = 2, Ω(log n) random bits are necessary, while it is known that for the case of t = 1 a single random
bit is sufficient for privately computing xor for any number of players.

Our proofs use novel techniques by which we extract random variables from a t-private protocol,
and then use the t-privacy property of the protocol to prove properties of these random variables.
These properties in turn imply that the number of random bits used by the players is large.
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1. Introduction. A t-private protocol for computing a function f is a dis-
tributed protocol that allows n players Pi, 1 ≤ i ≤ n, each possessing an individ-
ual secret input xi, to compute the value of f(~x) in a way that does not reveal any
“unnecessary” information to any coalition of at most t players. The players proceed
in rounds, where in each round each player can send a private message to any other
player (i.e., each player sends to each other player a message that cannot be seen by
any of the remaining players). The t-privacy property means that any coalition of
at most t players cannot learn anything from the execution of the protocol, except
what is implied by the value of f(~x) and the inputs of the members of the coalition.
In particular, the members of the coalition do not learn anything about the inputs
of the other players. Private computation in this setting was the subject of consid-
erable research, see e.g. [2, 3, 4, 6, 7, 11, 13, 14, 15, 16, 17, 19, 23, 21, 24, 25, 30].
Randomness is necessary to perform private computations involving more than two
players (except for the computation of very degenerate functions). That is, the play-
ers must have access to a random source. As randomness is regarded as a scarce
resource, methods for saving random bits in various contexts have been suggested in
the literature, see e.g. [29, 18] for a survey. Thus, an important research topic is the
design of randomness-efficient private protocols, and the quantification of the amount
of randomness needed to perform private computations of various functions and under
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various constraints. This line of research has received considerable attention in recent
years, see e.g. [28, 23, 26, 17, 7, 8, 10, 27, 5, 20]. This study also showed that the
randomness complexity of the private computation of a function is related to other
complexity measures, such as sensitivity and circuit size [28, 26, 17, 7, 27]. The spe-
cific function xor (addition modulo 2) was the subject of considerable research in this
context due to its being a basic operation and its relative simplicity [28, 27, 8, 23].

Previous work on the randomness complexity of private computations revealed
that there is a tradeoff between randomness and time (i.e., number of communication
rounds) for the 1-private computation of the function xor [28, 17]. These works also
gave lower bounds on the number of rounds necessary to 1-privately compute any
function, in terms of the sensitivity of the function and the amount of randomness
used. If one is allowed an arbitrary number of rounds for the computation, there are no
known lower bounds on the number of random bits for 1-private protocols computing
explicit functions (except that randomness is necessary, i.e., no deterministic private
protocol exists). In fact, Kushilevitz et al. [26] gave a relation between the number
of random bits necessary to 1-privately compute a function, and the Boolean circuit
size necessary to compute it; it is proved that the class of functions that have O(1)-
random, 1-private, protocols is equal to the class of functions that have linear size
circuits. This surprising connection explains the lack of ω(1) lower bounds on the
number of random bits for explicit functions in the case of 1-privacy, as such results
would imply superlinear lower bounds on circuit size.

Before our work, ω(1) lower bounds on the number of random bits of t-private
protocols (without limiting the number of rounds) have been proved for explicit func-
tions only for values of t that grow with n, and no such bounds have been known
if t itself is constant. More precisely, Kushilevitz and Mansour [23] proved that any
t-private protocol for xor requires at least t random bits. Blundo et al. [7] gave lower
bounds for two special cases. Namely, they proved that if t = n−c, for some constant
c, then Ω(n2) random bits are necessary, and if t ≥ (2 −

√
2)n, then Ω(n) random

bits are necessary. As to upper bounds, Canetti et al. [10] gave randomness-efficient
generic protocols to t-privately compute (for t < n/2) any Boolean function f . They
showed that any function f with circuit size of m gates can be computed by a t-
private protocol (t < n/2) using O(t2 log n+ (m/n)t5 log t) random bits. Kushilevitz
and Mansour [23] gave protocols that compute the function xor t-privately, for any t,
using O(t2 log(n/t)) random bits.

In the present paper we develop new techniques for proving lower bounds on the
number of random bits necessary in t-private computations (for t ≥ 2), and obtain
Ω(log n) lower bounds on the number of random bits necessary to t-privately compute
the function xor for any t ≥ 2.1 More precisely, we prove the following theorem. (See
Section 2 for a formal definition of a d-random protocol).

Theorem 1.1. Let t ≥ 2, and let A be a d-random, t-private, protocol for
computing f(~x) = x1 + . . . + xn(mod2). Then d = Ω(log n). In fact, we prove
a slightly stronger statement: we prove that Ω(log n) random bits are necessary on
every input.

In view of the upper bound of O(t2 log(n/t)) of [23], our lower bound is tight, up
to constant factors, for any fixed t. This is the first result showing that the number
of random bits necessary for t-private computation grows with n for constant values
of t, and it improves the lower bound of [23] for any t = o(log n). It is interesting

1Blundo et al. [9] recently reported obtaining similar results independently, using a different
approach.
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to note that our Ω(log n) lower bound holds already for t = 2, while for the case of
t = 1, it is known that the function xor can be computed 1-privately, for any number
of players n, with only 1 random bit.

