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1. INTRODUCTION

Packet data networks, such as the Internet, are becoming the dominant technology
for transferring all types of data. The research into the performance of the proto-
cols that control them is therefore of key importance, and is attracting increasing
attention. In this paper we consider the question of maximizing the throughput
guaranteed by the protocols that control the network, that is, maximizing the
amount of data that arrive to destination rather than being dropped en-route.

In the Internet, the combination of the buffer sizes of deployed routers and the
Internet traffic itself leads routinely to the dropping of packets. Buffer space in the
routers is limited, and at the same time, the behavior of traffic in the Internet is both
hard to predict and hard to mathematically (probabilistically) model. Devising
protocols that will maximize the throughput under these conditions, and giving
rigorous analysis for their performance, is therefore a challenging mission. In the
context of a single switch, the work of Aiello et al. [Aiello et al. 2005] initiated the
research into the performance of online protocols to maximize throughput in the
face of limited buffer space and arbitrary traffic, and was followed by a number of
papers in recent years, e.g. [Lotker and Patt-Shamir 2002; Kesselman et al. 2001;
Andelman et al. 2003; Kesselman and Rosén 2006; Azar and Richter 2004a] (for a
short survey see [Epstein and van Stee 2004]). However, good performance on the
single switch level does not necessarily guarantee good performance on the network
level, where traffic is injected continuously in various points in the networks, and
various traffic streams interact with each other.

This has motivated, more recently, the introduction of the Competitive Network
Throughput (CNT) model [Aiello et al. 2003], which is aimed at analyzing the
throughput of protocols that control whole networks in the face of limited buffer
space and arbitrary traffic. In this model, the network is represented by a directed
graph, where each node models a router and each edge models a communication
link. There is a buffer at the tail of each edge, capable of storing up to B packets,
for some value B. Packets travel in the network in a store-and-forward manner,
controlled by the protocol that manages the network. Since buffer space at the tail
of the edges is limited, some packets must at times be dropped. The performance
of an online, local-control protocol that controls the network is analyzed by its
competitive ratio where the measure is the number of packets that arrive to their
destination, rather than being dropped en-route. Of particular interest is the anal-
ysis of greedy protocols, that is, protocols that do not leave a resource (buffer space,
or communication link) idle when this resource can be used. Such protocols may
give preference to the packets according to various policies, e.g., FIFO, Nearest-
To-Go (NTG), Furthest-To-Go (FTG), Longest-In-System (LIS) etc. Aiello et al.
[Aiello et al. 2003] gave a number of results showing which greedy policies are
superior to others.

However, the more traditional best-effort approach, which treats all packets
equally, is not sufficient when heterogeneous traffic is transmitted through the net-
work. For example, the DiffServ approach [Clark and Wroclawski 1997], requires
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to treat different packets differently. This is usually modeled by assigning to each
packet a weight which signifies its importance or priority.

In the present work we address this setting, and analyze the weighted throughput
of online, local-control protocols that control packet networks. Our work extends
and improves the work of Aiello et al. [Aiello et al. 2003] in two ways. First, we
extend the CNT model to the weighted case, by assigning each packet a weight. The
weights of the packets may have any range, and may contain any number of distinct
values. The aim of the protocol is now not to maximize the number of packets that
reach their destinations, but rather to maximize the total weight of those packets
that reach their destinations. Second, in this work, we focus on directed acyclic
graphs (DAGs) and prove that any greedy protocol is competitive on all DAGs,
with competitive ratios independent of the range of the weights of the packets, or
the number of distinct weights. Here we mean by a ”greedy protocol” a protocol
that not only does not leave a resource idle unnecessarily, but also also prefers
packets with higher weight over those with lower weight. We give two independent
tight bounds (up to constant factors) on the competitive ratios of greedy protocols
on DAGs under the extended, weighted model. Our upper bounds also improve
upon the upper bounds given in [Aiello et al. 2003] for the unweighted case, and
our lower bounds apply also to the unweighted case. Thus we also improve the
results given in [Aiello et al. 2003] and give tight (up to constant factors) bounds
for both the unweighted and weighted cases.

1.1 Our results

We start by defining a generic protocol named Maximal-Weight (MAXW). This
protocol is greedy, as defined in [Aiello et al. 2003]: No packets are dropped when
buffer space is available, and a packet is forwarded on an edge whenever possible.
We extend the definition of greediness into the weighted packets model by stating
that a greedy protocol always favors packets of higher weight over packets of lower
weight when deciding which packets are to be stored in buffers, and which are first
forwarded over a link. MAXW is a generic greedy protocol, which can store in
a buffer any set of packets with maximal total weight. The remaining packets, if
any, are dropped. When deciding which packet to forward over a link, any packet
with maximal weight in the buffer can be chosen. Defining MAXW as a generic
greedy protocol ensures that any upper bound proved for MAXW applies also to
any specific protocol that adheres to the greediness property.

We prove that any greedy protocol is competitive on any DAG in the weighted
model. We give two independent upper bounds on the competitive ratio of the
generic protocol MAXW on a general DAG G = (V, E) (where |E| = m, |V | = n,
and d denotes the length of the longest simple path in G).

—We prove that MAXW is 4m(1 + d
B

) - competitive on any DAG.

—Next, we prove that on a DAG G, MAXW is f(G)-competitive, where f(G) is
the maximal following value computed for an edge e in G: sum over all edges e′

the number of different lengths of paths which start at e′ and end at e. More
formally, for any two edges e, e′ ∈ E, and any k, 1 ≤ k ≤ d, let f ′(e′, k, e) be 1 if
there exists a path of length k edges whose first edge is e′ and last edge is e, and
0 otherwise. We define for any e ∈ E:
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f(e) ,
∑

e′∈E

∑d

k=1 f ′(e′, k, e).

For the graph G we define:

f(G) , maxe∈E f(e).

The first upper bound takes into account the size of the buffer, B, while the
second one does not. For constant values of B the second upper bound significantly
improves upon the first one for many network topologies, such as layered graphs
where f(G) ≤ m; for general DAGs, if d ≤ 4 or B ≤ 4d

d−4 , the second upper bound
improves upon the first one by at least a constant. However, the first upper bound
takes into account the size of the buffer B, and shows that with large enough buffer
sizes (e.g. B = Ω(d)) one may reach the competitive ratio of O(m) on any DAG,
while the upper bound of f(G) may be ω(m) on general DAGs. As we discuss
below, we further give lower bounds that show that there exist DAGs on which our
upper bounds are tight up to constant factors. Naturally, our upper bounds hold
for the case of equal weight packets as well. This makes them comparable to the
results shown in [Aiello et al. 2003] for the competitive ratio of any greedy protocol
on DAGs in the unweighted case. Those results use a different function, h(G), and
show an upper bound of O(h(G)) on the competitive ratio of any greedy protocol.
The function h(G) used in [Aiello et al. 2003] is exponential on certain DAGs,
whereas both upper bounds shown in the present work are polynomial. Moreover,
for any DAG G, the upper bound f(G) that we give here is better (i.e., on many
topologies smaller, and never larger) than the upper bound O(h(G)) given in [Aiello
et al. 2003].

