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Abstract

Combined input and output queued (CIOQ) architectures with a moderate fabric

speedup S > 1 have come to play a major role in the design of high performance

switches. The switch policy that controls such switches must consist of two com-

ponents. A bu�er management policy that controls admission to bu�ers, and a

scheduling policy that is responsible for the transfer of packets from input bu�ers

to output bu�ers. The goal of the switch policy is to maximize the throughput of

the switch. When all packets have a uniform value (or importance), this corresponds

to the number of packets sent from the switch. When packets have variable values,

this corresponds to the total value of the sent packets.

We derive a number of scheduling policies for CIOQ switches and analyze their

throughput using competitive analysis. We thus give for these policies a uniform

throughput guarantee, regardless of speci�c tra�c patterns. For the case of packets

with uniform values we present a switch policy that is 3-competitive for any speedup.

For the case of packets with variable values we propose two switch policies. One

achieves a competitive ratio of 4S, and the other achieves a competitive ratio of

8min(k; 2dlog�e), where k is the number of distinct packet values and � is the ratio

between the largest and the smallest value.
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1 Introduction

Switch architectures based on a non-blocking fabric are widely used in today's

packet networks. A critical aspect of such an architecture is the placement

of switch bu�ers. In the output queuing (OQ) architecture, packets arriving

from input lines immediately cross the switching fabric, and join a queue at

the switch output port. Thus, the OQ architecture allows one to maximize

the throughput, and permits the accurate control of packet latency. However,

in order to avoid contention, the internal speed of an OQ switch must be

at least the sum of all the input line rates. The recent developments in net-

working technology produced a dramatic growth of line rates and have made

the speedup requirements of OQ switches di�cult to meet. This has in turn

generated great interest in the input queuing (IQ) switch architecture, where
packets arriving from input lines are queued at input ports. The packets are
then extracted from input queues to cross the switching fabric and to be for-

warded to the output ports.

However, the IQ architecture can lead to low throughput, and it does not allow
the control of latency through the switch. For random tra�c, uniformly dis-
tributed over all outputs, the throughput (i.e. the average number of packets

sent in a time step) of an IQ switch has been shown to be limited to ap-
proximately 58% of the throughput achieved by an OQ switch [15]. A major
problem of the IQ architecture is head-of-line (HOL) blocking, which occurs
when packets at the head of the various input queues contend on the same
output port of the switch. To alleviate the problem of HOL blocking one can
maintain at each input a separate queue for each output. This technique is

known as virtual output queuing (VOQ). A large number of scheduling al-
gorithms, based on di�erent kinds of matchings between input and outputs
ports, have been proposed in the literature for the IQ architecture: these are

PIM [4], IRRM [24], iSLIP [22], iOCF [23] RPA [20] and Batch [12], to name
a few. These algorithms achieve high throughput when the tra�c pattern is

admissible (uniform), i.e., the aggregate arrival rate to an input or output port
is less than 1. However, their performance typically degrades when the tra�c

is non-uniform [19].

Another method to get the delay guarantees of an IQ switch closer to that

of an OQ switch is to increase the speedup S of the switch fabric. A switch
is said to have a speedup S, if the switch fabric runs S times faster than

each of the input or output lines. Hence, an OQ switch has a speedup of N
(where N is the number of lines), while an IQ switch has a speedup of one. For

values of S between 1 and N packets need to be bu�ered at the inputs before

switching as well as at the outputs after switching. This architecture is called a
combined input and output queued (CIOQ) architecture. CIOQ switches with

a moderate speedup S have received considerable attention in the literature
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[9,11,13,30]. Prabhakar and McKeown [26] consider the question whether a

CIOQ switch can be designed to behave identically to an OQ switch. It is

proved that a CIOQ switch with VOQ at the inputs and a speedup of just 4

can be designed to exactly mimic the behavior of an OQ switch, regardless

of the nature of the arriving tra�c. This result has been later improved by

Chuang et al. [10] who show that a speedup of 2 � 1=N is necessary and

su�cient to exactly emulate an OQ switch.

Most of the above works on the control of IQ and CIOQ switches assume

that there is always enough bu�er space to store the packets when and where

needed. Thus, packet drop due to insu�cient bu�er space never occurs, and all

packets arriving to the switch eventually cross the switch. However, contrary to

this setting, it is observed empirically that in the Internet packets are routinely

dropped in switches. In the present work we address the question of the design
of control policies for switches when bu�er space is limited, and thus packet
drop may occur. The aim of the policy is that of maximizing the throughput of

the switch, i.e., maximizing the number of packets that cross the switch rather
than being dropped due to insu�cient bu�er space. We provide robust control
policies for CIOQ switches. Since Internet tra�c is di�cult to model and it
does not seem to follow the more traditional Poisson arrival model [25,28],
we do not assume any speci�c tra�c model. Rather, we analyze our policies

against arbitrary tra�c and provide a uniform throughput guarantee for all
tra�c patterns using competitive analysis.

The switch policy controlling a CIOQ switch consists of a bu�er management
policy and a scheduling policy. The bu�er management policy controls the
usage of the bu�ers while the scheduling policy selects packets to be transferred

from the inputs to the outputs. We consider the cases of uniform (unit) value
packets, as well as variable value packets. The unit value case corresponds
to the Best E�ort model. In the case of variable value packets, each packet

has an intrinsic value, and this corresponds to the Di�Serv model [7]. The
actual value of a packet may be proportional to the amount of money charged

by the Internet Service Provider (ISP) for the corresponding service, or may
represent the relative priority of the various packets. The goal of the switch

policy is that of maximizing the total value of packets sent.

Our results. First we consider the case of unit value packets. We present a

switch policy that is 3-competitive for any speedup and is 2-competitive for a
speedup of 1. We note that implementing \back pressure" (i.e. packets are not

transferred to output ports whose bu�ers are full) helps to achieve a constant
competitive ratio in this case.

For the case of variable value packets, we give two scheduling policies, which
can be combined with an arbitrary bu�er management policy for the input

bu�ers. If the bu�er management policy is c-competitive for a single bu�er,
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then the �rst policy is (2 � c � S)-competitive while the second policy is (4 �
c �min(k; 2 � dlog�e))-competitive for any speedup, where k is the number of

distinct packet values and � is the ratio between the highest and the lowest

packet value.

To conclude the paper we briey consider the question of comparing the

throughput of a CIOQ switch to the throughput of an OQ switch with FIFO

bu�ers and having a \similar" amount of memory.

Related work. The control of OQ switches with limited bu�er space is es-

sentially reduced to the control of a single output bu�er. Thus, work on the

control of a single �nite bu�er, in the face of arbitrary tra�c, can be regarded

as a work on the control of OQ switches (clearly, the question is of interest

when packets have variable values). A number of such works considering a
single First-In-First-Out (FIFO) bu�er appeared in the literature in recent
years. If the bu�er policy is allowed to drop packets that have been already

accepted, it is said to be preemptive, otherwise it is said to be non-preemptive.
Aiello et al. [2] analyze various non-preemptive policies for the special case
of two di�erent packet values. Andelman et al. [3] generalize these results to
multiple packet values. The question of video smoothing is studied by Man-
sour et al. [21], where they establish an upper bound of 4 on the competitive

ratio of the preemptive greedy policy. This result has been later improved to
2 by Kesselman et al. [16], where they also introduced a new bounded-delay
packet model. The work of Kesselman and Mansour [17] studies the case in
which all packet values are powers of some constant and analyzes the loss
rather than the throughput of a policy. The analysis of a single bu�er has
been later extended to shared memory OQ switches. Competitive analysis of

preemptive and non-preemptive scheduling policies was given by Hahne et al.
[14] and Kesselman and Mansour[18], respectively. Aiello et al. [1] study the
throughput of various protocols in a network of OQ switches with limited
bu�er space.