All known randomness-efficient private protocols designed specifically for the func-
tion xor [28, 23, 27, 8] are built in the following special way. They are based on a
deterministic, non-private, protocol for xor. Then, this protocol is modified by chang-
ing any message so it is the sum (modulo 2) of the original message, and a value which
is a function of the random bits only. Thus, the private protocol is built by masking
the original messages of the non-private protocol. We give stronger lower bounds for
protocols of this class (see Section 4 for a formal definition of this class). Namely, we
give a lower bound of Ω(t log(n/t)) on the number of random bits required by any
protocol of this class, to compute xor for n players.

All our lower bounds hold also in the “trusted dealer” model, considered in [23,
10]. In this model, the n players are deterministic, and there is an additional player,
the ”trusted dealer”, who does not get any input, and whose role is limited to “deal”
random bits to the other players (hence a “dealer”). This player never participates in
any coalition (hence it is “trusted”). For this model, our lower bound of Ω(t log(n/t))
for protocols of the above restricted class is tight up to constant factors for every t ≥ 2,
as [23] gave a protocol (of this class) in the trusted dealer model using O(t log(n/t))
random bits.

Our proofs use novel techniques by which we extract from a private protocol
random variables that depend on the randomness that the players use. We then use
the t-privacy property of the protocol to prove that these random variables must have
certain properties (for example, linear independence or t-wise independence). Based
on these properties we show that the amount of randomness used by the players must
be large. We believe that these new techniques may prove useful for proving other
properties of private protocols.

2. Preliminaries. In this paper we consider information-theoretic privacy (as
in [4, 11]), where the players have unlimited computational power, no intractability
assumptions are made, and messages are sent over private channels.

Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function. A set of n players Pi

(1 ≤ i ≤ n), each possessing a single private input bit xi (i.e., xi is known only to Pi),
collaborate in a protocol to compute the value of f(~x). The protocol is probabilistic.
During the course of the protocol each player can toss random coins, where the coin
tosses are unbiased and independent. The protocol operates in rounds. In each
round, each player may toss some coins, and then sends messages to the other players
(messages are sent over private channels so that other than the intended receiver no
other player can access them). The player then receives the messages sent to it by the
other players. Each player chooses to output the value of the function at a certain
round. In a correct protocol, each player must output the correct value f(~x), and
stop its operation in a finite number of steps (it may output f(~x) before stopping).
That is, for every input assignment ~x and for every outcome of the coin tosses of all
players, each player outputs f(~x), and stops in a finite number of steps.

In Claim 1 below we formally argue that for a given correct protocol involving n
players, there is a finite upper bound ` on the number of coin tosses any single player
performs during the course of the protocol. We in fact show that there is a finite
upper bound ` on the total number of coin tosses performed by all players. Claim 1
gives a formal argument for the intuition that a protocol for which such upper bound
does not exist is not a correct protocol. For example, consider a protocol where some
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player keeps tossing coins until it gets a 1, before sending any message. For such
protocol, the property claimed does not hold. But, such a protocol does not satisfy
the definition of correctness either, as there are possible outcomes of the coin tosses
for which some player does not stop in a finite number of steps. We note that since we
prove lower bounds on the number of random bits used, we could avoid using Claim
1 by the following argument: we could argue that if on some input, some player may
toss more than ` coins, then a lower bound of ` is obtained; otherwise one can assume
that no player ever tosses more than ` coins. This would be sufficient to prove lower
bounds on the randomness complexity of the protocol (see Definition 2.1). However,
we prove stronger statements. Claim 1 is useful in proving that on every input there
is a run where the number of coin tosses performed is large, rather than only proving
that on some input there is a run where the number of coin tosses performed is large.

Claim 1. Given a correct protocol involving n players, there is a finite upper
bound ` on the total number of coin tosses performed by all players in any run of the
protocol.

Proof. We show below that for any input assignment ~x there is a finite upper
bound `(~x) on the total number of coin tosses performed by all players in any run
of the protocol in which the input assignment is ~x. Since there is a finite number of
input assignments ~x ∈ {0, 1}n, the claim follows by letting ` = max~x∈{0,1}n{`(~x)}.

Fix an input assignment ~x ∈ {0, 1}n. As in the proof of Lemma 4.10 in [28], we
build a binary tree T~x representing the coin tosses of the players on a given input
~x. Each node of the tree is labeled by the name of a player Pi, which tosses a coin.
The two outgoing edges from a node are labeled 0 and 1 according to the outcome of
the coin toss. Coin tosses in the run of the protocol are ordered by round number,
then by player number, and then by a serial number (for that player in that round).
Note that the identity of the player to toss the first coin on ~x, that is, the label of
the root, is determined by ~x, and the identity of any subsequent player to toss a coin
is determined by ~x and the outcomes of the previous coin tosses, that is, by the path
leading to a given node of the tree.

Observe that a path of length k from the root to another node represents a run
(or a prefix of a run) of the protocol in which k coin tosses occur. Assume towards
a contradiction that there is no finite upper bound `(~x) on the number of coin tosses
performed by the players on input ~x. Then, for every finite k there is a path of length
k in the tree. Since the outdegree of each node of the tree is at most 2, this means
that the tree T~x must contain an infinite path starting from the root. (cf. König’s
lemma in [22].) This path corresponds to a possible run of the protocol (defined by ~x
and the results of the coin tosses as defined by the edges along the path). In this run
at least one player tosses an infinite number of coins, i.e., this player does not stop in
a finite number of steps, contradicting the correctness of the protocol.

