
ON-LINE RANDOMIZED CALL CONTROL REVISITED∗

STEFANO LEONARDI† , ALBERTO MARCHETTI-SPACCAMELA† ,
ALESSIO PRESCIUTTI† , AND ADI ROSÉN‡

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 86–112

Abstract. We consider the problem of on-line call admission and routing on trees and meshes.
Previous work gave randomized on-line algorithms for these problems and proved that they have
optimal (up to constant factors) competitive ratios. However, these algorithms can obtain very
low profit with high probability. We investigate the question of devising for these problems on-line
competitive algorithms that also guarantee a “good” solution with “good” probability.

We give a new family of randomized algorithms with asymptotically optimal competitive ratios
and “good” probability to get a profit close to the expectation. We complement these results by
providing bounds on the probability of any optimally competitive randomized on-line algorithm for
the problems we consider to get a profit close to the expectation. To the best of our knowledge,
this is the first study of the relationship between the tail distribution and the competitive ratio of
randomized on-line benefit algorithms.

Key words. on-line algorithms, competitive analysis, randomized algorithms, call admission
control

AMS subject classifications. 68Q25, 68W20

PII. S0097539798346706

1. Introduction. The area of communication networks gives rise to a large
number of on-line problems. One of the most extensively studied problems in this
area is the problem of on-line assignment of virtual circuits in networks: a sequence
of requests for calls is given on-line to an algorithm which has to select a virtual
circuit between the communicating parties (or reject the request), obeying the network
constraints (such as link capacities). Two kinds of decisions are involved: admission
control, i.e., the choice of whether to accept the call or not, and route selection, i.e.,
the decision on the route of an accepted call. Each call is processed before any future
call is known, while the algorithm has to make both decisions. The basic form of this
problem (when link capacities are 1, and each call requests bandwidth 1) is an on-line
version of the well-known problem of maximizing the number of edge-disjoint paths.

The off-line version of the maximum edge-disjoint path problem is known to be
NP-hard on general networks [13]. The problem is solvable in polynomial time on tree
networks [11] while it is still NP-hard on mesh networks [17]. Kleinberg and Tardos
[16] give an O(1) approximation algorithm for meshes and densely embedded nearly
Eulerian graphs. For general graphs an O(

√
m) approximation is given in [14], where

m is the number of edges in the graph. Recently, an Ω(n1/2−ε) inapproximability lower
bound for the maximum edge-disjoint path problem on general graphs was proved in
[12] (where n is the number of nodes in the graph).

∗Received by the editors November 6, 1998; accepted for publication (in revised form) February
21, 2001; published electronically June 5, 2001. A preliminary version of this paper appeared in
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
1998, pp. 323–332.

http://www.siam.org/journals/sicomp/31-1/34670.html
†Dipartimento di Informatica Sistemistica, Università di Roma “La Sapienza,” via Salaria

113, 00198-Roma, Italia (leon@dis.uniroma1.it, alberto@dis.uniroma1.it, presciutti@dis.uniroma1.it).
The work of these authors was partly supported by EU ESPRIT Long Term Research Project
ALCOM-IT under contract 20244 and by Italian Ministry of Scientific Research Project 40% “Algo-
ritmi, Modelli di Calcolo e Strutture Informative.”

‡Computer Science Department, The Technion, Technion City, Haifa 32000, Israel (adiro@cs.
technion.ac.il).

86

RANDOMIZED CALL CONTROL 87

Algorithms for on-line maximization problems are usually analyzed in terms of
their competitive ratio [20], i.e., the worst case, over all input sequences, of the ratio
between the benefit obtainable by an off-line optimal algorithm (that knows the whole
sequence in advance), and the benefit obtained by the on-line algorithm. It is easy to
see that greedy strategies for the problems we consider here are noncompetitive; hence
more sophisticated strategies are necessary. Awerbuch, Azar, and Plotkin [2] gave a
deterministic on-line algorithm (denoted by AAP in this paper) for the case in which
the bandwidth request of each call is small when compared with the link capacities of
the network. Their algorithm works for any network topology and achieves a benefit
that is at least a logarithmic fraction (in the size of the network) of the optimal
solution. No deterministic algorithm can have an asymptotically better competitive
ratio [2]. However, if calls may request the full bandwidth of links in the network,
Awerbuch, Azar, and Plotkin [2] prove a lower bound of Ω(n) for deterministic on-
line algorithms for a line network, where n is the number of vertices. (Deterministic
algorithms with good competitive ratios are still possible for the maximum edge-
disjoint paths problem on some particular networks like expander graphs [15].)