The work mostly related to the present paper is the work of Azar and Richter
[6], where they consider a system of multiple FIFO bu�ers. The main contri-

bution of that work is to show that one can control such a system by a speci�c
scheduling policy, de�ned in that work, and a separate arbitrary local bu�er

management policy for any of the bu�ers. Azar and Richter show that the

competitive ratio of the resulting policy is twice that of the local bu�er man-
agement policy. Using previous results on the management of a single bu�er
they thus provide a 4-competitive algorithm for this model. The present pa-

per extends the work of Azar and Richter to CIOQ switches, by using their

technique of decoupling the bu�er management policy from the scheduling

policy.

The rest of the paper is organized as follows. The model description appears in
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Section 2. Our switch policies are de�ned in Section 3. The analysis of switch

policies for CIOQ switches appears in Section 4. In Section 5 we compare the

throughput of a CIOQ switch to that of an OQ switch. We mention some

conclusions in Section 6.

2 Model Description

We consider an N � N CIOQ switch (see Figure 1). Packets, of equal size,

arrive at input ports, and each packet is labeled with the output port on which

it has to leave the switch. For a packet p, we denote by V (p) its value. We

assume that packets can have k distinct values, all in the range [1::�]. For

simplicity of presentation, we also assume that the sizes of the bu�ers are

divisible by min(k; dlog �e).
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Fig. 1. An example of a CIOQ switch

Unless otherwise stated, we assume that VOQ (Virtual Output Queuing) is

implemented at the input ports, and each input i maintains for each output j
a separate queue V OQi;j of capacity BIi;j. Each output j maintains a queue
OQj of capacity BOj.

We divide time into discrete steps, where a step is the arrival time between

two packets at an input. That is, during each time step one packet can arrive
at each input port, and one packet can be forwarded on each output port.

We divide each time step into three phases. The �rst phase is the transmission
phase during which the �rst packet from each non-empty output queue is sent

on the output link. We denote by Pj(t) the packet that is sent from output j

in time step t if any, or a dummy packet with zero value otherwise. We denote

by tT the transmission phase of time step t. The second phase is the arrival

phase. In the arrival phase at most one packet arrives at each input port. We

denote by tA the arrival phase of time step t. The third phase is the scheduling
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phase when packets are transferred from input bu�ers to output bu�ers. In a

switch with a speedup of S, up to S packets can be removed from any input

and up to S packets can be added to each output. This is done in (up to) S

cycles, where in each cycle at most one packet is removed from each input and

at most one packet is added to each output. Thus, during the scheduling phase

we compute (up to) S matchings between input and outputs. We denote the

s-th scheduling cycle (1 � s � S) at time step t by ts.
1

Suppose that the switch is managed by a policy A. We introduce the following

notation. For any time � (� may be a time step t, or a phase tA or tT or a

scheduling cycle ts), we denote by L
A
i;j(� ) the length of V OQi;j, by O

A
j (� ) the

length of OQj and by LA(p; � ) the position of packet p in the queue in which

it resides, just before time � . By XA
i;j(ts) we denote the variable indicating

whether a packet has been scheduled from input i to output j in scheduling

cycle ts (i.e., X
A
i;j(ts) = 1 if some packet has been scheduled from input i to

output j and XA
i;j(ts) = 0 otherwise).

The state of the switch just before a scheduling cycle begins is described by
an N �N bipartite multi-graph. The set of nodes VNI ;NO

represents the input
and the output ports and each packet p in V OQi;j induces an edge (i; j) whose
weight equals the value of p, V (p). We denote by EA(ts) the set of packets
in the input bu�er of A at the very beginning of scheduling cycle ts. We also
denote by GA(ts) = (VNI ;NO

; EA(ts)) the corresponding bipartite graph.

We usually assume that FIFO order is maintained, i.e., packets must leave a
virtual output bu�er, or an output bu�er, in the order of their arrivals. So,

only the �rst packet (in the FIFO order) from each queue can participate in
the matching. We also consider for our constructions some switch policies in a
relaxed, non-FIFO, model in which packets may leave a bu�er not necessarily
according to FIFO order. However, these policies will be used only as a tool
for the analysis and as building blocks for actual policies.

The switch policy is composed of two main components, namely, a bu�er

management policy and a scheduling policy.

Bu�er Management Policy. The bu�er management policy controls the
admission of packets into the bu�ers. More speci�cally, when a packet arrives

to a bu�er, the bu�er management policy decides whether to accept or drop
it. An accepted packet can be later preempted if the preemption is allowed.

Separate bu�er management policies may control di�erent bu�ers. However,
in all our constructions we use the same policy for all input bu�er and the

same policy for all output bu�ers.

Scheduling Policy. The scheduling policy at every scheduling cycle �rst

1 With slight abuse of notation we say that t0 = (t� 1)S , and that tS+1 = (t+1)1.
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decides which packets are eligible for being transferred from the inputs to

the outputs. Then it speci�es which of those packets are actually transferred.

This is done by computing a matching in a bipartite graph between the inputs

and the outputs. Then the packets are transferred according to this matching.

A scheduling policy may compute a constrained matching where no packet

is destined to an output if its bu�er is full. This mechanism is called \back

pressure".

When a policy in the relaxed, non-FIFO, model is de�ned, one has also to

specify how packets are sent from the output bu�ers. This is done by specifying

the transmission policy. For policies in the FIFO model such speci�cation is

not needed (since packets are always sent out of the output bu�ers in FIFO

order).

Competitive Analysis. The aim of a switch policy is that of maximizing the
total value of the packets sent from the output bu�ers. Let � be a sequence of
packets arriving at the inputs of the switch. Let V A(�) and V OPT (�) be the
total value of packets transmitted out of the sequence �, by an online switch

policy A and an optimal o�ine policy OPT , respectively. The competitive
ratio of A is de�ned as follows.

De�nition 1 An online switch policy A is said to be c-competitive if for every
input sequence of packets �, V OPT (�) � c � V A(�) + a, where a is a constant
independent of �.

The competitive ratio of a bu�er management policy for a single FIFO bu�er
is de�ned in a similar way.

3 Switch Policies

In this section we describe the switch policies that we consider in this paper.

First we de�ne a simple tail-drop bu�er management policy.

Tail Drop Bu�er Management Policy (TD).

Accept the arriving packet p if there is free space in the bu�er. Drop p in case

the bu�er is full.

Next we present a natural preemptive greedy bu�er management policy.

Greedy Bu�er Management Policy (GRD).

Accept the arriving packet p if there is free space in the bu�er. Drop p if

the bu�er is full and V (p) is less than the minimal value among the packets

currently in the bu�er. Otherwise, drop from the bu�er the packet with the
minimal value and accept p.
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Now we describe a greedy switch policy for unit value packets.

Greedy Unit Switch Policy (GU).