We thus model the players in a correct protocol as being provided with finite
binary random tapes. That is, in a correct protocol involving n players to compute a
function f each player Pi is provided with a local binary random tape Ri of length `.
Note that the value of ` may be different for different protocols, and different number
of players n. The bits in the random tapes are unbiased and independent. We denote
by ~R = (R1, . . . , Rn) a given vector of random tapes of all players, and we think of ~R
as a binary vector of length n`.

The following definition is used to measure the amount of randomness used in a
protocol.

Definition 2.1. (Randomness complexity of a protocol) A d-random pro-
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tocol is a protocol such that for any input assignment and any vector of local random
tapes, the total number of random bits read from the local random tapes by all players
is at most d.

We emphasize that the definitions allow, for example, that in different executions
of a protocol (i.e., different input assignments and different local random tapes), a
given player reads a different number of random bits from its local random tape. The
number of random bits read by the player may depend on both the inputs of the
players, and the random bits read by all players.

We now proceed to consider the messages exchanged by the players. Each player
Pi receives during the execution of the protocol a sequence of messages. In different
runs of a protocol the various players may receive different messages. These depend
on the input to the players and on the random tapes. We denote the communication
seen by a player as follows.

Definition 2.2. The communication ci(~x, ~R), of player Pi, on input ~x and vector
of random tapes ~R = {Ri}1≤i≤n, is the sequence of messages that player Pi receives
during the execution of the protocol, when the input is ~x and the vector of random
tapes of all players is ~R.

Thus, ci is the (random) variable of the sequence of messages received by Pi. For
a subset of the players S, we denote by cS the (random) variable of the sequences
of messages received by all the players in S. Informally, t-privacy means that any
coalition of up to t players cannot learn anything (in particular, the inputs of the
other players) from the communication that the members of the coalition receive,
except what is implied by the input bits of the members of that coalition, and the
value of the function computed. Formally,

Definition 2.3. (Privacy) A protocol for computing a function f is private
with respect to a subset of the players S ⊆ [n] if the following holds. For any two
input vectors ~x and ~y such that f(~x) = f(~y), and xi = yi for any i ∈ S, and for
any sequence of messages CS, and for any vector of random tapes for the subset S,
{Ri}i∈S,

Pr[cS = CS |{Ri}i∈S , ~x] = Pr[cS = CS |{Ri}i∈S , ~y] ,

where the probability is over the random tapes of the players.
A protocol is said to be t-private if it is private with respect to any subset of

players S, such that |S| ≤ t.
It will be convenient in our proofs to use a weaker privacy requirement, directly

implied by the t-privacy property, as stated in the following lemma. (Note that since
we prove lower bounds, this makes our results only stronger.)

Lemma 2.4. Consider any t-private protocol. For any subset S of the players
S ⊆ [n] such that |S| ≤ t, and for any two input vectors ~x and ~y such that f(~x) = f(~y)
and xi = yi for any i ∈ S, the following holds.

1. For any sequence of messages CS,

Pr[cS = CS |~x] = Pr[cS = CS |~y] ,

where the probability is over the vectors ~R chosen uniformly from {0, 1}n`.
2. For any function φS of cS, and for any value Φ in the range of φS,

Pr[φS = Φ|~x] = Pr[φS = Φ|~y] ,

where the probability is over the vectors ~R chosen uniformly from {0, 1}n`.
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Proof. Let s be the size of S, i.e., s = |S|. Fixing a vector of random tapes
for the subset S, {Ri}i∈S , is equivalent to fixing a binary vector of length s`. The
probability of each of these 2s` vectors is 2−s`, and the events corresponding to the
various vectors are disjoint. Therefore we have

Pr[cS = CS |~x] = 2−s`
∑

{Ri}i∈S∈{0,1}s`

Pr[cS = CS |{Ri}i∈S , ~x] .

Using the same arguments, applied to ~y instead of ~x, we have that

Pr[cS = CS |~y] = 2−s`
∑

{Ri}i∈S∈{0,1}s`

Pr[cS = CS |{Ri}i∈S , ~y] .

But, by the privacy property of the protocol we have that for any vector of random
tapes for the subset S, {Ri}i∈S ,

Pr[cS = CS |{Ri}i∈S , ~x] = Pr[cS = CS |{Ri}i∈S , ~y] .

We therefore obtain that

Pr[cS = CS |~x] = Pr[cS = CS |~y] .

The second statement of the lemma follows by observing that the value of φS is
fixed given any communication CS .

From the point of view of an observer of the protocol one can define the transcript
of a given run of the protocol, which is the set of all messages sent between all players
during the execution of the protocol on input ~x and vector of random tapes ~R. The
transcript is in fact the ordered vector of the communication of all players.

Definition 2.5. The transcript Trans(~x, ~R) of a protocol on input ~x and vector
of random tapes ~R = {Ri}1≤i≤n, is (c1(~x, ~R), c2(~x, ~R), . . . , cn(~x, ~R)).