Therefore randomized on-line algorithms have been considered for these problems.
A randomized on-line algorithm, A, is said to be c-competitive (against an oblivious
adversary [7]) if for any sequence of requests σ, E[A(σ)] ≥ 1

c · OPT (σ), where A(σ)
and OPT (σ) denote the algorithm’s and the optimal benefit over sequence σ, and
the expectation is taken over the random choices of A. Awerbuch et al. [3] proposed
an algorithm with an O(log n)-competitive ratio for trees of n vertices. This result
has been improved to O(logD), where D is the diameter of the tree, by Awerbuch et
al. [4]. Kleinberg and Tardos [16] presented an algorithm with an O(log n)-competitive
ratio for meshes and a class of planar graphs. For all these topologies, matching (up
to constant factors) randomized lower bounds have also been proved. On the other
hand, Bartal, Fiat, and Leonardi [5] proved an Ω(nε) lower bound for randomized
on-line algorithms on a specific network.

However, all the aforementioned algorithms have only the property that their com-
petitive ratio is “good.” They have not been analyzed with respect to their probability
to get a “good” solution, and they only guarantee that for any sequence of requests
the expected benefit is “close” (usually a logarithmic fraction) to the optimum. How-
ever, it may happen that, with high probability, a very poor benefit is achieved (and
the main contribution to the average is given by a high benefit, obtained with low
probability).1 Indeed, algorithms of this kind have been criticized on this basis as not
giving an appropriate solution for the problems they attempt to solve. For instance,
the O(log n)-competitive algorithm of [3] for the maximum edge-disjoint path prob-
lem on trees obtains for some sequences σ, even with OPT (σ) = Ω(n), a benefit of 0
with probability 1 − 1

logn . The O(logD)-competitive algorithm for trees [4] behaves

somewhat better; still unless OPT (σ) = Ω(Dε), the probability of getting any con-
stant fraction of the expectation remains o(1) (as a function of D). As to meshes, the
algorithm of [16] decides with probability 1/2 to accept only “short” calls and with
probability 1/2 to accept only “long” calls. On sequences of calls that are composed
of only one kind of call, the algorithm would obtain benefit 0 with probability at least
1/2.

1Note that using the Markov inequality it is possible to obtain bounds on the probability of
deviating from the expectation for algorithms for on-line minimization (cost) problems as a direct
consequence of the analysis of the competitive ratio. This is not the case for maximization (benefit)
problems.

88 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

In this paper we investigate the question of whether it is possible to obtain compet-
itive randomized on-line algorithms (for the problems at hand) which also guarantee
a “good” solution with “good” probability. Obviously, the probability of achieving
a benefit close to the expectation is related to the quality of the expectation: the
expectation of deterministic algorithms is obtained with probability 1; however, these
algorithms have very poor competitive ratios for the problems we consider.

We formulate the following questions. Our results give answers to most of them
in the context of the on-line maximum edge-disjoint paths problem.

1. Can a randomized on-line algorithm with optimal (up to a constant factor)
competitive ratio guarantee a benefit of a constant fraction of the expectation with
constant probability?

2. Can a randomized on-line algorithm with optimal competitive ratio (up to a
constant factor) achieve a constant fraction of the expected benefit with probability
that tends to 1 (say, as the size of the optimal solution grows)? What is the possible
rate of convergence?

3. What is the interplay between the competitive ratio of a randomized algorithm,
and the concentration of the benefit around its expectation?