In the course of proving our first upper bound we prove a lemma (Lemma 6)
that gives upper bounds on the delivery times of packets by any greedy protocol
on general DAGs when buffer size is unbounded. We show that if k packets, with
arbitrary paths to follow, are injected into the network and the last injection time
is t, then all k packets are delivered to their destinations by time t + d + k − 1. We
believe that this lemma may be of independent interest and may find additional
applications.

We complement our results with two lower bounds. We first give a certain DAG
and show on it a lower bound of Ω(n2(1+ n

B
)) on the competitive ratio of the protocol

Furthest-To-Go (FTG) for the unweighted packets model (and consequently for
the variable-weight packet model). This lower bound matches, up to a constant
factor, our first upper bound, given for any greedy protocol (i.e. MAXW) on the
variable-weight packet model. This result has two consequences: (1) It shows that
for general DAGs and a generic greedy protocol, our upper bound of 4m(1 + d

B
)

cannot be improved (up to constant factors), and (2) it strengthens conclusions
given in [Aiello et al. 2003], showing that although FTG is a stable protocol in
the Adversarial Queuing Theory model (see [Andrews et al. 1996]), it is not a
good protocol when throughput is in question. In fact our result shows that the
competitive ratio of FTG on a general DAG is the worst competitive ratio possible
for a greedy protocol. We then give another DAG and show another, simpler lower
bound of Ω(n2) on the competitive ratio of any greedy protocol on a DAG in the
unweighted model (and consequently on the weighted packet model). The DAG G

used in this proof is a layered graph, for which f(G), our second upper bound, is m.
This lower bound thus matches our second upper bound, up to a constant factor.
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1.2 Related work

The competitive analysis of the throughput of packet switches and packet networks
has received increasing attention in recent years. In the context of a single switch,
the work of Aiello et al. [Aiello et al. 2005] gave the first competitive analysis
of a number of protocols to maximize the weighted throughput of a single non-
preemptive FIFO buffer. A number of works then followed, extending the model
and the results, e.g. to the preemptive case (e.g., [Kesselman et al. 2001; Lotker
and Patt-Shamir 2002]), to the multiple-value case (e.g., [Andelman et al. 2003]), or
to models of switches (e.g., [Kesselman and Rosén 2006; Azar and Richter 2004a]).
For a short survey see [Epstein and van Stee 2004].

Aiello et al. [Aiello et al. 2003] then extended this approach to whole networks
and defined the Competitive Network Throughout (CNT) model. This model was
defined for equal-weight packets, analyzing the number of packets that reach their
destinations, a case which is of interest when whole networks, rather than single
switches, are in question. This work showed some greedy protocols, such as Nearest-
To-Go (NTG), to be competitive on general networks with a competitive ratio of
O(md), and other greedy protocols to be non-competitive at all on general networks
(e.g. FTG). Aiello et al. [Aiello et al. 2003] further gave several upper and lower
bounds on the competitive ratio of certain greedy protocols on the specific topology
of the line. They showed a general lower bound of Ω(

√
n) for any greedy protocol,

and showed that NTG has a competitive ratio of O(n
2

3 ), while other greedy pro-
tocols, such as FTG and Longest-In-System (LIS) have a lower bound of Ω(n) on
the competitive ratio. Of particular interest in the context of the present work are
the results of [Aiello et al. 2003] on general DAGs. [Aiello et al. 2003] showed that
on any DAG G, any greedy protocol is O(h(G)) competitive, where h(G) is the
maximal number of paths ending at one node in the network (including the null
path). We note that this bound can be exponential on certain DAGs, and that for
any DAG, we prove in the present work better upper bounds both for the weighted
and unweighted cases.

Azar and Richter [Azar and Richter 2004b] show an upper bound of n + 1 on
the competitive ratio of any greedy protocol on any graph with an in-degree of at
most 1 (e.g. lines, rings). They use a weighted packets model which is similar to
the CNT model, but differs in that it restricts the order of output from any buffer
to be FIFO, both for the protocol being considered, and for any optimal protocol.
The definition of a network in the model used by Azar and Richter implies that
the n + 1 upper bound which they show is equivalent to an upper of n in our
model. In the same paper, Azar and Richter introduce the “zero-one principle” for
switching networks that may simplify the analysis of certain network protocols that
deal with weighted packets. We make use of this principle in the proof of one of
our upper bounds. Kesselman et al. [Kesselman et al. 2003] consider the case of
trees, and give several results in a model which is related to (but different than) our
model. Centralized algorithms for the unweighted case are considered in [Azar and
Zachut 2005; Angelov et al. 2005], where it is shown that centralized algorithms
with polylogarithmic competitive ratios exist for the topology of the line.

Organization In section 2 we formally define our model. In section 3 we prove
our two upper bounds for any greedy protocol on DAGs, and in section 4 we give
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our two lower bounds. We discuss some conclusions in section 5.

2. THE MODEL

We model a packet network as a directed graph G = (V, E), |V | = n, |E| = m,
where nodes represent routers and edges represent unidirectional communication
links. We denote by d the length of the longest simple path in G. The system
is synchronous. Time proceeds in discrete steps. All links have unit capacity: in
each time step, each link can transmit one packet in the direction it is oriented.
Each directed link is identified with an output port in the router at the tail of that
link and with an input port in the router at the head of that link. At the output
port, there is a buffer of size B > 0 which can store up to B packets. At the input
port, there is a buffer of size one. All buffers are initially empty. In addition to
the ports associated with network links, each node may also have several traffic
input ports. The number of traffic input port per node is not restricted. When
packets are injected into the network, they are injected into the traffic input ports,
where each traffic input port has an input buffer of size one. Packets are injected
into the network over time. Each packet is injected into a traffic input buffer of
a source node and is labeled with a given destination, together with a prescribed
simple path that it has to follow from its source to its destination. Each packet
p has also a weight, denoted w(p), where w(p) may take any real value satisfying
1 ≤ w(p) ≤ α for some parameter of the model α. Packets travel in the network
in a store-and-forward manner. Each time step is divided into two sub-steps: the
forwarding sub-step and the switching sub-step. In the forwarding sub-step, for
each link, a packet may be selected from the output buffer at the tail of the link.
Then the selected packet is forwarded to the input buffer at the head of the link.
This sub-step also includes the injection of at most one packet into each traffic
input buffer. In the switching sub-step, within each router, all the link and traffic
input buffers are emptied of their packets. The packets from the input buffers are
either transferred to the output buffers of the next link on their path or dropped, or
simply output if the node is the packet’s destination. In the latter case we say that
the packet is delivered. The dropped packets may be packets from input buffers, or
packets already in the output buffer (i.e. preemption is allowed). When more than
B packets are to be placed in a certain buffer then some packets must be dropped,
and it is possible to drop packets even if the buffer does not overflow.

We are interested in algorithms that are online and local-control. These algo-
rithms, henceforth called protocols, operate as a set of separate algorithms, one for
each node. They make their decision in each time step based only on the infor-
mation available in that node at that time step (without full view of the network,
or knowledge of future arrival of packets). A protocol is greedy if it never drops a
packet when buffer space is available, and it never keeps a link idle when there is
a packet to be forwarded. We extend the definition of greediness into the weighted
packet model by stating that a greedy protocol always favors packets of higher
weight over packets of lower weight when deciding which packets are to be stored
in buffers, and which are first forwarded over a link. Our generic greedy protocol
for the weighted case is formally defined in the next section.