The following lemma follows immediately from the arguments of the proof of
Lemma 4.10 in [28]. We will use this lemma in our proofs.

Lemma 2.6. [28] For a given input ~x, let d be the maximum, over all runs on
input ~x, of the total number of random bits read from the random tapes by all players
during a given run. Then, the number of different transcripts of runs on input ~x is
at most 2d.

It is convenient in our proofs to consider the messages sent by the players as being
messages of single bits. This is done by “breaking” each message into the bits of its
binary representation. Formally, for a given protocol involving n players, let M be the
set of all different messages that can be sent in the protocol in all different runs (over
all possible inputs ~x ∈ {0, 1}n and all possible vectors of random tapes ~R ∈ {0, 1}n`).
Fix an arbitrary one-to-one binary encoding of fixed length for the messages in M .
We note that the empty message is one of the elements of M . We consider a protocol
where each player sends instead of a given message from M , a sequence of single
bit messages that represent the binary encoding of the original message from M .
Henceforth, when we refer to messages we refer to these single bit messages. It is
important for our argument that the number of transcripts of the protocol, on any
given input ~x, remains the same. This follows since we use a one-to-one encoding.

Since we consider each message as being a single bit, we can think of a given
message m as a Boolean function of the input ~x, which is a binary vector of length
n, and the random tapes of all players, which is a binary vector of length n`. We
therefore can write m as m = m(~x, ~R).
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Our lower bound exploits the fact that the function xor has large sensitivity on
every input. Sensitivity is defined as follows.

Definition 2.7. (Sensitivity)
• Given ~x ∈ {0, 1}n, we denote by ~x(i) the vector ~x with its i-th bit flipped.

(Similarly, ~x(i,j) is ~x with its i-th and j-th bits flipped.)
• A function f is sensitive to its i-th variable on input ~x, if f(~x) 6= f(~x(i)).
• s(f, ~x) is the number of variables to which the function f is sensitive on input
~x.
• The sensitivity of a function f is s(f) = max~x s(f, ~x).

Note that the function xor (addition modulo 2) of n binary variables is sensitive
to all its n variables on any input. This immediately follows since for any ~x ∈ {0, 1}n,
and for any i ∈ [n], xor(~x) 6= xor(~x(i)).

We will further need the following definitions.
Definition 2.8.
• A message m depends on the variable xi if there exist ~x and ~R, such that
m(~x, ~R) 6= m(~x(i), ~R). In other words, m depends on the variable xi, if m is
sensitive to xi on some ~x and ~R.

• For i ≤ j, a message m depends on a variable xj under the partial assignment
x1 = α1, . . . , xi−1 = αi−1, if there exists an assignment to the remaining vari-
ables xi, . . . , xn, and there exists ~R, such that
m(α1, . . . , αi−1, xi, . . . , xj , . . . , xn, ~R) 6= m(α1, . . . , αi−1, xi, . . . , x̄j , . . . , xn, ~R).

We will use the following simple observation.
Observation 1. Let m = m(~x, ~R) = φ(f1(~x, ~R), . . . , fu(~x, ~R)). If m depends on

a variable xj under the partial assignment x1 = α1, . . . , xi−1 = αi−1, then at least one
of the functions f1, . . . , fu depends on the variable xj under the partial assignment
x1 = α1, . . . , xi−1 = αi−1.

3. Lower Bound for General Protocols. In this section we give a lower
bound that applies to any t-private protocol for xor, for t ≥ 2. We first outline
our approach, which is common to the general lower bound and to the stronger lower
bound for the restricted class of protocols (given in the next section), and then proceed
to give the proof of Theorem 1.1.

3.1. Our Approach. We state informally the approach we use in our proofs.
Our proofs proceed in two stages. First, we prove that in any t-private protocol for
xor we can identify q = Ω(n) distinct messages m1, . . . ,mq with certain properties.
Informally these properties are that
(1) We can permute the input vector (and accordingly the set of players), such that
for any i, message mi depends on input xi, but does not depend on any input xj ,
j > i.
(2) The set of receivers of these messages is disjoint from the set of players that have
access to the inputs xi, 1 ≤ i ≤ q.
In the second stage of our proofs we consider the values of these selected messages
on a given input assignment. That is, we consider the vectors representing the values
of these messages over the possible random tapes to all players, when the input as-
signment is fixed. Using the properties of the private protocol and the properties of
the special set of selected messages, we then prove, in the case of a general t-private
protocol, that these vectors are linearly independent. In the case of a protocol of
the restricted class, we prove that all the vectors obtained from sums of at most t/2
original vectors are linearly independent. In each case, this allows us to conclude that
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the number of different columns in the matrix obtained from the vectors as rows, is
”large” (where the extent to which this number is large is different in each case). It
follows that the number of transcripts of the protocol on the given input is ”large”,
and hence using Lemma 2.6 the randomness complexity of the protocol is ”high”.

3.2. Proof of Theorem 1.1. In this section, as well as in the next section, we
always assume that the computed function is xor. We now proceed to prove Theorem
1.1. In fact we prove here a stronger claim than the claim of Theorem 1.1. We prove
that for any input assignment ~α = α1, . . . , αn, there is a run in which the number of
random bits read by the players from their random tapes is Ω(log n).