Input/Output Bu�er Management: Apply the TD policy.

Scheduling: The set of eligible packets is de�ned with respect to the FIFO

order, with the restriction that no packet is destined to an output if its bu�er

is full (i.e., back pressure is enforced). Compute a maximum size matching.

Now we turn to the case of variable value packets. Following [6], we de�ne a

switch policy that is based on a simulation of another switch policy that may

break the FIFO order, i.e., in this simulation packets from a queue may be

sent in an arbitrary order. The scheduling decisions of the simulated policy

will be used to determine the actual scheduling of our switch policy, which will

extract (possibly di�erent) packets from the same input queues at the same
scheduling cycles, but in the FIFO order. First we de�ne a greedy switch policy
in the relaxed non-FIFO model.

Greedy Variable Relaxed Switch Policy (GV R).

Input/Output Bu�er Management: Apply the GRD policy.
Scheduling: The set of eligible packets includes one packet from each V OQi;j.

The eligible packet from a queue V OQi;j is a packet with the maximal value
among the packets in V OQi;j. Compute a maximum weight matching.
Transmission: Send the packet at the head of each output queue (i.e., in FIFO
order).

Next we de�ne a greedy switch policy in the FIFOmodel that uses the schedule
of the GV R policy, and an arbitrary bu�er management policy P for the input
bu�ers.

Greedy Variable FIFO Switch Policy (GV F P ).

Input Bu�er Management: Apply the policy P .
Output Bu�er Management: Apply the GRD policy.

Scheduling: Simulate the GV R switch policy and follow its schedule.

Similarly, we de�ne another switch policy in the non-FIFO model, to be later

used in the construction of a switch policy in the FIFO model. This policy
partitions the resources of the switch (bu�er space and internal and output
bandwidth) equally between di�erent classes of packets. We divide the packets

into classes according to their values. If k � 2dlog�e, we divide the packets into
k classes so that each class contains packets with the same value. Otherwise

we de�ne dlog�e classes where the packets in class 1 � i � dlog�e have

values in the range [2i�1; 2i). Let M be the number of classes, that is M = k

if k � 2dlog �e and M = dlog�e otherwise.

Partition Variable Relaxed Switch Policy (PV R).

Input/Output Bu�er Management: For a bu�er of size B, allocate B=M bu�er
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space for each class (i.e., simulate a complete partition policy of every bu�er).

Apply the TD policy within each class using the space allocated for that class.

Namely, a packet of class i is accepted i� the number of packets of this class

in the bu�er does not exceed B=M .

Scheduling (scheduling cycle ts): We de�ne j = ((t� 1) � S + s)%M + 1 to be

the current packet class in a Round-Robin order. The set of eligible packets

is the set of packets in class j, with the restriction that no packet is destined

to an output if its bu�er is full (i.e., back pressure is enforced). A bu�er

is considered full if all the space allocated to the relevant class is occupied.

Compute a maximum size matching.

Transmission (time step t): We de�ne j = (t � 1)%M + 1 to be the current

packet class in a Round-Robin order. Send the packet of the j-th class closest

to the head of the bu�er (i.e., we transmit packets out of each output bu�er

in a Round-Robin order between the classes).

The corresponding partition switch policy in the FIFO model is as follows.

Partition Variable FIFO Switch Policy (PV F P ).

Input Bu�er Management: Apply the policy P .

Output Bu�er Management: Apply the TD policy.
Scheduling: Simulate the PV R switch policy and follow its schedule.

4 Analysis of the Switch Policies

In this section we analyze the performance of our switch policies.

4.1 Unit Value Packets

In this section we consider the case of packets with unit values. We show

that the GU policy is 3-competitive for any speedup and 2-competitive for a

speedup of 1. We note that a result in [6] implies that no online deterministic
switch policy can have a competitive ratio better that 2 � 1=N .

In what follows we assume a given input packet sequence �. To analyze the
throughput of the GU policy we introduce some helpful de�nitions. The next

de�nition concerns packets that OPT may deliver during a time step while
GU does not (recall that the value of each packet is exactly 1).

De�nition 2 For a given switch policy A, a packet sent by OPT from output

j at time t is said to be extra if V (POPT
j (t)) = 1 and V (PA

j (t)) = 0.
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In the following de�nition we consider the di�erence between the queue length

of an online policy A and OPT , which will be later related to extra packets.

De�nition 3 For a switch policy A and a scheduling cycle ts, we denote

max(LOPTi;j (ts) � LAi;j(ts); 0) by DL
A;OPT
i;j (ts) and max(OOPT

j (ts) � OA
j (ts); 0)

by DOA;OPT
j (ts).

We will map each extra packet of OPT to a packet sent by GU , in a such

way that each GU packet is mapped to at most twice. First we need some

auxiliary claims.

Observation 1 Consider an extra packet p, and let ts be the scheduling cycle

in which p was transferred by OPT to its output bu�er. Then, at the beginning

of scheduling cycle ts+1, p's position in the output queue of OPT is larger than
the length of the corresponding output queue maintained by GU .

The observation follows from the fact that all extra packets sent by OPT

should eventually appear in an output queue of OPT when the corresponding
GU queue is empty, and from the fact that both OPT and GU send packets

from output bu�ers greedily.

De�nition 4 We call a packet p scheduled during scheduling cycle ts to OQj

of OPT a potentially extra packet, if LOPT (p; ts+1) > OGU
j (ts+1).

The following claim bounds from above the number of new potentially extra

packets that can be created in OPT during a scheduling cycle.

Claim 1 The number of new potentially extra packets created during schedul-
ing cycle ts, that is

PN
j=1DO

GU;OPT
j (ts+1) �

PN
j=1DO

GU;OPT
j (ts), is bounded

from above by the size of a maximum matching in the graphG0 = (VNI ;NO
; EOPT (ts)n

EGU (ts)) plus the size of a maximum constrained matching in the graph GGU (ts).

Proof: Obviously, the number of packets from G0 scheduled by OPT during
scheduling cycle ts is bounded by the size of a maximummatching in G0. It re-

mains to consider the packets thatOPT schedules fromG00 = (VNI ;NO
; EOPT (ts)\

EGU (ts)). Assume that OPT and GU schedule matchings M in G00 and MC

in GGU (ts), respectively. If jM j � jMCj, we are done. So suppose that jM j >
jMCj. It must be the case that M contains at least jM j � jMCj packets
destined to the outputs which have full bu�ers in GU . Otherwise, there exists

another constrained matchingMC 0 obtained fromM by removing the packets

destined to the full outputs in GU such that jMC 0j > jMCj, which contra-
dicts to maximality of MC. Obviously, OPT cannot produce new potentially

extra packets in the output bu�ers that are currently full in GU . Therefore,
the number of new potentially extra packets from G00 is bounded by the size

of a maximum constrained matching in GGU (ts).
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The next claim takes care of the situation in which the di�erence between the

length of an input queue of OPT and the corresponding queue of GU grows.

Claim 2 For a given scheduling cycle ts, the increase in the di�erence between

the length of an input queue of OPT and the length of the corresponding

input queue of GU , that is DL
GU;OPT
i;j (ts+1) � DL

GU;OPT
i;j (ts), is bounded by

XGU
i;j (ts)�XOPT

i;j (ts).