In our model we are interested in maximizing the total weight of the packets
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that reach their destinations, rather than being dropped. This is an extension of
the Competitive Network Throughput (CNT) model introduced in [Aiello et al.
2003] to the case of weighted packets. We use the competitive ratio of the weighted
throughput as a measure for analyzing the protocol. We say that the protocol A is
c-competitive if, for every sequence of packets injected into the network σ, it holds
that, OPT (σ) ≤ c ·A(σ) + β, where A(σ) is the total weight of the packets that A

delivers (rather than drops), OPT (σ) is the total weight of packets that an optimal
(centralized, clairvoyant) algorithm delivers, and β is a constant independent of the
input traffic σ.

3. UPPER BOUNDS FOR GREEDY PROTOCOLS ON DAGS

In this section we prove that all greedy protocols have finite competitive ratios on
all DAGs, and give two independent upper bounds on their competitive ratio. Both
upper bounds are independent of the range of packet weights, and of the number of
distinct packet weights. We define a generic greedy protocol, that gives preference
to the packets according to their weights. That is, the packets are given relative
priority according to their weights, when ties may be broken in an arbitrary way.
The highest priority packet in each link output buffer is sent over the link. Then, for
each link output buffer, the highest priority packets requiring that link are placed
in the buffer, and the rest are discarded. In what follows we prove upper bounds
on the competitive ratio of any protocol that adheres to this generic framework.
More formally, the generic protocol, which we call MAXW, is defined in Figure 1.

For each node v, edge e emanating from v, and each time step t, do the following:

. Forwarding sub-step:
Let P be the set of packets in the buffer at the tail of e in the beginning of the forwarding
sub-step of t. If P is not empty, choose a packet from P with maximal weight and forward it
over e (ties are broken arbitrarily).

. Switching sub-step:
Let A be the set of packets at node v requiring e at the beginning of the switching sub-step
of t. If A is not empty, place in the buffer of e a subset of A having maximal total weight,
while not exceeding the buffer size B (If more than one such set exists, the set can be chosen
arbitrarily.)

Fig. 1. Generic Protocol MAXW

3.1 A 4m(1 + d
B

) Upper Bound

In this section we prove the following theorem.

Theorem 1. For any DAG G, the protocol MAXW is 4m(1 + d
B

) - competitive.

Corollary 2. For the unweighted packets case, any greedy protocol is 4m(1+ d
B

)
- competitive.

We note that similarly to the proof we show for Theorem 10, it is possible to
slightly simplify the proof of Theorem 1 using the zero-one principle for switching
networks [Azar and Richter 2004b]. For completeness, we give below a proof of
Theorem 1 that does not use the zero-one principle.
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Proof of Theorem 1: We start by providing a technical claim, that shows that
if packets are injected into the network, then MAXW delivers a set of packets of
“high” weight “quickly”.

Lemma 3. Let G be an arbitrary DAG, T1 ≤ T2 time units, and k ≤ B an
integer. If a set Q of k packets, Q = {q1, q2, . . . , qk}, with a total weight W is
injected into G in the time interval [T1, T2], then there exists a (possibly other) set
of k packets with a total weight of at least W , which MAXW delivers in time frame
[T1, T2 + d + k − 1].

Proof. We first give an outline of the proof. For the proof we use a mechanism
of virtual tokens. For each packet q ∈ Q, our mechanism of virtual tokens will
(virtually) inject into the network, along with q, a token with the same weight.
The purpose of this token is to “remember” the weight of q and show that there is
a distinct packet that MAXW delivers by T2 + d + k − 1, which weighs at least as
the token, i.e. at least as q. According to the mechanism that we describe below,
the token is piggybacked throughout the network on real packets, weighing at least
as the token. It is handed over from one real packet to another, until it is absorbed
(virtually delivered) when a real packet carrying it is delivered by MAXW. A real
packet carries at most one token when it is forwarded by MAXW on an edge. The
first main point that will be established is that a token is always carried on packets
which weigh at least as the token. The second main point will be that all the virtual
tokens are virtually delivered by time T2 + d + k − 1.

We proceed by defining the mechanism of tokens in the network. For the usage
of this mechanism, at the tail of each edge we have an additional virtual buffer: a
token buffer. We start by describing how tokens are created. When packet qi ∈ Q

is injected into the network, we create a token si, assign it a weight wi equal to
the weight of packet qi, and place it in the token buffer at the tail of the first edge
on the path of qi. Note that exactly k virtual tokens are created, and they are all
created in the time interval [T1, T2].

Next we define a prioritization on the k tokens. For each 1 ≤ i, j ≤ k where
i 6= j, token si has a higher priority than token sj if and only if w(si) > w(sj) or
(w(si) = w(sj) and i > j). This prioritization remains constant over time, since the
weights of the k tokens do not change. We assign a distinct priority value between
1 and k for each token. A token is assigned a priority value i if there are i − 1
tokens with lower priority.

Now we describe how tokens are handled. When MAXW forwards some packet
p on an edge e, if the token buffer at the tail of e is not empty, the token s with the
highest priority in the token buffer is piggybacked on p. When a token s arrives
at a node v piggybacked on packet p, if v is the destination of p, we say that s is
virtually delivered, and it disappears from the network. Otherwise, we place token
s in the token buffer at the tail of the next edge on the path of p.

We proceed by proving that a token is always piggybacked on packets of equal or
greater weight, and that if a token buffer is non-empty, there is always an available
real packet to piggyback a token out of this token buffer.

Lemma 4. The following two conditions hold for any time step t such that t ≥
T1:
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(1 ) If token s is piggybacked on packet p in the forwarding sub-step of t, then
w(s) ≤ w(p).

(2 ) Let e be an edge in the network such that the token buffer of e is not empty
at the end of t, and let S = {s1, s2, . . . , sh} be the set of tokens in this token
buffer. Then, there exists a set of h packets P = {p1, p2, . . . , ph} (and possibly
more packets) in the buffer at the tail of e, such that for each j, 1 ≤ j ≤ h,
w(sj) ≤ w(pj).

Proof. By induction on time. We start with the base case t = T1:
Part 1 of the claim holds trivially, since there are no tokens in any token buffer

at the beginning of the forwarding sub-step of T1, and so no token is piggybacked
in T1.

For part 2, assume there are tokens in the network at the end of time T1. Let v be
a node in the network, and let e be an edge emanating from v, such that the token
buffer at the tail of e is not empty at the end of time T1. Let S = {s1, s2, . . . , sh}
be this set of tokens. Since S is a subset of all k tokens that are ever created in
the network, we have h ≤ k ≤ B. The token creation mechanism implies that all
tokens are created in the time interval [T1, T2], and so all of these h tokens must
have been created in T1, due to injection of packets into v. At the beginning of the
switching sub-step of T1, for each of the tokens in S there is a distinct packet at a
traffic input port of node v, the one that caused its creation, with the same weight
as the token, and requiring edge e. The claim clearly follows due to the greedy
property of MAXW which maximizes the total weight of the packets chosen to be
placed in the buffer at the tail of e. MAXW will place in the buffer at the tail of
e a set of h packets P = {p1, p2, . . . , ph} (and possibly more packets) such that for
each j, 1 ≤ j ≤ h, w(sj) ≤ w(pj).
We proceed with the proof for t > T1:

For part 1 of the claim, assume token s is piggybacked on packet p over an
edge e in the forwarding sub-step of t. By part 2 of the induction hypothesis, at
the end of time t − 1, there exists a packet p′ in the buffer at the tail of e such
that w(s) ≤ w(p′). Since MAXW chooses to forward p on e, we conclude that
w(p′) ≤ w(p), and therefore w(s) ≤ w(p).