3.2.1. Selecting the messages. Let ~α = α1, . . . , αn be an arbitrary input
assignment. Given a fixed ~α, we will define a sequence of messages. (We will not
indicate in our notation that the choice of this sequence depends on ~α, but this
should be clear from the context.)

We define an ordering of all the messages sent during the protocol, in order to be
able to refer to the first message with a given property. Then, based on this ordering,
we select a sequence of messages with certain properties. The choice of these messages
will induce a particular permutation of the input bits; and since each input bit belongs
to a given player, this induces a permutation of the players as well.

Definition 3.1. We define an ordering of all messages, such that in this order-
ing, any message sent in round i precedes any message sent in round j, for i < j. For
the messages sent within the same round we choose an arbitrary ordering.

When we refer to the first message with a given property, we mean the first
message according to the above ordering, that satisfies that property.

During the process of selecting the sequence of messages, we also assign a partic-
ular numbering to the input bits and to the players. To this end, when selecting a
given message, a variable and a player are also selected, and both are given the same
number as the message. That is, when the first i messages m1, . . . ,mi have been
selected, the variables x1, . . . , xi and the players P1, . . . , Pi are also already selected.
(We assume an arbitrary permutation of the remaining indices i + 1, . . . , n for the
remaining variables and players.) When the process ends (after selecting n messages)
a permutation of the variables and a permutation of the players is fixed.

We now proceed to the selection process. Let m1 be the first message in the
protocol that depends on at least one input variable. We will argue below that since
this is the first such message, it can depend on only one input variable, and without
loss of generality, we denote this input variable by x1, and the player that has access
to it by P1.

Let m2 be the first message in the protocol that depends on at least one input
variable under x1 = α1. We will argue below that since this is the first such message,
there is only one such input variable, and without loss of generality we denote it by
x2, and the player that has access to it by P2.

Inductively, let mi be the first message sent in the protocol that depends on some
input variable under x1 = α1, . . . , xi−1 = αi−1. We prove the following claim.

Claim 2. Let xk be any input variable on which mi depends under
x1 = α1, . . . , xi−1 = αi−1. Then the sender of the message mi must be the player that
has access to the variable xk, that is, player Pk.

Proof. Suppose that the sender of the message mi is a player Pj such that j 6= k
(i.e., Pj is not the owner of xk). Note that a message m sent in a given round by
player Pj is a function of only the communication to player Pj in previous rounds, its
input xj and its random tape Rj . Thus, by Observation 1, if Pj is not the owner of
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the variable xk, it can send a message that depends on xk under x1 = α1, . . . , xi−1 =
αi−1, only if it received in an earlier round a message that depends on xk under
x1 = α1, . . . , xi−1 = αi−1. But this contradicts the assumption that mi is the first
such message.

The above claim implies that there is only one input variable on which mi depends
under x1 = α1, . . . , xi−1 = αi−1. Without loss of generality we denote it by xi, and
the player that has access to it by Pi. Thus we derive the following.

Claim 3.

1. The message mi is sensitive to xi on the input ~α and some vector of random
tapes ~R.

2. Let ~β be any input that agrees with ~α in the first i − 1 coordinates, and let
j > i. Then the message mi is not sensitive to the variable xj on ~β and ~R,
for any ~R.

Proof. We selected mi such that mi depends on xi under x1 = α1, . . . , xi−1 =
αi−1. This means that there is some assignment to the remaining variables and some
~R such that mi is sensitive to xi on the input obtained by the additional assignment
and ~R. But since xi is the only input variable on which mi depends under x1 =
α1, . . . , xi−1 = αi−1 this also means that mi is sensitive to xi on ~α and ~R.

We obtain the second statement using the observation that xi is the only input
variable on which mi depends under x1 = α1, . . . , xi−1 = αi−1.

Claim 4. We can continue the above procedure of selecting messages for n steps,
and define the sequence of messages m1, . . . ,mn.

Proof. In a correct protocol to compute the function f , the output of each player
has to be equal to f(~α) on any input ~α. Note that the output of a given player
depends only on the communication it received, its input bit and its random tape.
Since the sensitivity s(f, ~α) of the function f(~x) = x1 + . . .+ xn(mod2) is n on every
input ~α, we have by Observation 1, for each player Pi and each variable xj such that
j 6= i, that the communication received by Pi must contain at least one message that
is sensitive to xj on the input ~α and some ~R. Thus, on any input ~α, there exists at
least one message for each variable xj , that is sensitive to xj on ~α and some ~R. If our
procedure cannot be continued after k < n steps on some input ~α, that would mean
by Claim 3 that no message is sensitive to any of the remaining variables on ~α and ~R
for any ~R, which would be a contradiction.

As argued above, the senders of the messages m1, . . . ,mn are P1, . . . , Pn, respec-
tively. Denote by Q1, . . . , Qn the receivers of these messages. Note that the n receivers
are not necessarily n distinct players. We now select a subset of the above n messages,
mi1 , . . . ,miq

, with the property that {Pij
: j ∈ [q]} ∩ {Qij

: j ∈ [q]} = ∅. That is,
none of the receivers of the selected messages is a sender of a selected message.