1.1. Results of the paper. We address the above questions for the call ad-
mission problem in the basic case of infinite duration, requested bandwidth and link
capacities 1, on the topologies of trees and meshes. Pairs of nodes are given on-
line to an algorithm, which has to accept or reject every call immediately when it
is received. An accepted call has to be assigned a route which is edge-disjoint with
respect to all previously assigned routes. The aim is that of maximizing the number
of accepted calls. This problem is equivalent to the on-line version of the maximum
edge-disjoint paths problem for the above topologies. We present new randomized
algorithms for trees and meshes with asymptotically optimal competitive ratios and
good concentration of the benefit around its expectation.

Our work contains the following results for trees:

1. We present a family of randomized algorithms, parameterized by k ≥ 12, with
competitive ratios of 2k�log 2D�, and with the property that the probability to get
any fixed constant fraction of the expected benefit tends to a constant, as OPT/ logD
tends to infinity. In addition, these algorithms have the property that their probability
to obtain a 1− δ fraction of the expectation, δ ∈ (0, 1], is at least some constant value
1 − P(k, δ) when OPT

logD is a large enough constant. The value of 1 − P(k, δ) is such
that it can be made as close to 1 as desired at the expense of a larger k, i.e., a larger
constant in the competitive ratio.

We also present an O(logD)-competitive algorithm that for any sequence of
calls guarantees some constant fraction of the expected benefit with probability Ω(1)
(equivalently, this algorithm guarantees an O(logD) fraction of the optimal solution
with probability Ω(1)).

2. We show that no optimally competitive algorithm can guarantee a constant
fraction of the expected benefit with “very high” probability, unless the optimal so-
lution is “very high.” (For a formal statement see section 3.)

3. We also show that other algorithms from the family of algorithms with a
slightly worse competitive ratio of O(log1+εD), for arbitrary ε > 0, have the property
to achieve any fixed constant fraction of the expectation with probability that tends

RANDOMIZED CALL CONTROL 89

to 1− 1/Ω(logεD), as OPT
log1+3ε D

tends to infinity.

4. Our family of algorithms for trees is based on a new and simple scheme. We
are also able to derive an algorithm with the best known competitive ratio for the
problem, 6�log 4D�, as opposed to the previously known ratio of 48 log 2D [4]. Finally
we point out that our algorithms, and in fact any algorithm for link capacities 1, can
be made to apply to trees with arbitrary uniform capacities.

5. We also study the problem on meshes and we present an asymptotically optimal
O(log n)-competitive algorithm for meshes that obtains any constant fraction of the
expected benefit with probability that tends to 1, as OPT

log4 n
tends to infinity. This

algorithm is based on some of the ideas of [16] and [6] and on new ideas presented
here.

2. The algorithms for trees. The design of our family of algorithms is based
on a new approach. They are composed of two conceptual steps. In the first step we
apply an on-line deterministic filter to the input sequence. Those calls that are not
filtered out are called candidate calls and may be accepted. The set of the candidate
calls has two important properties: first, its cardinality is a constant fraction of the
cardinality of the largest (optimal) set of calls that can be accepted (by an off-line
adversary). Second, although this set cannot be fully accepted (as some of the calls
intersect), the intersections between the calls of this set exhibit “nice” properties.
When a call passes the deterministic filter and becomes a candidate it is presented
to an on-line randomized selection procedure that determines if the call is actually
accepted. The randomized selection procedures that we use are very simple, and the
various algorithms are distinguished by the randomized selection procedure used.

Before we describe the algorithms, we give some notations: we denote by σ =
(s1, t1), (s2, t2), . . . the sequence of requests. We denote by OPT (σ) and A(σ) the
set of calls accepted by an optimal (off-line) algorithm and by an on-line algorithm
A, respectively, out of the sequence σ. We denote by C(σ) the set of candidate
calls passed on by the deterministic filtering procedure to the randomized selection
procedure. By D we indicate the diameter of the tree. We abuse notation and denote
by OPT (σ), A(σ), and C(σ) also the cardinality of the corresponding sets. We start
now by describing the properties of the deterministic filter that we use.

Theorem 2.1. There exists a deterministic on-line filtering procedure for trees
of diameter D such that for any sequence σ the following properties hold:

• C(σ) ≥ OPT (σ)/6.
• The number of pairs of calls in C(σ) that intersect is at most C(σ) · �log 2D�.