For part 2, let v be a node in the network and let e be an edge emanating from
node v, such that the token buffer of e is not empty at the end of time step t. Let
S = {s1, s2, . . . , sh} be this set of tokens. S is a subset of all k tokens that are
created in the network. Therefore, it holds that h ≤ k ≤ B. Each of the tokens in
S was either present in the token buffer of e at the end of t − 1, created in time t,
or was piggybacked on a packet to node v in the forwarding sub-step of t.

Let S1 be the set of tokens that were present in the token buffer of e at the
end of t − 1. If S1 is not empty, then by part 2 of the induction hypothesis, each
token in S1 has, at the end of t − 1, a distinct packet in the buffer at the tail of e

weighing at least as the token. Let s1 be the token with the highest priority in S1,
which implies that s1 has maximal weight in S1. MAXW chooses a packet p1 with
maximal weight and sends it over e in the forwarding sub-step of t. Token s1 is
piggybacked on p1, and it holds that w(s1) ≤ w(p1). Token s1 has maximal weight
in S1 and p1 has maximal weight in the buffer. Therefore, at the beginning of the
switching sub-step of t, each of the remaining tokens in S1 \ {s1} still has a distinct
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packet at node v of equal or greater weight, requiring edge e.
Let S2 be the set of tokens in the token buffer of e that were created in the

forwarding sub-step of t. At the beginning of the switching sub-step of t, each of
the tokens in S2 has a distinct packet at a traffic input port of node v, i.e., the
packet that caused its creation, with the same weight as the token, and requiring
edge e.

Let S3 be the set of tokens in the token buffer of e that arrived to node v

piggybacked on packets in the forwarding sub-step of t. By part 1 of the induction
hypothesis, each token was piggybacked on a packet weighing at least as the token.
Therefore, at the beginning of the switching sub-step of t, each of the tokens in S3

has a distinct packet at node v, i.e., the packet that carried it to node v, weighing
at least as the token and requiring edge e.

All tokens in the set S belong to S1 \{s1}, S2, or S3. Therefore, each token s ∈ S

has, at the beginning of the switching sub-step of t, a distinct packet p satisfying
w(s) ≤ w(p), at node v, and requiring edge e. The claim clearly follows due to the
greedy property of MAXW which maximizes the total weight of the packets chosen
to be placed in the buffer at the tail of e. Because h ≤ B, MAXW will place in
the buffer at the tail of e a set of h packets P = {p1, p2, . . . ph} (and possibly more
packets) such that for each j, 1 ≤ j ≤ h, w(sj) ≤ w(pj).

We continue by bounding the time it takes MAXW to “deliver” the k tokens
created in the time interval [T1, T2]. We prove the following claim:

Claim 5. Each token in the network is eventually virtually delivered.

Proof. By induction on the tokens, ordered by decreasing priority. We start
with the token s with priority k - the highest priority. Part 2 of Lemma 4 implies
that in each time unit in which s is present in the network at a token buffer at
the tail of some edge e, the packet buffer at the tail of e is not empty. Since s has
the highest priority of all tokens, and since MAXW always sends a real packet if it
can do so, s is piggybacked on a real packet in every time step it is present in the
network. Since the network is a DAG, the path which s traverses is acyclic, and so
s is virtually delivered within at most d time steps from the time it is created.

We continue with the proof for token s with a priority i, i < k. Let t be the time
step in which the last token with a priority greater than i is virtually delivered.
Assume s is still in the network at the end of t. From t + 1 and onward, s is the
token with the highest priority in the network. Therefore it is piggybacked in each
time step starting from t + 1 as long as it is in the network. Since the network is
a DAG, the path which s traverses is a-cyclic, and so s is virtually delivered by
t + d.

The arguments of the above proof also show that all tokens are delivered by
time T2 + k · d. However, we need a better upper bound on the time all tokens
are (virtually) delivered in order to prove Lemma 3. In the course of proving this
better upper bound, we use the fact that all tokens are delivered in finite time, as
proved in Claim 5.

We now proceed with the proof of Lemma 3. By the second part of Lemma 4, if
a token buffer is non-empty, there is an available real packet to piggyback a token
out of this token buffer. Therefore, and by the greediness of MAXW, if a token s
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is not piggybacked at some time step t, this is because another token, s′, with a
higher priority, was piggybacked instead of s out of the same token buffer. We refer
to this event as s being blocked by s′ at time t. Note that in each time step, every
token in the network is either piggybacked on a real packet or blocked by another
token. A token which is piggybacked on a real packet at a given time blocks all
other tokens in the token buffer it was taken out of.

We now give the required upper bound on the delivery times of all tokens.

Lemma 6. All k tokens are virtually delivered by time T2 + d + k − 1.

Proof. Let s∗ be an arbitrary token in the network. We construct a series of
sets A1, A2, . . . , Aj which will satisfy for each i, Ai ⊆ Ai+1. Each set Ai has i

elements. The elements in these sets are events of tokens being blocked at nodes.
We will analyze this series of sets to prove the upper bound on the delivery time of
token s∗. The elements of these sets are tuples < s, t, v, x, y > where s is a token, t

is a time step in which a blocking of s occurred, v is the node at which this event
occurred, x is a path emanating from v, and y is the length (in edges) of x. We will
show that the series of sets is finite. The blocking events (i.e. elements) in the set
with the maximum index will be used to prove that token s∗ is virtually delivered
by time T2 + d + k − 1.

For the definition of A1 we consider two cases: If s∗ is never blocked then we
define t1 to be the creation time of s∗. v1 is defined as the node in which s∗ is
created, x1 is defined as the path which s∗ traverses until its virtual delivery, and
y1 is defined as the length of x1. We define A1 = {< s1 = s∗, t1, v1, x1, y1 >} to be
last in this series of sets. Otherwise, s∗ is blocked at least once. We know by Claim
5 that s∗ is eventually virtually delivered, and therefore blocked a finite number of
times. Let t1 be the latest time unit in which s∗ is blocked, and let v1 be the node
at which this event happens. Let x1 denote the path which s∗ travels from v1 after
it is blocked in t1 until it is virtually delivered, and let y1 denote the length of x1.
We define A1 = {< s1 = s∗, t1, v1, x1, y1 >} and continue the process by defining
A2.

We inductively construct the set Ai+1 from Ai, for i ≥ 1:
Given < si, ti, vi, xi, yi >∈ Ai, si is blocked at time ti in node vi. Let si+1 be

the token which blocks si in time ti. We consider two cases: If si+1 is not blocked
from its creation time until it blocks si at time step ti, we define ti+1 to be the
creation time of si+1. vi+1 is defined as the node at which si+1 is created, xi+1 is
the path that si+1 travels from its creation to vi where it blocks si (it may be an
empty path), and yi+1 is the length of the path xi+1. We define Ai+1 = Ai ∪ {<
si+1, ti+1, vi+1, xi+1, yi+1 >} and stop constructing the series of sets. Otherwise,
si+1 is blocked at some node before ti. We look at the last time step before ti in
which si+1 is blocked. We denote this time step as ti+1. Let vi+1 be the node at
which si+1 is blocked in time ti+1. Let xi+1 be the path that si+1 traveled between
vi+1 and vi (it may be an empty path). Let yi+1 be the length of path xi+1. We
define Ai+1 = Ai ∪ {< si+1, ti+1, vi+1, xi+1, yi+1 >} and continue the inductive
process by defining the set Ai+2.