Lemma 3.2. There is a subset of size q ≥ n
4 of the above n messages, denoted

mi1 , . . . ,miq
, such that the receivers of these messages, Qi1 , . . . , Qiq

are disjoint from
the senders of these messages, Pi1 , . . . , Piq

.
Proof. For the purpose of the proof we define an undirected graph. The set of

nodes consists of n nodes, each node vi representing a message mi of the original set
of n messages. Recall that each distinct message mi is sent by a distinct player Pi.
Therefore we can also think of the nodes as representing n distinct players. For each
message mi, we put an edge between node vi and node vj , if player Pj is the receiver
of message mi (i.e., if Qi = Pj).

We now have a graph of n nodes and at most n edges. The graph therefore
contains an independent set of size at least n

4 (cf. [1], Theorem 3.2.1). We select the
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messages that correspond to the nodes of this independent set.
To simplify notation, in what follows we denote by m1, . . . ,mq, P1, . . . , Pq,

x1, . . . , xq, and Q1, . . . , Qq, the selected messages, their senders, the input variables
these senders have access to, and the receivers of the messages, respectively.

3.2.2. Properties of the vectors defined by the selected messages. We
will now consider the 2n`-bit binary vectors that represent these messages on input ~α.
We denote by ~m(~α) the binary vector of length 2n` that consists of the bits m(~α, ~R).
Thus, for any i, the vector ~mi(~α) consists of the bits mi(~α, ~R). For ∅ 6= S ⊆ [q] we
denote by ~mS(~α) the bitwise mod2 sum of the vectors ~mi(~α), for i ∈ S. That is,
mS(~α, ~R) = ⊕i∈Smi(~α, ~R).

Lemma 3.3. Let m1, . . . ,mq be selected as above in a t-private protocol. For any
∅ 6= S ⊆ [q] of size at most t, and any i, j ∈ [q] (where i 6= j),

Pr~R
[mS(~α, ~R) = 1] = Pr~R

[mS(~α(i,j), ~R) = 1] .

Proof. Consider the set of players S′ = {Qi|i ∈ S}, that is, the coalition formed
by the receivers of the messages mi, for i ∈ S. Then φS′(cS′) = ⊕i∈Smi(~α, ~R) =
mS(~α, ~R) is a function of the sequence of messages received by the players in S′. Recall
that the set of senders of the messages mi is disjoint from the set of the receivers,
that is {Pi : i ∈ [q]} ∩ {Qi : i ∈ [q]} = ∅, which implies that {Pi : i ∈ [q]} ∩ S′ = ∅,
and therefore for any i, j ∈ [q], Pi and Pj are not in S′. This means that for any
i, j ∈ [q] and for any l ∈ S′, αl = α

(i,j)
l , that is, the input bits held by the members

of the coalition S′ are not changed when one flips the i-th and j-th bits of ~α. Note
also that flipping two bits does not change the value of the xor function, that is
f(~α) = f(~α(i,j)), for any i, j ∈ [q], when f is the xor function. Thus, we can apply
Lemma 2.4 to S′ and φS′ = mS , and the second statement of Lemma 2.4 directly
implies the statement of the present lemma.

For i = 1, . . . , q, we denote by ~hi(~α) the bitwise mod2 sum of the vectors ~mi(~α)
and ~mi(~α

(i)). Thus, the vector ~hi(~α) is 1 in the coordinates corresponding to ~R such
that mi(~α, ~R) and mi(~α

(i), ~R) differ, and 0 where they agree. We denote by hi(~α, ~R)
the entry of ~hi(~α) in the coordinate corresponding to ~R.

Claim 5. The vectors ~hi(~α), i = 1, . . . , q, are not identically 0.
Proof. Follows by the definition of the messages mi and the first statement of

Claim 3.
Lemma 3.4. Let m1, . . . ,mq be selected as above in a t-private protocol. Let

∅ 6= S ⊆ [q − 1] be a subset of size at most t, and let k be the largest element of S.
Then

Pr~R
[mS(~α, ~R) = 1|hk(~α, ~R) = 1] = 1/2 .

Proof. Since k is the largest element of S and q is larger than any element in S,
we get by Claim 3 that ~mS(~α(k,q)) is the bitwise mod 2 sum of the vectors ~mS(~α) and
~hk(~α). To see this observe that for any 1 ≤ i < k, mi(~α

(k), ~R) = mi(~α, ~R), by the
second statement of Claim 3, and mi(~α

(k,q), ~R) = mi(~α
(k), ~R) again by the second

statement of Claim 3. At the same time, mk(~α(k,q), ~R) = mk(~α(k), ~R) by the second
statement of Claim 3, and mk(~α(k), ~R) = mk(~α, ~R) +hk(~α, ~R) by the definition of hk.
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Thus, mS(~α(k,q), ~R) and mS(~α, ~R) are complements of each other in the coordinates
where hk(~α, ~R) is 1, and agree where hk(~α, ~R) is 0. We therefore have

Pr~R
[mS(~α, ~R) = 1] = Pr~R

[mS(~α, ~R) = 1 ∧ hk(~α, ~R) = 1]

+ Pr~R
[mS(~α, ~R) = 1 ∧ hk(~α, ~R) = 0] ,

and,

Pr~R
[mS(~α(k,q), ~R) = 1] = Pr~R

[mS(~α, ~R) = 0 ∧ hk(~α, ~R) = 1]

+ Pr~R
[mS(~α, ~R) = 1 ∧ hk(~α, ~R) = 0] .