Proof: If s 6= S (i.e., the considered cycle is not the last cycle of a time step)

then between scheduling cycle ts and scheduling cycle ts+1 there is no arrival

phase and trivially DL
GU;OPT
i;j (ts+1) � DL

GU;OPT
i;j (ts) is a binary indicator of

whether GU scheduled some packet at this scheduling cycle while OPT did

not schedule any. Otherwise, if s = S, then between scheduling cycle ts and

scheduling cycle ts+1 a packet p may arrive to V OQi;j. Note that GU admits

p unless its bu�er is full while OPT may or may not accept it. But this may

only decrease the di�erence.

The following mapping routine guarantees that all potentially extra packets
are mapped to packets sent by GU (this will be proved in what follows).
The routine is executed at each scheduling cycle, and adds some mappings

according to the actions of GU and OPT . Note that once a packet of OPT is
mapped to some packet of GU , this mapping is never changed.

Mapping Routine (scheduling cycle ts).

Step 1. For each output j, and each input i, if LOPTi;j (ts+1) > LGUi;j (ts+1) and

DL
GU;OPT
i;j (ts+1) > DL

GU;OPT
i;j (ts) then map the last packet that is still un-

mapped in V OQi;j of OPT to the packet scheduled by GU from input i to
output j during scheduling cycle ts.
Step 2. For each unmapped packet p scheduled by OPT to output j during

scheduling cycle ts such that LOPT (p; ts+1) > OGU
j (ts+1), map p to a packet

scheduled during scheduling cycle ts by GU that is mapped to at most once.

Note that each GU packet is mapped to at most twice (once at Step 1 and
once at Step 2).

Lemma 1 The mapping routine is feasible. Each packet of OPT that becomes

a potentially extra packet is immediately mapped.

Proof: The proof is by induction on the scheduling cycle. The basis is trivial.
Suppose that the mapping is feasible till scheduling cycle ts�1 and let us show
that it is also feasible at scheduling cycle ts. By Claim 2, there exists a su�cient

number of packets scheduled by GU to be mapped to at Step 1 and each such

packet can therefore be used exactly once. Each such packet has not been

previously used by the mapping routine since it was not yet scheduled. We

now consider Step 2. According to Claim 1, the number of new potentially

extra packets is bounded by the size of a maximum matching in the graph
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G0 = (VNI ;NO
; EOPT (ts) n E

GU (ts)) plus the size of a maximum constrained

matching in the graph GGU (ts). However, all packets from G0 are already

mapped by Step 1 at scheduling cycle ts or beforehand. Thus, the number of

new potentially extra packets that are still to be mapped is bounded by the

number of packets scheduled by GU during ts. Hence, Step 2 is feasible as

well, which proves the lemma.

Now we are ready to show that GU has the competitive ratio of 3.

Theorem 1 The competitive ratio of GU is at most 3 for any speedup.

Proof: Clearly, the number of packets sent by OPT is bounded by the num-

ber of packets sent by GU plus the number of extra packets. By Observation

1, every extra packet must �rst be a potentially extra packet. Lemma 1 im-

plies that all potentially extra packets are mapped by the mapping routine
to GU packets and no GU packet is mapped to more than twice. Therefore,

V OPT (�) � 3V GU (�), for any input sequence �.

We also show that GU achieves the competitive ratio of 2 for the special case
of S = 1.

Theorem 2 The competitive ratio of GU is at most 2 for a speedup S = 1.

Proof: We use a variant of the mapping routine, in which in Step 2 every
unmapped packet scheduled by OPT is mapped (i.e., we drop the condition
that only packets satisfying LOPT (p; ts+1) > OGU

j (ts+1) are mapped).

First, observe that the mapping routine remains feasible (for S = 1). To see
that note that any OPT packet that has to be mapped in Step 2 (i.e., it is not
already mapped), is in a bu�er V OQi;j such that LGUi;j (ts) > 0. For S = 1, GU
schedules a maximum size matching on its nonempty bu�ers (no back pressure

is used since in fact there are no output bu�ers). Therefore, the number of
packets that have to be mapped in Step 2 at scheduling cycle ts is at most the

number of packets scheduled by GU during ts.

Furthermore, observe that the modi�ed mapping routine maps every packet

scheduled by OPT out of the input bu�ers. The theorem follows since the
mapping routine maps at most two OPT packets to every packet scheduled

by GU , and GU transmits out of the switch every packet scheduled out of the
input bu�ers.

Most of the scheduling policies in commercial switches are based on maximal

matching, which can be easily computed in a distributed fashion, as opposed

to maximum matching. If GU uses maximal matching rather than maximum

matching, its competitive ratio is increased by 1, compared to the original

policy. To see that we can use a mapping routine in which in Step 2 every
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GU packet is used for the mapping of at most two OPT packets (rather than

just one OPT packet as in the original routine). Observe that the modi�ed

mapping routine remains feasible. The feasibility of Step 1 does not depend

on the particular scheduling policy used. The feasibility of Step 2 follows from

the arguments for the original GU policy and from the fact that the size

of a maximal matching is at least half the size of a maximum matching. We

therefore have that GU with maximalmatching is 4-competitive in the general

case and 3-competitive in the case of S = 1.

4.2 Variable Value Packets

In this section we consider the case of packets with variable values. We study

two policies that may use an arbitrary local bu�er management policy P for

the input bu�ers (it may be preemptive or non-preemptive). Let the competi-
tive ratio of P for a single bu�er be CP and letM

0 = min(k; 2dlog �e). We show
that the GV F P policy is (2 � S � CP )-competitive and that the PV F P policy
is (4 �M 0 �CP )-competitive. This implies that GV FGRD and PV FGRD are 4S-
competitive and 8M 0-competitive, respectively, since GRD is 2-competitive

[16].

4.2.1 Simulation Technique

We extend the technique of [6]. Speci�cally, we show that by combining a
schedule of a CR-competitive switch policy (which does not drop packets at
the outputs) that runs in the relaxed non-FIFO model, together with any CP -
competitive local (input) bu�er management policy, we obtain a new switch
policy that achieves a competitive ratio of CR � CP in the FIFO model. First
we need some lemmas. The following lemma shows that for any given �nite

input sequence, the value of an optimal solution in the FIFO model equals

that of an optimal solution in the relaxed non-FIFO model.

Lemma 2 For any �nite input sequence �, the value of OPT in the non-FIFO
model equals the value of OPT in the FIFO model.

Proof: We argue that any feasible schedule in the non-FIFO model can be

transformed to a schedule in the FIFOmodel, in which the same set of packets
is sent. First, without loss of generality, assume that OPT in the non-FIFO

model never preempts packets at the inputs or drops packets at the outputs.
If this is not the case, one can admit to the input bu�ers only packets that

are eventually sent from the output bu�ers without a�ecting the value of the

solution. Second, we transform the schedule by swapping the order in which
packets are sent so that FIFO order is maintained. Such a transformation is

always feasible since no packet is scheduled before its arrival time. The value

13



of the resulting solution does not change since the number of packets in any

bu�er at any given time does not change. Hence, no packet is dropped at the

bu�ers or the output bu�ers. The lemma follows.

Clearly, a similar claim holds when we consider a single bu�er rather than a

switch with input and output bu�ers.