We now observe the following facts which lead us up to the conclusion of the
proof. For each i, si+1 blocks si, and so the priority of si+1 is greater than the
priority of si. Therefore, the series of sets is finite, and j, the maximum index in
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the series, satisfies j ≤ k, since there are k tokens in the network. Aj has at most k

blocking events since one blocking event is generated in each step of the inductive
process used to construct the series of sets. tj is the creation time of token sj .
Therefore it holds that tj ≤ T2, since all tokens are created in the time interval
[T1, T2]. For each i, if Ai and Ai+1 are defined, then the last node of xi+1 is the
first node of xi. This is the node in which si+1 blocks si at time ti. Therefore, we
can concatenate the paths in Aj to create a path in the network: xj ◦xj−1 ◦ · · ·◦x1.
The network is a DAG, and so the length of this path is bounded by d, meaning
that

∑j

i=1 yi ≤ d. For each i, si is piggybacked on path xi continuously starting
from ti +1, without being blocked, for yi consecutive time steps. Thus, the delivery
time of s∗ is t1 + y1, where we take into account the last time step in which s∗ is
blocked, after which it is continuously piggybacked until it is virtually delivered.
Moreover, for each i > 1, if Ai is defined, then ti + yi + 1 = ti−1. We thus have
that the delivery time of s∗ is:

D1 = tj + [yj + 1] + [yj−1 + 1] + ... + [y2 + 1] + y1

= tj + j − 1 +

j∑

i=1

yi

≤ T2 + k − 1 + d .

This completes the proof of Lemma 6.

Lemma 3 is an immediate corollary of Lemma 6 and part 1 of Lemma 4. All
tokens are virtually delivered by T2 +k+d−1, and each token is virtually delivered
piggybacked on a distinct real packet which MAXW delivers. The total weight of
the k packets which piggyback the tokens and virtually deliver them is at least the
total weight of the k original packets of Q. This completes the proof of Lemma 3.

We now proceed with the proof of Theorem 1, giving an upper bound of 4m(1+ d
B

)
on the competitive ratio of MAXW against any adversary on any DAG. We divide
the time axis into frames of length d + B time units. Frame j, j ≥ 1, is defined as
[(j−1)(d+B), j(d+B)). We denote a packet eventually delivered by the adversary
as a D-packet. We define the following values for a given frame j:

—aj is the number of D-packets injected into the network in time frame j.

—bj is the number of packets delivered by MAXW in time frame j.

—cj is the total weight of the aj D-packets injected into the network in time frame
j.

—dj is the total weight of the packets delivered by MAXW in time frame j.

—ej = min{aj, B}.
—fj is the total weight of the ej heaviest D-packets injected in time frame j.

We now give a lower bound on the total weight of packets delivered by MAXW
in 2 consecutive time frames.

Claim 7. For each j, dj + dj+1 ≥ fj.

Proof. Let p1, p2, . . . , pej
be the ej heaviest D-packets injected in time frame j

(we chose an arbitrary set if this set is not unique). By definition, fj = w(p1) +
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w(p2) + . . . + w(pej
). By definition of ej , it holds that ej ≤ B. Since all these ej

packets were injected in time frame j, by Lemma 3, MAXW delivers (at least) ej

packets with a total weight of at least fj within the two time frames j and j + 1
(since each time frame is d + B time units long).

We now show an upper bound on the ratio between cj and fj .

Claim 8. For each j, 2m(d+B)
B

· fj ≥ cj.

Proof. There are two cases:

(1) aj ≤ B: By definition, we have ej = aj . Therefore, we get fj = cj by definition

of fj . In addition, we note that 2m(d+B)
B

≥ 1. Multiplying each side of the

inequality by fj , we get 2m(d+B)
B

· fj ≥ fj = cj .

(2) aj > B: By definition, we have ej = B. First observe that for any j, aj ≤
mB + m(d + B) ≤ 2m(d + B). This is because any D-packet injected cannot
be dropped by the adversary. The number of packets injected but not dropped
in a time interval of length T time units is at most mB + mT (since at most
mT packets may be delivered and at most mB packets may be stored in the
buffers at the end of the time frame).

The total weight of the B heaviest D-packets injected in frame j is fj. There-

fore, their average weight is
fj

B
. The total weight of all aj D-packets injected in

frame j is cj . Therefore, their average weight is
cj

aj
. Since the average weight of

the B heaviest D-packets injected in frame j is greater or equal to the average
weight of all aj D-packets, we get

fj

B
≥ cj

aj
. Since aj ≤ 2m(d + B), we get

fj

B
≥ cj

2m(d+B) which is our claim.

Now, applying Claims 7 and 8 we have:

2m(d + B)

B
· (dj + dj+1)

≥ 2m(d + B)

B
· fj

≥ cj .

We can now conclude the proof of Theorem 1. For any time t, we bound the
total weight of the D-packets injected by the adversary by time t, in terms of
the total weight of packets delivered by MAXW by time t. Let s be such that
(s − 1)(d + B) ≤ t < s(d + B). First observe that 2 · ∑s

j=1 dj ≥ ∑s−1
j=1(dj +

dj+1) ≥ B
2m(d+B) ·

∑s−1
j=1 cj . In addition, ADV (t) ≤

∑s−1
j=1 cj + 2m(d + B)α,1 and

MAXW (t) ≥ ∑s

j=1 dj − 2m(d + B)α, since in a single frame any protocol can
deliver packets with a total weight of at most m(d + B)α.

1Recall that for every packet p, its weight w(p) satisfies 1 ≤ w(p) ≤ α.
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By applying the above inequalities, we get:

MAXW (t) ≥
s∑

j=1

dj − m(d + B)α

≥ B

4m(d + B)

s−1∑

j=1

cj − m(d + B)α

≥ B

4m(d + B)
(ADV (t) − 2m(d + B)α) − m(d + B)α

=
B

4m(d + B)
ADV (t) − O(m(d + B)α).

3.2 An Upper Bound of at Most md in Graph Structure Terms

We now give another upper bound for MAXW on DAGs. This upper bound is
defined for any DAG G in terms of the structure of the graph, more specifically, in
terms of the function f(G), defined below. We note that this function is bounded
by md for any DAG, and by m for layered DAGs such as trees, lines, and butterflies.

Definition 9. For every two edges e, e′ ∈ E (not necessarily distinct), and
integer k such that 1 ≤ k ≤ d, we define f ′(e′, k, e) to be 1 if there exists a path of
length k edges whose first edge is e′ and last edge is e, and 0 otherwise. We define
for any e ∈ E:

f(e) ,
∑

e′∈E

d∑

k=1

f ′(e′, k, e).

For the graph G we define:

f(G) , max
e∈E

f(e).