We prove this theorem in section 2.2. We also show in section 2.3 an alternative
filtering procedure which makes use of the AAP algorithm but achieves somewhat
worse performances.

The different algorithms of the family of algorithms are distinguished by the
randomized selection procedure used. We use a single procedure parameterized by
a parameter p (p ≤ 1

2�log 2D�). Algorithm Ap presents the candidate calls selected

by the deterministic filter, one by one as they are selected to the on-line randomized
selection procedure RSp defined below.

RSp. Any candidate call (s, t) ∈ C becomes a considered call with probability p
and is rejected with probability 1 − p. A considered call is accepted if it does not

90 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

intersect any previous considered call.2

2.1. Analysis of the algorithms.

Theorem 2.2. Algorithm Ap is a 6
p(1−p�log 2D�) -competitive randomized on-line

algorithm for call admission on trees of diameter D. For any δ ∈ (0, 1], and any

sequence σ, Pr[Ap(σ) < (1 − δ)E[Ap(σ)]] ≤ exp(−OPT (σ)p
48 (δ(1 − p�log 2D�))2) +

1

1+ 1
2 δ
(

1
p�log 2D�−1

) .
Before proving the theorem we explain its consequences and give some corollaries.

The proof of the first corollary follows from simple calculations.

Corollary 2.3. For any fixed constant k ≥ 12, algorithm Ap with p = 6
k�log 2D�

is a 2k�log 2D�-competitive randomized algorithm for on-line call admission on trees
of diameter D. Let P (k, δ, σ) = 1 − Pr[Ap(σ) < (1 − δ)E[Ap(σ)]]. Then for fixed
k ≥ 12 and fixed δ > 0, P (k, δ, σ) → (1 − P(k, δ)), for = P(k, δ) = 1

1+ 1
2 δ(

k
6−1)

, as

OPT (σ)
logD → ∞. Furthermore, when OPT (σ) ≥ βk logD, for some constant βk, then

P (k, δ, σ) ≥ 1 − c for some fixed constant c < 1.3 Note that 1 − P(k, δ) is a constant
bounded away from 0, if k ≥ 12, and that it can be made as close to 1 as desired, at
the expense of a larger constant k, i.e., a larger constant in the competitive ratio.

Based on the above corollary we also define a slightly different algorithm, Bp,
that guarantees for any sequence a constant fraction of the expected benefit with
probability Ω(1). This algorithm, with probability 1/2 accepts the first call (and
stops); with probability 1/2 it runs algorithm Ap on σ.4 Although Bp may have benefit
only 1 with probability 1/2, it has the desirable property that it achieves an O(logD)
fraction of the optimal solution with constant probability: if OPT (σ) = O(logD),
then Bp will have an O(logD) fraction of the optimal benefit with probability 1/2
(if it takes the first call). If OPT = Ω(logD), then with probability 1/2, Bp runs
Ap, which, for such sequences, achieves an O(logD) fraction of the optimum with
constant probability by Corollary 2.3.

Corollary 2.4. There exists an O(logD)-competitive algorithm for call admis-
sion on trees of diameter D such that for any sequence of calls the benefit obtained is
within some constant fraction of the expectation with constant probability.

We now give another corollary, relative to a family of algorithms that obtain any
fixed constant fraction of the expectation with probability that tends asymptotically
to 1 (as OPT (σ) and D grow) at the expense of a competitive ratio slightly higher
than the optimum.

Corollary 2.5. Algorithm Ap, with p = Θ(1
log1+ε D

), ε > 0, is an O(log1+εD)-

competitive randomized algorithm for on-line call admission on trees of diameter D.

2The more natural algorithm that immediately rejects a candidate call if it intersects a previous
accepted call, and otherwise accepts the candidate with probability p, performs at least as well.
We leave the description as above for simplicity of the proof. To see that, note that for any given
sequence of random choices, one for each candidate, any candidate accepted by RSp is also accepted
by the more natural algorithm. Since the call is accepted by RSp its corresponding random choice
is “positive,” and it does not intersect any previous considered call (i.e., it does not intersect any
previous candidate with a “positive” random choice). In the more natural algorithm this call cannot
intersect any previously accepted call (as no previous candidate that intersects it had a “positive”
random choice), and its own random choice is “positive.” Hence it is accepted.