In the next lemma we consider the total value of packets scheduled out of

input bu�ers by a switch policy operating in the FIFO model, which uses

an arbitrary bu�er management policy P , and whose schedule is de�ned by

another (simulated) switch policy which operates in the non-FIFO model. We

compare the total value of packets scheduled out of input bu�ers by this policy

to the total value of packets scheduled out of input bu�ers by the optimal

policy (i.e., we consider the competitive ratio of this policy, with respect to

the measure of packets scheduled out of the input bu�ers, rather than packets

sent out of the switch). The ratio we show is a function of the competitive
ratio of the simulated policy, and the competitive ratio of its input bu�er
management policy for a single bu�er, P . A similar claim is implicitly proved
in [6]. For an input sequence � and a schedule H, we denote the total value
of packets scheduled out of input bu�ers by a policy A in model M (FIFO or

non-FIFO) by V A
M (�;H). We also denote the total value of packets scheduled

out of V OQi;j by A in model M by V A
M (V OQi;j; �;H).

Lemma 3 Fix an input sequence �. Consider a switch policy AR, running in
the non-FIFO model, in which every packet scheduled out of an input bu�er is
eventually sent out of the switch. Consider now a switch policy A running in
the FIFO model, that uses the schedule H of AR on �, and a bu�er manage-

ment policy P for the input bu�ers. Then, the total value of packets scheduled
out of the input bu�ers by A is at least V A

FIFO(�;H) � V OPT
FIFO(�)=(CR � CP ),

where CR is the competitive ratio of AR, and CP is the competitive ratio of P .

Proof: Fix a schedule H of AR on input sequence �. In a nutshell, H de�nes

the time steps at which the various input queues are allowed to transmit. Since

P is CP -competitive in the FIFO model,

V A
FIFO(V OQi;j; �;H) � V OPT

FIFO(V OQi;j; �;H)=CP :

By arguments similar to those in the proof of Lemma 2, applied to a single

bu�er, we get:

V AR

non�FIFO(V OQi;j; �;H)�V OPT
non�FIFO(V OQi;j ; �;H)

=V OPT
FIFO(V OQi;j; �;H):

Hence we obtain:

V A
FIFO(V OQi;j; �;H) � V AR

non�FIFO(V OQi;j; �;H)=CP :
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Notice that the value of A equals the total value sent out of the input bu�ers

since no packet is dropped at the outputs. Therefore, we obtain:

V A
FIFO(�;H) =

NX

i=1

NX

j=1

V A
FIFO(V OQi;j; �;H)

�
NX

i=1

NX

j=1

V
AR

non�FIFO(V OQi;j ; �;H)=CP

=V
AR

non�FIFO(�)=CP

�V OPT
non�FIFO(�)=(CR � CP )

=V OPT
FIFO(�)=(CR � CP );

where we use the fact that AR is CR-competitive and the last equality follows
by Lemma 2.

4.2.2 Analysis of the GV F P Policy

First we demonstrate that GV R is 2-competitive for S = 1 in the non-FIFO
model. We emphasize that the GVR policy is used only as a simulation tool

to determine the scheduling decisions of the GV F P policy.

We follow the line of the proof in [6]. Let us denote by Ri;j;k(� ) the packet
with the k-th largest value in V OQi;j just before an arbitrary time � (� may
be a time step t, or a phase tA or tT or a scheduling cycle ts). For k > Li;j(� ),

let Ri;j;k(� ) = 0. We de�ne the potential of the system just before time � to
be the sum of all positive pairwise di�erences between the sorted values in all
input queues of OPT and GV R just before time � . That is,

�(� ) =
NX

i=1

NX

j=1

BIi;jX

k=1

max((ROPT
i;j;k (� )�RGV R

i;j;k (� )); 0):

Notice that �(� ) � 0 for any time � .

The next claim follows immediately from the proof of Claim 1 in [6].

Claim 3 ([6]) Under the GRD bu�er management policy, the potential does

not increase during the arrival phase.

Let us denote by WA(�; t) the total value of packets that a switch policy A

schedules out of the input bu�ers by the end of time step t on input sequence
�. We give the following lemma.

15



Lemma 4 For any speedup S, for any sequence of packets � and for any time

step t, WOPT (�; t) + �(t+ 1) � 2WGV R(�; t).

Proof: The proof is by induction on the time step. We assume that initially

all bu�ers of both GV R and OPT are empty.Therefore we have that �(1) = 0,

and that the lemma trivially holds at time t = 0. Now assume that the lemma

holds for time step t and let us show that it also holds for time step t+ 1.

We consider the transmission phase, the packet arrival phase and the schedul-

ing phase separately. For a given phase, let us denote by �WGV R the total

value of packets scheduled by GV R during this phase, by �WOPT the total

value of packets scheduled by OPT during this phase and by �� the increase

in � during this phase.

Transmission phase.Notice that for the transmission phase we have �WGV R =
�WOPT = 0, and that � does not change. We therefore have for the trans-
mission phase �WOPT +�� � �WGVR.

Arrival phase.Next we deal with the packet arrival phase. Clearly, �WGVR =
�WOPT = 0. By Claim 3, �� � 0. Therefore, we have that �WOPT +�� �
�WGVR for the arrival phase.

Scheduling phase. Last, we concentrate on the scheduling phase. We con-
sider the scheduling cycles of the phase in sequence. For a given cycle s, denote
by �WGV R

s the total value of packets scheduled by GV R during the cycle, by
�WOPT

s the total value of packets scheduled by OPT during the cycle and by
��s the increase in � during the cycle. The increase in the potential during
the scheduling cycle of GV R is as follows.

�1�=

NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j (ts)max((R

OPT
i;j;k (ts)�RGV R

i;j;k+1(ts)); 0)

�
NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j (ts)max((R

OPT
i;j;k (ts)�RGV R

i;j;k (ts)); 0)

�
NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j (ts) �

� (max((ROPT
i;j;k (ts)� RGVR

i;j;k (ts)); 0)+ (RGV R
i;j;k (ts)�RGV R

i;j;k+1(ts)))

�
NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j (ts)max((R

OPT
i;j;k (ts)�RGV R

i;j;k (ts)); 0)

=

NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j (ts)(R

GVR
i;j;k (ts)�RGV R

i;j;k+1(ts))
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=

NX

i=1

NX

j=1

BIi;jX

k=1

XGVR
i;j Ri;j;1(ts)

=�WGV R
s :

Now we consider the scheduling cycle of OPT . Suppose that OPT schedules
the ri;j-th largest packet from V OQi;j, if any. Otherwise (if OPT does not
schedule a packet from V OQi;j), let ri;j = BIi;j+1. We have that the increase
in the potential during the scheduling cycle of OPT is as follows.