For an edge e, the value f(e) sums over all edges e′ the number of distinct lengths
of paths that are in the network, which start with e′ and end with e. We will prove
the following theorem:

Theorem 10. For any DAG G the protocol MAXW is f(G)-competitive.

Corollary 11. For the unweighted packets model, any greedy protocol on DAG
G is f(G) - competitive.

In our proof we will show that MAXW is a comparison based protocol, a term
defined by Azar and Richter in [Azar and Richter 2004b]. This property will enable
us to use the zero-one principle for switching networks (also defined in [Azar and
Richter 2004b]) in order to limit the analysis in our proof to packets of weights
zero and one. Informally, a protocol is comparison based if it bases its decisions
only on the relative order between the weights of packets, and may break ties
either arbitrarily or according to a certain policy. Formally, we have the following
definition:
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Definition 12. [Azar and Richter 2004b] Given a function g : ℜ → ℜ we denote
by g(σ), for a packet sequence σ, the packet sequence σ with the modified weight
function g(w(p)) for each packet p ∈ σ. For a given algorithm A we denote by A(σ)
the set of possible outputs of A on σ, that is, a set of (possible) sequences of packets
delivered by A on input σ. 2 A is called comparison-based if and only if for every
monotonically increasing function g : ℜ → ℜ we have A(σ) ⊆ A(g(σ)), for every
σ.

The zero-one principle is defined in [Azar and Richter 2004b] as follows: Let A

be a comparison-based switching algorithm. A is a c-approximation algorithm if
and only if A achieves c-approximation for all packet sequences whose values are
restricted to be in{0, 1},

We continue with the following claim:

Claim 13. MAXW is a comparison-based protocol.

Proof. Let g : ℜ → ℜ be a monotonically increasing function, and σ an input
packet sequence. Let MAXW ∗(σ) be a possible output of MAXW on the input
sequence σ (i.e., a (possible) set of packets which MAXW delivers to their destina-
tions). The fact that g is monotonically increasing ensures that the relative order
between the weights of any two packets in σ also holds in g(σ). Therefore, any
(possible) contention-resolution and scheduling decision made by MAXW for σ

(e.g., choosing which packets to store at the buffers, and which packets to forward)
is a valid decision for g(σ) as well. Thus, there exists an execution of MAXW on
g(σ) which makes the same decisions, and therefore has the same output sequence
MAXW ∗(σ).

Proof of Theorem 10: Since MAXW is a comparison-based protocol, we can
use the zero-one principle in order to prove an upper bound on the competitive
ratio of MAXW. It suffices to prove the competitive ratio for packet sequences with
weights restricted to 0’s and 1’s, which we refer to as 0-packets and 1-packets.

Let MAXW (t) be the total weight of packets delivered by MAXW by time t,
and ADV (t) be the total weight of packets delivered by the adversary by time t.
We prove that for any t,

ADV (t) ≤ f(G) · MAXW (t) + m(B + f(G)).

For the purpose of the proof we define virtual packets and a mechanism which
can “virtually deliver” them, an extension and improvement on the virtual packet
mechanism introduced in [Aiello et al. 2003]. These virtual packets cross edges
piggybacked on real packets that MAXW transmits and are stored in two types of
special buffers, maintained at the tail of every edge: a virtual holding buffer and
a virtual transit buffer. We first describe how to handle virtual packets already in
the system, and then how virtual packets are created. When virtual packets arrive
at node v piggybacked on a packet p, then if v is the destination of p the virtual
packets are “virtually delivered”. Otherwise let e be the next edge on the path of
p. Then the virtual packets are placed in the virtual transit buffer of e. When a

2Note that this is a set of output sequences if algorithm A has some freedom in its definition, e.g.,
”can break ties arbitrarily”.
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(real) packet p leaves some node v on edge e, then all the packets in the virtual
transit buffer of e are piggybacked on p and the virtual transit buffer is emptied. In
addition, if the virtual holding buffer of e is not empty, a virtual packet is extracted
from the virtual holding buffer of e, and is piggybacked on p as well.

In the following we call a 1-packet that the adversary eventually delivers a D-
packet. The throughput of the adversary up to a given time step is the number of
1-packets it delivers to their destination, i.e. the number of delivered D-packets.
Therefore, we assume w.l.o.g. that the adversary accepts into the network only
D-packets which it eventually delivers and drops all other packets at their injection
time. Note that the adversary may inject 0-packets and 1-packets into the network
which it drops at their injection time. Now we describe how virtual packets are
created. We create a new virtual packet for each 1-packet that the adversary accepts
into the network. This will account for each 1-packet that the adversary eventually
delivers. Let p be a 1-packet injected in the forwarding sub-step of time step t.
In the switching sub-step of t, if the adversary accepts p into a buffer at the tail
of a certain edge e, then a new virtual packet is created and placed in the virtual
holding buffer of e.

Consider an edge e and time τ which may be the end of a forwarding sub-step,
or the end of a switching sub-step (which is the end of a time step). We denote by
MAXW1 and ADV1 the number of 1-packets stored by MAXW and the adversary
at the tail of e at time τ , respectively. We also denote by HOLDING the number
of virtual packets in the virtual holding buffer at the tail of e at time τ .

We show a bound on the size of the virtual holding buffers at any given time:

Claim 14. For any time τ and edge e, the following two conditions hold:

(1 ) MAXW1 ≥ HOLDING.

(2 ) ADV1 ≥ HOLDING.

Proof. The claim is proved by induction on time. Initially, the claim clearly
holds, since initially MAXW1 = ADV 1 = HOLDING = 0, because all buffers are
initially empty. We continue with the proof for any τ , assuming the claim holds for
any t < τ . Since time steps are divided into forwarding and switching sub-steps, it
suffices to prove the claim for τ at the end of a forwarding sub-step, and at the end
of a switching sub-step.
We start with the forwarding sub-step. If HOLDING = 0 at the beginning of the
forwarding sub-step, then HOLDING = 0 at the end of the forwarding sub-step,
so the claim continues to hold. Otherwise HOLDING > 0, and so MAXW1 > 0.
Therefore, MAXW forwards a 1-packet over e, which piggybacks a virtual packet
from the holding buffer (and possibly some more virtual packets from the transit
buffer). HOLDING and MAXW1 decrease by 1, and ADV1 either remains un-
changed or decreases by one. Thus, both parts of the claim continue to hold at the
end of the forwarding sub-step.
We now consider the switching sub-step. We note that MAXW1, ADV1, and
HOLDING cannot decrease: MAXW1 cannot decrease because of the greedy
property of MAXW; ADV1 cannot decrease, since we assume w.l.o.g that the ad-
versary drops only newly injected packets; Since no packets are taken out of the
virtual holding buffer, HOLDING does not decrease either. Let δ be the number
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of D-packets injected by the adversary in the forwarding sub-step which preceded
the switching sub-step, requiring edge e. ADV1 and HOLDING both increase by
δ, because a virtual packet is created and placed in the virtual holding buffer for
each newly injected D-packet. Therefore, part 1 of the claim continues to hold.
Now, by the greediness of MAXW, either MAXW1 grows by δ or more, or the
buffer of MAXW is full with 1-packets, i.e., MAXW1 = B. In the former case part
2 of the claim clearly holds. In the latter case we have, using part 1 of the claim
already established, that MAXW1 = B ≥ ADV1 ≥ HOLDING which proves part
2.