3To see that, note that p = Θ(1/(2 log 2D)), and thus, for OPT (σ) ≥ βk logD, and large enough
βk, the absolute value of the expression in the exponent of the first summand is at least a constant,
and the second summand is bounded from above by a constant.

4A more natural algorithm would continue to run Ap after taking the first call in the first case.
However, in the worst case its behavior is no better than the above algorithm.

RANDOMIZED CALL CONTROL 91

For any constant δ ∈ (0, 1], Pr[Ap(σ) < (1 − δ)E[Ap(σ)]] < exp(−δ2 OPT (σ)
Θ(log1+3ε D)

) +
1

Ω(δ logε D) .

Proof of Theorem 2.2. We prove that the expected number of calls accepted by Ap

on a sequence σ is at least C(σ) · p(1− p�log 2D�), where C(σ) is the set of candidate
calls picked from σ. By Theorem 2.1, C(σ) ≥ OPT (σ)/6, and the competitive ratio
follows.

We number the candidate calls by the order that they arrive from 1 to � = C(σ).
If calls i and j intersect we denote this by i∩ j. Let ci, i ≥ 1, be an indicator random
variable which is 1 if and only if the ith candidate is considered. Let C =

∑
i ci. Let

yi,j , for i < j and i∩ j, be an indicator random variable which is 1 if and only if both
calls i and j are considered, and let Y =

∑
i<j,i∩j yi,j . Let rj be an indicator random

variable which is 1 if and only if there is an index i < j, i ∩ j, such that yi,j = 1. Let
R =

∑
j rj . Note that R ≤ Y .

A candidate is accepted if it was considered, but none of its (previously presented)
intersecting candidates was considered. Thus, if candidate j is considered but not
accepted into the on-line solution, then there is a candidate i < j, i ∩ j, that was
considered. That is, cj = 1, and rj = 1. Therefore Ap(σ) = C −R ≥ C − Y , and we
get E[Ap(σ)] ≥ E[C]− E[Y].

Clearly E[C] = C(σ) · p since each candidate is considered with probability p.
For any pair i < j, i ∩ j, Pr[yi,j = 1] = p2 since the event occurs if and only if
call i and call j are considered. By Theorem 2.1 there are at most C(σ) · �log 2D�
pairs i < j such that i ∩ j. Therefore E[Y] ≤ C(σ)�log 2D� · p2. We get that
E[Ap(σ)] ≥ E[C]− E[Y] ≥ C(σ)(p− �log 2D� · p2) = C(σ) · p(1− p�log 2D�).

We now turn to prove the second part of the claim. For δ ∈ (0, 1], since E[C] ≥
E[Y]

p�log 2D� ≥ E[R]
p�log 2D� , we have

Pr[Ap(σ) < (1− δ)E[Ap(σ)]]

= Pr[(C −R) < (1− δ)E[C −R]]

≤ Pr

[
C < E[C]− 1

2
δE[C −R]

]

+ Pr

[
R > E(R) +

1

2
δE[C −R]

]

≤ Pr

[
C < E[C]− 1

2
δ(1− p�log 2D�)E[C]

]

+ Pr

[
R > E[R] +

1

2
δ

(
1

p�log 2D� − 1

)
E[R]

]

= Pr

[
C <

(
1− 1

2
δ(1− p�log 2D�)

)
· E[C]

]

+ Pr

[
R >

(
1 +

1

2
δ

(
1

p�log 2D� − 1

))
· E[R]

]
.

The variable C =
∑l

j=1 cj is the sum of � = C(σ) random variables cj ∈ {0, 1},
set by independent Bernoulli trials to 1 with equal probability p and to 0 with equal
probability 1−p. We use the following version of Chernoff’s bound (cf. [19]) to bound
the first summand: let µ = E[C] = pC(σ) be the expected value of variable C; then

92 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

for every γ ∈ (0, 1],

Pr[C < (1− γ)µ] < e(−µγ
2/2).