�2�=

NX

i=1

NX

j=1

BIi;jX

k=ri;j

XOPT
i;j (ts)max((R

OPT
i;j;k+1(ts)�RGV R

i;j;k (ts)); 0)

�
NX

i=1

NX

j=1

BIi;jX

k=ri;j

XOPT
i;j (ts)max((R

OPT
i;j;k (ts)�RGV R

i;j;k (ts)); 0)

�
NX

i=1

NX

j=1

BIi;jX

k=ri;j+1

XOPT
i;j (ts)max((R

OPT
i;j;k (ts)�RGV R

i;j;k (ts)); 0)

� (

NX

i=1

NX

j=1

BIi;jX

k=ri;j+1

XOPT
i;j (ts)max((R

OPT
i;j;k (ts)� RGV R

i;j;k (ts)); 0)

+

NX

i=1

NX

j=1

XOPT
i;j (ts)max((R

OPT
i;j;ri;j

(ts)� RGVR
i;j;ri;j

(ts)); 0))

�
NX

i=1

NX

j=1

XOPT
i;j (ts)(R

GVR
i;j;ri;j

(ts)� ROPT
i;j;ri;j

(ts))

�
NX

i=1

NX

j=1

XGV R
i;j (ts)R

GVR
i;j;1 (ts)��WOPT

s

=�WGV R
s ��WOPT

s :

The last inequality follows from the fact that GV R computes a maximum

weight matching that in particular has weight greater than or equal to the

weight of the matching scheduled by OPT with respect to the GV R packets.

Putting it altogether, we obtain that for scheduling cycle s

�WOPT
s +��s=�WOPT +�1� +�2�

��WOPT
s +�WGV R

s +�WGVR
s ��WOPT

s

=2�WGV R
s :
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Summing over all the scheduling cycles we have for the scheduling phase that

�WOPT +�� � 2�WGV R:

The lemma now follows from the inductive hypothesis and the three inequal-

ities for the three phases.

Using the above lemma, we can prove the following theorem.

Theorem 3 The competitive ratio of GV R is at most 2 for a speedup S = 1.

Proof: Suppose that OPT schedules the last packet in � out of an input

bu�er at time step t�. Since � is nonnegative at any time we have that by

Lemma 4, WOPT (�; t�) � 2WGV R(�; t�). Note that for a speedup S = 1, any
packet scheduled by GV R to an output bu�er at time step t is transmitted at
time step t+1. Therefore, all packets scheduled by GV R to output bu�ers are
also transmitted out of the switch. The theorem follows since OPT transmits
out of the switch at most the total value of packets scheduled out of the input

bu�ers.

Now we can derive the competitive ratio of the GV F P policy. For the case of
a speedup S = 1, for which GV R does not drop packets at the outputs, the
competitive ratio follows directly from Lemma 3 and Theorem 3.

Theorem 4 The competitive ratio of the GV F P policy is at most 2CP for a
speedup S = 1.

Next we consider the case of S > 1.

Theorem 5 The competitive ratio of the GV F P policy is at most 2SCP for
any speedup.

Proof: Intuitively, the theorem follows since for a speedup of S > 1, GV F P

loses at the output bu�ers at most a factor of S with respect to the value of

packets scheduled out of the input bu�ers.

To give a formal proof of the theorem, we proceed as follows. We �rst consider

the GV R policy in a setting where the output bu�ers are not limited in space.
That is, any packet scheduled out of the input bu�ers is added to an output
bu�er and is eventually sent out of the switch. There is no shortage of bu�er

space at the outputs. In this setting, we have that the GV R policy is 2-

competitive for any speedup S by arguments similar to those used in the proof
of Theorem 3. Considering still this setting we therefore have that GV F P is

2CP competitive for any speedup using Lemma 3 (as for the case of S = 1).

We now compare the total value of packets sent by GV F P in the above setting
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to the total value of packets sent by GV F P in the (\regular") setting of output

bu�ers of limited space. We argue that we loose at most a factor of S with

respect to the setting of output bu�ers of unlimited space. To see this we note

that each output bu�er is managed separately by GRD. Denote by x the total

value of packets accepted by GRD into an output bu�er and by y the total

value of packets preempted by GRD from the output bu�er. Then, the total

value of packets sent out of an output bu�er equals x� y. Now observe that

for each time step one packet is �rst sent out of the output bu�er (unless it

is empty) and then at most S packets arrive. Therefore, before the S packets

arrive there is at least one free slot in the bu�er. It follows that for each time

step, the increase in x � y is at least an 1=S fraction of the total value of

the packets that arrive to the output bu�er. This concludes the proof of the

theorem.

4.2.3 Analysis of the PV F P Policy

Next we demonstrate that PV F P achieves a competitive ratio of 4M 0CP for
any speedup (recall that M 0 = min(k; 2dlog�e)). First we demonstrate that

the simulated PV R policy is 4M 0-competitive. For a given input sequence �,
and any class l, we will compare the total value of packets of the l-th class sent
by PV R, denoted V PV R

l (�), to the total value of packets of the same class
sent by OPT , denoted V OPT

l (�), and show that V PV R
l (�) � V OPT

l (�)=(4M 0).

In what follows we assume a given input sequence � and restrict our attention

to packets from the l-th class. Recall that PV R operates in the non-FIFO
model and divides the bu�er space and the bandwidth equally between the
di�erent classes. Roughly speaking, each class is allocated 1=M fraction of
the input bu�er space, switch fabric bandwidth, output bu�er space and the
output bandwidth. We will map each packet from the l-th class sent by OPT
to a packet sent by PV R, in such a way that each PV R packet is mapped to

at most 4M times.

Let V OQPV R
i;j (l) and OQPV R

j (l) be the space of V OQi;j and OQj , respectively,

allocated by PV R to packets from the l-th class. Let us denote by LPV Ri;j (ts; l)
and OPV R

j (ts; l) the number of packets in V OQPVR
i;j (l) and OQPV R

j (l) at the

beginning of scheduling cycle ts.

The following mapping routine guarantees that all packets from the l-th class
sent by OPT are mapped to packets from the l-th class sent by PV R (this will

be proved in what follows). The routine is executed at each scheduling cycle at
which PV R schedules packets from the l-th class, and adds or modi�es some

mappings according to the actions of PV R and OPT .

Mapping Routine (scheduling cycle ts at which PV R scheduled the
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l-th class).

Let t0q be the previous scheduling cycle at which PV R scheduled the l-th class.

Step 1. Consider each input queue V OQi;j separately. If during (t0q; ts] PV R

accepted at least one packet of the l-th class into V OQPV R
i;j (l), then add a

mapping from all the packets of the l-th class accepted by OPT into V OQi;j

during (t0q; ts] to that packet.

If during (t0q; ts] both PV R and OPT did not accept any packet of the l-th

class into V OQi;j nothing has to be done.

If during (t0q; ts] PV R did not accept any packet into V OQPVR
i;j (l) while OPT

accepted at least one packet of the l-th class into V OQi;j , V OQ
PV R
i;j (l) must

be full just before ts. In this case, cancel all mappings involving packets of

PV R that are in V OQPV R
i;j (l) just before ts (if any). Then, add a mapping

from all the OPT packets of the l-th class that are in V OQi;j just before ts,

to the packets of PV R in V OQPV R
i;j (l) just before ts, in an even way. (We will

later show that each packet of PV R is mapped to at most M times in any of
the cases.)

Step 2. Consider all packets from the l-th class scheduled during (t0q; ts] by
OPT from an input queue V OQi;j such that LPV Ri;j (ts; l) > 0 to an output
queue OQj such that OPV R

j (ts; l) < BOj=M . First, cancel all mappings in-
volving these packets (if any). Then, add a mapping from all these packets to
packets from the l-th class scheduled by PV R during scheduling cycle ts in

an even way. (We will later show that each PV R packet is mapped to at most
M times.)
Step 3. Consider all packets from the l-th class scheduled during (t0q; ts] by
OPT to output queues OQj such that OQPV R

j (l) is full just before ts, i.e.
OPV R
j (ts; l) = BOj=M . First, cancel all the mappings involving these packets

(if any). Then, map each such packet p scheduled by OPT to OQj during

scheduling cycle t00r (t
0

q < t00r � ts) to the packet in position bLOPT (p; t00r)=Mc
in OQPV R

j (l) just before ts. (We will later show that such a packet must exist,
and that any such packet is mapped to at most 2M times in Step 3 during

the execution of the algorithm.)