Since by Lemma 3.3

Pr~R
[mS(~α, ~R) = 1] = Pr~R

[mS(~α(k,q), ~R) = 1] ,

we have that

Pr~R
[mS(~α, ~R) = 1 ∧ hk(~α, ~R) = 1] = Pr~R

[mS(~α, ~R) = 0 ∧ hk(~α, ~R) = 1] .

Since Pr~R
[hk(~α, ~R) = 1] 6= 0 by Claim 5, this implies the statement of the lemma.

For i = 1, . . . , q we denote by ~ωi(~α) the binary vector of length 2n` that we get
by replacing each 0 in ~mi(~α) by 1, and replacing each 1 in ~mi(~α) by −1. Similarly,
for ∅ 6= S ⊆ [q] we denote by ~ωS(~α) the binary vector of length 2n` that we get by
replacing each 0 in ~mS(~α) by 1, and replacing each 1 in ~mS(~α) by −1. That is, we
move from the domain {0, 1} to the domain {1,−1}, and obtain the vectors ~ωi(~α), for
i = 1, . . . , q, from the vectors ~mi(~α) using the standard transformation that replaces
each value b by (−1)b. The vectors ~ωS(~α), for ∅ 6= S ⊆ [q], are obtained from the
vectors ~mS(~α) in the same way.

Lemma 3.5. Let ~ω1, . . . , ~ωq be selected as above in a t-private protocol, for t ≥ 2.
Then, the vectors ~ωi(~α), i = 1, . . . , q − 1 are linearly independent over the reals.

Proof. As we will see in the next section, our job would be much easier (and we
could obtain stronger bounds) if the vectors ~hk(~α) were the same for each k. In that
case we could show that the vectors ~ωi(~α), i = 1, . . . , q − 1 (or some projections of
them) are pairwise orthogonal. However, in general the vectors ~hk(~α) may not be
the same. Nevertheless, we can show that a given projection of each vector ~ωk(~α)
is orthogonal to the same projection of each preceding vector ~ωi(~α) for i < k. This
will let us show that for any k such that 2 ≤ k ≤ q − 1, the vector ~ωk(~α) cannot be
obtained as a linear combination of the vectors ~ω1(~α), . . . , ~ωk−1(~α).

Consider an arbitrary k ∈ {2, . . . , q− 1}, and consider the following projection of
the vectors ~ω1(~α), . . . , ~ωk(~α). Note that our choice of the projection depends on k (via
~hk(~α)) and this is indicated in the notation by the superscript k. For i = 1, . . . , k,
denote by ~vk

i the projection of the vector ~ωi(~α) to only those coordinates where
hk(~α, ~R) = 1. Note that ~hk(~α) is not identically 0, as stated in Claim 5, so there is
always at least one such coordinate.

Since t ≥ 2, by applying Lemma 3.4 to the sets {i, k} for i < k we get that the
inner product of ~vk

k with any of the vectors ~vk
i for i < k is 0. To see this, consider

~ωS(~α) for S = {i, k}. Considering {1,−1} vectors instead of {0, 1} vectors, Lemma
3.4 states that

Pr~R
[ωS(~α, ~R) = 1|hk(~α, ~R) = 1] = Pr~R

[ωS(~α, ~R) = −1|hk(~α, ~R) = 1] = 1/2 .
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Thus,
∑
{~R:hk(~α,~R)=1}

ωS(~α, ~R) = 0. Notice that for S = {i, k}, the above sum is

exactly the inner product of the vectors ~vk
i and ~vk

k, since ωS(~α, ~R) = ωi(~α, ~R)·ωk(~α, ~R).
Therefore, we get that the inner product of ~vk

k with any of the vectors ~vk
i for i < k is

0, as claimed.
Suppose that ~ωk(~α) can be obtained as a linear combination of the vectors

~ω1(~α), . . . , ~ωk−1(~α). Then ~vk
k can be obtained as a linear combination of the vec-

tors ~vk
1 , . . . , ~v

k
k−1. But since the inner product of ~vk

k with each ~vk
i for i < k is 0, this

would imply that the inner product of ~vk
k with itself is 0. Since ~vk

k has only 1 or −1
entries, this is not possible.

Let us now consider the (q − 1) × 2n` matrix, formed by the vectors ~ωi(~α), i =
1, . . . , q − 1 as row vectors. Since the vectors ~ωi(~α), i = 1, . . . , q − 1 are linearly
independent, this matrix has at least q − 1 different columns. This implies that the
protocol has at least q − 1 different transcripts on input ~α. Since q = Ω(n), Theorem
1.1 follows by Lemma 2.6.