Corollary 15. A virtual packet is piggybacked only on 1-packets forwarded by
MAXW, and never on 0-packets.

Proof. By induction on time steps. For t = 0 the claim clearly holds, since at
t = 0 packets are only injected into the network, and no packets are transmitted.
For t > 0, let p∗ be a virtual packet piggybacked on a real packet p over an edge
e emanating from a node v. p∗ is taken out of a virtual holding buffer or out of a
virtual transit buffer. If p∗ is taken out of a virtual holding buffer, then by Claim
14 there is at least one 1-packet in the real buffer at the tail of e in the beginning
of time t. Therefore, packet p which MAXW forwards is a 1-packet. Otherwise,
p∗ is taken out of a transit buffer. This means that it arrived to node v at t − 1
piggybacked on a real packet q requiring edge e. Since we assume that the claim
holds up to time t− 1, q is a 1-packet. Therefore, at least one 1-packet was placed
by MAXW in the real buffer of e in the switching sub-step of t − 1, so p which is
forwarded by MAXW on e in time step t is a 1-packet.

We proceed by showing that once a virtual packet is taken out of a virtual
holding buffer and piggybacked on a real packet, it is continuously piggybacked on
real packets in every time step until it is virtually delivered.

Claim 16. with MAXW, if a virtual packet p∗ is taken out of a virtual holding
buffer and piggybacked on a real packet in time step t, then for each time step t′ ≥ t,
if not already virtually delivered, p∗ is piggybacked on a real packet.

Proof. By induction on time steps, starting from t. For t′ = t, p∗ is piggybacked
on a real packet and so the claim holds. For t′ > t, if p∗ is not virtually delivered by
the end of t′ − 1, then according to the induction hypothesis it arrived to a certain
node v in t′ − 1 piggybacked on a real packet p whose destination node is not v. In
the switching sub-step of t′ − 1 MAXW places at least one packet in the buffer at
the tail of the next edge e on the path of p, and p∗ is added to the virtual transit
buffer at the tail of e. Therefore, in t′, MAXW forwards a real packet on e, and
this packet piggybacks all packets in the virtual transit buffer, including p∗.

The next claim bounds from above the number of virtual packets that are pig-
gybacked on a single real packet in a single time step.

Claim 17. The number of virtual packets that are piggybacked on a single real
packet in a given time step t is at most f(G).

Proof. Consider P ∗, the set of virtual packets piggybacked on a real packet in
a certain time step t over an edge e. For each virtual packet p∗ ∈ P ∗ there is a
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time t′ when it was initially taken out of a virtual holding buffer, and the edge e′

of this virtual holding buffer. By Claim 16, once a virtual packet is taken out of
a virtual holding buffer, it is continuously forwarded until it is virtually delivered.
Therefore, the length of the path on which p∗ travels up to (and including) time
step t is exactly t − t′ + 1. This implies that there is a path with t − t′ + 1 edges
whose first edge is e′ and last edge is e. Moreover, since only one virtual packet
is taken out of any holding buffer at any given time step, p∗ is the only packet in
P ∗ which was taken out of the virtual holding buffer at the tail of e′ at time t′.
Thus, we can associate each packet in P ∗ with a distinct pair (e′, t′) which satisfies
the property that there exists a path of length t − t′ + 1 whose first edge is e′ and
last edge is e. In order to bound the number of virtual packets in P ∗ we count the
number of pairs (e′, t′) which satisfy this property. This number is by definition
f(e). Therefore, f(G), the maximum value of f(e) in the graph G, is an upper
bound for the size of P ∗ for any time t and any edge e.

Corollary 18. The size of any transit buffer is bounded by f(G), since all
packets in a transit buffer are piggybacked on the next transmitted real packet.

Now, we can conclude the proof of Theorem 10. The total number of D-packets
delivered by the adversary by time t is bounded from above by the total number of
virtual packets created by time t. At time t, these packets are either in the network
or already virtually delivered. Claims 14 and Corollary 18 bound the size of the
holding and transit buffers at any given time, to be B and f(G), respectively. Claim
17 and Corollary 15 bound the ratio between the total number of virtual packets
that are virtually delivered by time t and the number of 1-packets delivered by
MAXW by time t to be f(G). Thus, we have:

ADV (t) ≤ f(G) · MAXW (t) + m(B + f(G)).

4. LOWER BOUNDS FOR GREEDY PROTOCOLS ON DAGS

In this section we show two lower bounds for the competitive ratio of greedy pro-
tocols on DAGs. The first lower bound is given for the protocol Furthest-To-Go
(FTG). We then give a second, simpler lower bound that applies to any greedy
protocol.

Both lower bounds are given using packets of equal weight and they thus also
apply to the original non-weighted CNT model [Aiello et al. 2003]. The first lower
bound matches up to a constant factor the upper bound of 4m(1 + d

B
) given in

Theorem 1. The second lower bound matches the upper bound of f(G), given in
Theorem 10, up to a constant factor. Thus, together with the results of the previous
section, these bounds give tight (up to constant factors) upper and lower bounds
on the competitive ratio of greedy protocols on DAGs, in both the weighted and
unweighted cases.

4.1 A Lower Bound of Ω(n2(1 + n
B

)) for FTG

FTG prioritizes packets according to their remaining path lengths, preferring pack-
ets with longer remaining paths to packets with shorter remaining paths. The
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V1 V2

V3

V4

Fig. 2. Graph used in the Ω(n2(1 + n

B
)) lower bound for FTG

following lower bound demonstrates how this property undermines the throughput
of FTG, in comparison to the throughput of an adversary.

Theorem 19. There exist a DAG G such that the competitive ratio of FTG on
G is Ω(n2(1 + n

B
)).

Proof. The DAG on which the lower bound is achieved is constructed as follows
(See Figure 2):

Using n+2 nodes we define V = V1∪V2 ∪V3 ∪V4. We take n which is a multiple
of 3. We define:

—V1 = {v1, v2, . . . , vn
3
}

—V2 = {vn
3
+1, vn

3
+2, . . . , v 2n

3

}.
—V3 = {v 2n

3
+1, v 2n

3
+2, . . . , vn}.

—V4 = {vn+1, vn+2}.
The set of edges is defined to be E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 where:

—E1 = {e = (vi, vj) | vi ∈ V1, vj ∈ V2}. E1 creates a complete unidirectional
bipartite graph between V1 and V2.

—E2 = {e = (vi, v 2n
3

+1) | vi ∈ V2}. Note that v 2n
3

+1 is the “first” node in V3.

—E3 = {e = (vi, vi+1) | vi, vi+1 ∈ V3}.
—E4 = {e = (vi, vn+1) | vi ∈ V3 \ {v 2n

3
+1}}. Note that vn+1 is the “first” node in

V4.

—E5 = {e = (vn+1, vn+2)}.
All packets have equal weight and are injected into the nodes of V1. At time

t = 0 the adversary injects:
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—For each pair of nodes vi ∈ V1 and vj ∈ V2:
(1) One packet into vi with a path of length 1 (vi, vj). We refer to these packets

as short packets.
(2) B packets into vi with a path of length 5

(vi, vj , v 2n
3

+1, v 2n
3

+2, vn+1, vn+2). We refer to these packets as medium pack-
ets.