Consider an OPT packet p of the l-th class scheduled from V OQi;j to Oj . The

mapping routine is built so that p is mapped no later than scheduling cycle
ts, where ts is the �rst scheduling cycle after p is scheduled by OPT , in which
PV R schedules the l-th class. If V OQPV R

i;j (l) is not empty just before ts, then

p is mapped by either Step 2 or Step 3 (depending on whether OPV R
j (l) is full

or not just before ts). If V OQ
PV R
i;j (l) is empty just before ts, then the mapping

of p that is done in Step 1 (possibly already in previous cycles) is used.

First we demonstrate that all OPT packets are mapped.

Claim 4 Each packet from the l-th class sent by OPT is mapped to a PV R
packet from the l-th class.
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Proof: We show that each OPT packet p of the l-th class scheduled from

V OQi;j to Oj receives a mapping which is �nal (i.e. never changes) no later

than ts, where ts is the �rst scheduling cycle after p is scheduled by OPT , in

which PV R schedules the l-th class. First observe that each packet accepted

by OPT to some input queue at time step t0, is mapped by Step 1 no later

than t0s, where t
0

s is the �rst scheduling cycle in which PV R scheduled packets

of the l-th class in time step t0 or later. Now, to see that p receives its �nal

mapping by the claimed time, observe that by the mapping routine, p is never

mapped again after ts. If V OQ
PV R
i;j (l) is not empty and OPV R

j (l) is not full just

before ts, then p is mapped by Step 2 at ts. If V OQ
PVR
i;j (l) is not empty and

OPV R
j (l) is full just before ts, then p is mapped at ts by Step 3. If V OQPVR

i;j (l)

is empty just before ts, then the mapping of p created in Step 1 either at ts or

beforehand is used (observe that p must be mapped in Step 1 no later than

ts).

Next we show that there always exists a PV R packet to map to as required

by the mapping routine, and that each PV R packet is mapped to at most 4M
times.

Lemma 5 The mapping routine is feasible. Each PV R packet is mapped to
at most 4M times.

Proof: We consider each of the steps of the the mapping routine separately.

Step 1. First observe that by the speci�cations of the step, the required
PV R packets always exist. Next observe that if a PV R packet is mapped to
in more than one execution of Step 1 (in two di�erent scheduling cycles) then

the previous mappings are �rst canceled. We now argue that each PV R packet
is mapped to at mostM times in a single execution of Step 1. Note that during
(t0q; ts] at most M packets (of the l-th class) can arrive (and be accepted by

OPT ) to V OQi;j. Therefore, if in Step 1 a mapping to a new accepted packet
of PV R is created, at most M packets are mapped to it. In case in Step 1

new mappings are created for all the OPT packets of the l-th class in V OQi;j,
then observe that LOPTi;j (ts) � BIi;j and LPV Ri;j (ts; l) = BIi;j=M .

Step 2. Consider all packets from the l-th class scheduled by OPT during
(t0q; ts] from an input queue V OQi;j such that LPV Ri;j (ts; l) > 0 to an output

queue OQj such that OPV R
j (ts; l) < BOj=M . Since PV R computes a max-

imum size constrained matching during ts and in each input queue under

consideration there exists a packet (from the l-th class) that is eligible for
scheduling, the number of packets from the l-th class scheduled by OPT from

these queues during (t0q; ts] is bounded by M times the the number of packets

from the l-th class scheduled by PV R during ts. Thus, we can map all such
packets scheduled by OPT to packets scheduled by PV R so that each PV R

packet is mapped to at most M times.
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Step 3. Consider a packet p scheduled by OPT that arrives at t00r , t
0

q < t00r �
ts, to an output queue OQj of OPT such that OPV R

j (ts; l) = BOj=M . The

speci�ed mapping is well-de�ned because OOPT
j (t00r) � BOj and O

PV R
j (ts; l) =

BOj=M . Note that for any scheduling cycle ts in which a mapping is added

in Step 3, no packet is sent from OQPV R
j (l) during [t0q; ts), because otherwise

OQPV R
j (l) would not be full just before scheduling cycle ts. Therefore, the

position of a packet p to which a mapping is added in Step 3 at scheduling

cycle ts is the same position it had in any scheduling cycle in [t0q; ts) (and in

particular such packet was in OQPV R
j (l) during the whole interval of time).

We now argue that any PV R packet receives at most 2M mappings in Step 3

during the course of the algorithm, that is we show that at most 2M di�erent

packets can be mapped to any single packet that passes through OQPV R
j (l).

Note that for both OPT and PV R no packet is ever preempted from OQj

and a packet is sent out whenever possible (i.e. for OPT , in each time step
when OQOPT

j is not empty, and for PV R, in each time step when packets of
the l-th class are to be sent and OQPV R

j (l) is not empty). Using Lemma 2,

we assume without loss of generality that OPT sends packets out of OQj in
FIFO order. We therefore observe that the relative order of packets in OQj

(of OPT ) never changes and that the distance between two packets in OQj

(of OPT ) never changes.

Thus, for a given packet p that passes through OQPV R
j (l) we can identify the

�rst packet (according to the order de�ned in OQj of OPT ) that is mapped to

p. Let this packet be p0. Denote by t̂a the scheduling cycle in which it arrives
to OQj and let q0 be the position in OQj to which it arrives. Let ts, t̂a � ts be
the scheduling cycle in which the mapping between p0 and p is created, and let
q be the position of p in OQPV R

j (l) just before ts. By the speci�cations of Step
3 we have that bq0=Mc = q. To show that at most 2M packets are mapped to

p, we demonstrate that any packet other than p0 that is mapped to p must be

at distance at most 2M � 1 from p0 in OQj .

Assume towards a contradiction that a packet p00 at distance � � 2M from p0 in

OQj is mapped to p. Let t̂b be the scheduling cycle in which p
00 arrives to OQj,

and let q00 be the position of p00 in OQj after its arrival to OQj . Consider time

interval [t̂b; t̂a), and let x be the number of packets sent out from OQj by OPT

in this time interval and y be the number of packets sent out from OQPVR
j (l)

by PV R in this time interval. Since p is present in OQPV R
j (l) at both t̂b and t̂a,

we know that OQPV R
j (l) is never empty during [t̂b; t̂a), and therefore we have

that x �M(y+1), because (unless OQPV R
j (l) is empty) OPT cannot sendM

packets without PV R sending at least one packet in the same time interval.
We now have that q00 = q0� x+ � and therefore b(q0� x+ �)=Mc = q� y. On

the other hand,
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b(q0 � x+ �)=Mc� b(q0 �M(y + 1) + �)=Mc

� b(q0 �My +M)=Mc

= bq0=Mc � y + 1

>q � y :

This is a contradiction and hence p00 cannot be mapped to p.