4. Restricted Protocols. In this section we consider a class of restricted pro-
tocols that we define below. Our motivation to consider this class is that all known
randomness-efficient protocols designed specifically for xor obey this restriction, or
can be easily brought to this form without changing the number of coin tosses per-
formed [28, 23, 27, 8]. Informally one can describe the protocols of this class in the
following way. First, a deterministic, non-private, protocol to compute f is defined.
Then this protocol is modified by masking each message with randomness by adding
to it (modulo 2) a value that depends on the randomness only. This restriction was
previously considered in [28]. Formally the restriction we consider here is defined as
follows:

Definition 4.1. We say that a given protocol involving n players has a restricted
form if each message of the protocol can be obtained as a mod 2 sum of a Boolean
function u : {0, 1}n → {0, 1} that depends on the input variables only, and a Boolean
function v : {0, 1}n` → {0, 1} that depends on the random tapes only. That is, each
message m can be written as m(~x, ~R) = u(~x) + v(~R) mod 2.

Theorem 4.2. Let t ≥ 2, and let A be a d-random, t-private, protocol, obey-
ing the above restriction, for computing f(~x) = x1 + . . . + xn(mod2). Then d =
Ω(t log(n/t)).

As in our proof for general protocols, here too we prove in fact a stronger claim.
We prove that for any input assignment ~α = α1, . . . , αn, there is a run of the protocol
in which the number of random bits read by the players from their random tapes is
Ω(t log(n/t)).

Proof. Let ~α = α1, . . . , αn be an arbitrary input assignment. We select a sequence
of messagesm1, . . . ,mq and define the corresponding vectors as in the previous section.
Recall that ~hi(~α) denotes the bitwise mod2 sum of the vectors ~mi(~α) and ~mi(~α

(i)).
The restriction on the protocols we consider allows us to have the following claim.

Claim 6. The vectors ~hi(~α), i = 1, . . . , q are identically 1.
Proof. We know by Claim 5 that the vectors ~hi(~α) are not identically 0. That is,

they have at least one entry with value 1. This means that mi(~α, ~R) 6= mi(~α
(i), ~R)

for at least one ~R. But mi(~x, ~R) can be written as mi(~x, ~R) = ui(~x) + vi(~R) mod 2.
It follows that ui(~α) 6= ui(~α

(i)), and therefore for any ~R, mi(~α, ~R) 6= mi(~α
(i), ~R).

The above claim allows us to obtain a stronger bound using the machinery of the
previous section. We now prove the following lemma.
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Lemma 4.3. Let ~ωS be defined as above in a t-private protocol obeying the above
restriction, for t ≥ 2. Then, the vectors ~ωS(~α), such that ∅ 6= S ⊆ [q − 1] and
|S| ≤ bt/2c are linearly independent over the reals.

Proof. First note that since t ≥ 2, there exist sets S, such that ∅ 6= S ⊆ [q − 1]
and |S| ≤ bt/2c, thus the statement of the lemma is meaningful (assuming n ≥ 5;
otherwise q−1 could be less than 1, since the guarantee of Lemma 3.2 is that q ≥ n

4 ).
Since by Claim 6 for each i ∈ [q] the vector ~hi(~α) is identically 1, Lemma 3.4 gives that
Pr~R

[mT (~α, ~R) = 1] = 1/2, for any ∅ 6= T ⊆ [q−1] of size at most t. This implies that
the sum of entries of the vector ~ωT (~α) is 0, for any ∅ 6= T ⊆ [q − 1] of size at most t.
Notice that for any two sets S1 and S2, we have ωS1(~α, ~R) ·ωS2(~α, ~R) = ωS14S2(~α, ~R).
Thus, for sets ∅ 6= S1 ⊆ [q − 1] and ∅ 6= S2 ⊆ [q − 1], each of size at most bt/2c, the
inner product of ~ωS1(~α) and ~ωS2(~α) must be 0. We get that the vectors ~ωS(~α), for
∅ 6= S ⊆ [q − 1] and |S| ≤ bt/2c are pairwise orthogonal, and therefore they must be
linearly independent over the reals.

We denote by
(

a
≤b

)
the sum

∑min(a,b)
i=1

(
a
i

)
, for integers a, b ≥ 1. Let us now consider

the
(

q−1
≤bt/2c

)
× 2n` matrix, formed by the vectors ~ωS(~α), such that ∅ 6= S ⊆ [q− 1] and

|S| ≤ bt/2c, as row vectors. Since the vectors ~ωS(~α) are linearly independent, this
matrix has at least

(
q−1
≤bt/2c

)
different columns. Note that each column of the matrix

is associated with a fixed vector of random tapes ~R, and each column is completely
determined by the transcript of the protocol on the given ~R and ~α. This implies that
the protocol has at least

(
q−1
≤bt/2c

)
different transcripts on input ~α. Since q = Ω(n),

the theorem follows by Lemma 2.6.

We find it worthwhile to note that our proof also implies that the random variables
associated with the messages m1, . . . ,mq on input ~α are t-wise independent in any
t-private protocol that obeys the above restriction. Thus, we could conclude the
proof of Theorem 4.2 by referring to the known lower bounds on the size of sample
spaces with t-wise independent random variables [12, 1]. In fact, part of the proof of
Lemma 4.3 is analogous to the corresponding part of the argument used in [12]. The
t-wise independence property of the random variables associated with the messages
m1, . . . ,mq on input ~α follows by Lemma 3.4, which, as we have shown above, gives
in the case of the restricted protocols that Pr~R

[mS(~α, ~R) = 1] = 1/2, for any ∅ 6=
S ⊆ [q − 1] of size at most t. This implies t-wise independence of the corresponding
random variables by the results of [12].
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