—One packet into v1 with a path of length ≈ n
3

(v1, vn
3
+1, v 2n

3
+1, v 2n

3
+2, v 2n

3
+3, . . . , vn, vn+1, vn+2). We refer to this packet as a

long packet.

At time steps t = 1 through t = n
3 − 3 the adversary injects a slightly different

sequence of packets:

—For each pair of nodes vi ∈ V1 and vj ∈ V2:
(1) One packet into vi with a path of (vi, vj). These are the short packets.
(2) One packet into vi with a path of (vi, vj , v 2n

3
+1, v 2n

3
+2, vn+1, vn+2).

These are the medium packets.

—One packet into v1 with the path
(v1, vn

3
+1, v 2n

3
+1, v 2n

3
+2, v 2n

3
+3, . . . , vn−t, vn+1, vn+2).

These are the long packets.

We analyze how FTG schedules this sequence of packets. The short packets will
be dropped at the time of their injection since FTG will favor the medium and long
packets over the short packets. Whenever a short packet is injected, there will be
(at least) B medium or long packets for FTG to choose from, causing the short
packet to be dropped. The situation at time n

3 +1 will be as follows: (a) None of the
packets are delivered yet. (b) For each time t ∈ [0, n

3 − 3], the long packet injected
at t will be at node vn−t, with vn+1 as its next node. (c) Medium packets that
have not been dropped are in one of the nodes of V1, V2 or in the first two nodes of
V3 which are v 2n

3
+1 and v 2n

3
+2. Starting from time n

3 + 3, a packet will cross edge

(vn+1, vn+2) for at most 4B + 1 consecutive time steps. After that, no packet will
be in the network. The explanation is as follows: After B steps, no packets will be
in any of the nodes of V1, and no packets will remain in any of the nodes v 2n

3
+3

through vn. After 2B steps no packets will remain in any of the nodes of V1, V2,
and [v 2n

3
+3, vn]. At most B packets will be in v 2n

3
+1, at most one packet will be at

node v 2n
3

+2, and at most B packets will be in vn+1. After 3B steps no packet will

be in v 2n
3

+1, V1, V2, and [v 2n
3

+3, vn]. At most one packet will be in v 2n
3

+2 and at
most B packets will be in vn+1. After 3B + 1 steps at most B packets will be in
vn+1, and all other nodes are empty. After 4B + 1 steps no packets will remain in
v 2n

3
+2, and all other nodes are empty as well. The throughput of FTG is therefore

bounded from above by 4B + 1 for this injection sequence.
The adversary can drop the following packets upon their injection in each time

step t ∈ [0, n
3 − 3]: (a) All long packets, and (b) One medium packet at the tail

of each edge between V1 and V2. All short packets will be forwarded to their
destination in V2 one time step after their injection. At the beginning of time
n
3 − 1, all short packets have been delivered, and there are B − 1 medium packets
in the buffer at the tail of each of the edges between V1 and V2. These buffers
will be drained sequentially such that no packet is dropped and all reach their
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destination vn+2. The throughput of the adversary is (n
3 )2(n

3 − 2) short packets,
plus (n

3 )2(B− 1) medium packets. In all, FTG delivers at most 3B +3 packets and
the adversary delivers (n

3 )2(n
3 − 2) + (n

3 )2(B − 1) packets.
This process may be repeated an unlimited number of times. It follows that that

there is a lower bound of Ω(n2(1 + n
B

)) on the competitive ratio of FTG.

4.2 An Ω(n2) Lower Bound for any Greedy Protocol

We continue by showing a simpler lower bound for any greedy protocol on a DAG.
This lower bound illustrates a property of greedy protocols which may flood a
bottleneck of the network with packets arriving from different paths. Since no
coordination is done between the nodes, a large number of packets with different
paths may end up trying to go simultaneously through a bottle neck, forcing any
greedy protocol to drop packets. An adversary may choose in such a situation to
route the packets sequentially through the bottle neck, and deliver all packets to
their destinations.

Theorem 20. There exists a DAG G, such that the competitive ratio of any
greedy protocol on G is Ω(n2).

Proof. The network is defined as G = (V, E). Using n + 2 nodes we define
V = V1 ∪ V2 ∪ V3. We take an even n. We define the graph as follows (See
Figure 3):

—V1 = {v1, v2, . . . , vn
2
}

—V2 = {vn
2
+1, vn

2
+2, . . . , vn}.

—V3 = {vn+1, vn+2}.
The set of edges is defined to be E = E1 ∪ E2 ∪ E3 where:

—E1 = {e = (vi, vj) | vi ∈ V1, vj ∈ V2}. E1 creates a complete unidirectional
bipartite graph between V1 and V2.

—E2 = {e = (vi, vn+1) | vi ∈ V2}. Note that vn+1 is the “first” node in V3.

—E3 = {e = (vn+1, vn+2)}.
At time t = 0, for each pair of nodes vi ∈ V1 and vj ∈ V2 the adversary injects

B equal-weight packets into node vi with a path of (vi, vj , vn+1, vn+2). After this,
no more packets are injected into the network. Any greedy protocol will forward
a packet to its destination on e = (vn+1, vn+2) starting from time t = 3 for 3B

consecutive time steps. After that, no packets will remain in the network. The
total number of packets delivered is therefore 3B. The explanation is as follows:
The first packet transmitted on e = (vn+1, vn+2) is at time t = 3. After B steps,
no packets are in any of the V1 nodes. Each node in V2 has at most B packets,
and node vn+1 has at most B packets as well. After 2B steps, no packets remain
in any of the nodes of V1 and V2, and node vn+1 has at most B packets. After
3B steps, no packets remain in the system. Therefore, 3B packets are delivered
to their destination by any greedy protocol. The adversary can drain each buffer,
one after the other, so that no packet is dropped. The total number of packets the
adversary delivers is B(n

2 )2.
This process may be repeated an arbitrary number of times. Therefore, we

conclude that any greedy protocol has a lower bound of Ω(n2) on this DAG.
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V1 V2

V3

Fig. 3. Graph used in the Ω(n2) lower bound for any greedy protocol

5. CONCLUSIONS

In this paper we extend the Competitive Network Throughout (CNT) model intro-
duced in [Aiello et al. 2003] into the weighted packet case, thus modeling Quality
of Service considerations and the DiffServ setting. We show that on any DAG, any
greedy protocol is competitive, with competitive ratio independent of the weights
of the packets. We give two independent upper bounds on the competitive ratio of
general greedy protocols on DAGs. We further construct certain DAGs and adver-
saries that show that our upper bounds cannot be improved (other than constant
factors) in the general case. Our results also improve upon the corresponding re-
sults given in [Aiello et al. 2003] for the unweighted case, and we thus give tight
(up to constant factors) bounds for both the unweighted and weighted cases.

An interesting and important direction for further work is to analyze the perfor-
mance of non-greedy protocols. These may have better performance than greedy
ones for both the weighted and the unweighted cases. The question of the existence
of a non-greedy protocol that has better performance than greedy protocols is open
even for the simple topology of the line, for which a lower bound of Ω(

√
n) for any

greedy protocol is known [Aiello et al. 2003]. Centralized online algorithms for the
line with a polylogarithmic competitive ratio have been given in [Azar and Zachut
2005; Angelov et al. 2005].
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