By the above we can conclude that at any time any PV R packet has at most

4M mappings: at most M mappings created at Step 1, at most M mappings

created at Step 2, and at most 2M mappings created at Step 3.

The next lemma shows that PV R loses at most a factor of 4M 0 with respect

to the optimal throughput of the l-th class.

Lemma 6 For any input sequence � and any class l, V PV R
l (�) � V OPT

l (�)=(4M 0)
for any speedup.

Proof: According to Claim 4 and Lemma 5, all packets from the l-th class
sent by OPT are mapped by the mapping routine, which maps to any single

PV R packet of the l-th class at most 4M packets. The lemma follows since
the values of packets in the same class di�er by at most a factor of 2 if we
have M = dlog �e classes, and are identical if we have M = k classes.

The following theorem shows that the PV R policy is (4M 0)-competitive.

Theorem 6 The competitive ratio of PV R in the non-FIFO model is at most
4M 0 for any speedup.

Proof: By Lemma 6, V PV R(�) =
PM

l=1 V
PVR
l (�) �

PM
l=1 V

OPT
l (�)=(4M 0) =

V OPT (�)=(4M 0).

Observe that no packets are dropped by PV R at the outputs (because back

pressure is used). The following claim states that output bu�ers never overow
under PV F P .

Claim 5 No packet is dropped at the outputs under PV F P .

The claim holds since at any time the total number of packets in an output
bu�er of PV F P is less than or equal to the number of packets in the corre-

sponding output bu�er of PV R, which does not drop packets at the outputs.

Finally, we derive the competitive ratio of the PV F P policy using Lemma 3,

Theorem 6 and Claim 5.

Theorem 7 The competitive ratio of the PV RP policy is at most 4 �M 0 �CP

for any speedup.
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5 Comparing to OQ Switches

In this section we briey consider the question of comparing the throughput of

a CIOQ switch to that of an OQ switch with FIFO bu�ers that has a \similar"

amount of memory. We show a memory allocation for the CIOQ switch, and

a switch policy which is 4-competitive with respect to the optimal throughput

achievable by the OQ switch.

We also formulate a closely related question of how to divide the memory

available to a CIOQ switch between the input ports and the output ports.

That is, given the total amount of memory and the speedup of the switch,

how much memory should be placed at the inputs and how much at the

outputs. We assume here, as in [10], that each input port has a single bu�er
(VOQ is not implemented) and that there is no FIFO constraint imposed on
the input bu�ers (i.e., at any time any packet can be extracted from an input

bu�er). Suppose that we have a total ofM units of memory, each unit capable
of storing a single packet. Obviously, for S = 1 all M units of memory should
be placed at the inputs and for S = N all M units should be placed at the
outputs. However, it is unclear what should be done for 1 < S < N . Xie and
Lea [29], study this question using simulations.

In the following lemma we consider a CIOQ switch with a speedup S = 2, and
the Critical Cell First (CCF) scheduling policy for CIOQ switches [10]. This
scheduling policy uses a simulation of a \shadow" OQ switch, and assuming
that there are no memory space constraints, allows the CIOQ switch to com-
pletely mimic the tra�c sent out of the simulated OQ switch [10]. We show

a memory allocation for the CIOQ switch, and a feasible memory partition
between the input and the output ports, which is su�cient for this setting.
That is, the set of packets transmitted from the CIOQ switch will be identical
to the set of packets transmitted from the OQ switch.

Lemma 7 If we want to simulate a FIFO OQ switch that has a total memory
of MOQ slots (divided equally between the output ports) using a CIOQ switch
that has a speedup S = 2 and uses for scheduling CCF [10], then the memory
requirement of the CIOQ switch is at most 3MOQ. A feasible memory partition

is to allocate 2MOQ slots to the inputs and MOQ slots to the outputs (divided

equally between the input and the output ports).

Proof: Denote by BOQ the size of a bu�er in the OQ switch. We denote the
size of an input bu�er and an output bu�er in the CIOQ switch byBICIOQ and

BOCIOQ, respectively.We install in the CIOQ switch bu�ers of size BICIOQ =

2BOQ and BOCIOQ = BOQ. Now we show that this allocation is su�cient.

Notice that the delay of a packet in the OQ switch is at most BOQ. Since
CCF completely mimics the OQ switch [10], the delay of any packet in the
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CIOQ switch is also bounded by BOQ. Therefore, any input queue would never

contain more than 2BOQ packets (recall that S = 2) and any output queue

would never contain more than BOQ packets. Otherwise, the delay constraint

would be violated.

We now assume that we have an OQ switch and a CIOQ switch with an arbi-

trary speedup, and with memory allocation and partition as in the above

lemma. We de�ne a switch policy for the CIOQ switch and compare the

throughout achieved by this policy to the optimal throughput achievable on

the OQ switch. This policy is de�ned using the CCF scheduling policy, and

an arbitrary bu�er management policy P .

Simulate OQ Variable Switch Policy (SOV P ).

Input Bu�er Management: Simulate a FIFO OQ switch with the bu�er man-
agement policy P and accept/drop packets that P accepts/drops in the sim-
ulated OQ switch.

Output Bu�er Management: Apply the TD policy.
Scheduling: Every time step, apply the Critical Cell First (CCF) algorithm [10]
and compute two matchings, as if S = 2. (CCF makes its decisions based on
a simulation of the OQ switch on an input sequence that contains the packets
accepted by P .) For S � 2, schedule both of the matchings. For S < 2, select

for scheduling the matching with the maximum weight and drop the packets
of the second matching.

We show an upper bound on the competitive ratio (with respect to the optimal
throughout in the OQ switch) of SOV P , as a function of CP .

Theorem 8 Consider a FIFO OQ switch and a CIOQ switch with memory
allocation as in Lemma 7. For any speedup, the competitive ratio of SOV P

is at most 2CP with respect to the optimal throughput achievable in the OQ
switch.

Proof: It is shown in [10] that if there are no memory constraints, a CIOQ

switch with speedup S = 2 using CCF can completely mimic the OQ switch.
First assume that S � 2. If the switch is provided with memory allocation

and partition as in Lemma 7, then there is never a shortage of memory space,
and therefore the packets sent from the CIOQ switch are identical to those

sent from the OQ switch that uses P . It follows that the competitive ratio of
SOV P (with respect to the optimal throughput in the OQ switch) is at most

CP . For S < 2 we lose at most a factor of 2 since during each time step only

the heavier matching is scheduled and the other is dropped.

If we use as the bu�er management policy (P ) the greedy policy GRD which

is 2-competitive, we have that SOV GRD is 4-competitive with respect to the

optimal throughout in the OQ switch.
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6 Concluding Remarks

A major problem addressed today in networking research is the need for fast

switch architectures supporting guaranteed QoS. In this paper we consider

the CIOQ architecture that gained popularity as a platform for high perfor-

mance switches. We design robust switch policies that maximize the switch

throughput for any tra�c pattern and use competitive analysis to analyze

their performance.

An intriguing open problem is whether one can obtain a constant-competitive

switch policy for an arbitrary speedup in the case of arbitrary packet values

or whether a lower bound depending on the speedup can be shown. Another

interesting direction is to further study how the available memory should be

partitioned between the input ports and the output ports for a given speedup

to achieve the best performance, and how the performance of a switch is
a�ected by such a division.
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