The variable R is the sum of dependent random variables, as for all pairs i, j, i < j,
yi,j depends on the random choice for candidate i. We use the Markov inequality for
the second summand.

Using E[C] ≥ OPT (σ)p
6 , we have

Pr[Ap(σ) < (1− δ)E[Ap(σ)]]

< exp

(
−E[C]

2

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

)

= exp

(
−C(σ)p

2

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

)

≤ exp

(
−OPT (σ)p

12

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

) .

2.2. The deterministic filter. When call (s, t) is presented to the algorithm,
it is first passed through the deterministic filter, where it is discarded or becomes a
candidate. We describe in the following a deterministic filter appropriately designed
for trees.

First we designate an arbitrary internal vertex as the root of the tree and denote
it by r. Without loss of generality we can restrict our attention to calls between
two leaves of the tree. This is shown by constructing a new instance of the problem
where all the calls are between leaf vertices of the tree, such that any solution to the
new instance can be transformed back to a solution of the original instance, with the
same size. The tree network of the new instance is obtained by adding to the original
tree, for every internal vertex v and every edge e adjacent to v, a new leaf vertex
ve connected to v. For a call (s, t) of sequence σ, let es, et be the first and the last
edges of the path connecting s to t. A new sequence σ′ is obtained by transforming
every call (s, t) into a call (ses , tet). It is easy to show that any subset of calls of
σ can be accepted as a solution in the original tree if and only if the corresponding
subset of calls of σ′ can be accepted as a solution in the new tree. We note that this
construction does not change the diameter of the tree.

We denote by lca(s, t) the least common ancestor of vertices s and t in the tree
rooted at r and by p(u) the parent of vertex u in that tree. Path path(s, t) is the set
of edges in the path connecting s to t. Finally, T is the set of all edges of the tree.

Calls will be discarded on the basis of two tests. To perform the first test we block
two edges when a call becomes a candidate: for any candidate (s′, t′) the two edges on
path(s′, t′) adjacent to lca(s′, t′) are blocked. The edges are said to be blocked edges.

For the purpose of the second test we associate a weight function w(e) to each
edge of the tree. The value w(e) is determined as follows:

RANDOMIZED CALL CONTROL 93

1. Initially, assign w(e) = 1 for all edges e ∈ T .
2. Double w(e) whenever edge e is included in a path(s′, t′) for a call (s′, t′) that

becomes a candidate.
On the basis of the value of the weight function we give the following definition.

Definition. For two vertices u and v, path(u, v) is a segment at a certain time in
the run of the algorithm if at this time, for some nonempty subset of the current can-
didates, denoted by C′, path(u, v) is the maximal path contained in

⋂
(s,t)∈C′ path(s, t)

such that no edge of the path is included in a candidate call not in C′. We denote a
segment, and its set of edges, by seg(u, v).

Note that for two vertices u and v, path(u, v) may at times be a segment but later
cease to be a segment. Further note that the edges of a segment may increase their
weight over time, but when they form a segment they have equal weight. We thus
sometimes refer to the weight of the segment being the weight of each of its edges.
In what follows we will count the number of segments (of weight w > 2) ever created
during the run of the algorithm. We identify a segment by its two endpoints. Thus,
the first time that path(u, v) becomes a segment, it is counted as one. If the weights
of its edges increase, and it continues to be a segment, we do not count it again.

As an example, the set of segments defined by a set of candidate calls is shown
in Figure 2.1.

2

2

2

2

2

4

t

t1

2

s

s

1

3

3t

2

4

8

s2

Fig. 2.1. The segments created by the three candidate calls (s1, t1), (s2, t2), (s3, t3) are marked
with dashed lines. The weight of each segment is indicated next to the dashed line.

As mentioned above the filter is based on two tests:
Test 1. Discard call (s, t) if path(s, t) contains a blocked edge.
If call (s, t) is not discarded by the first test, then it is submitted to the second

test.
Test 2. Discard a call (s, t) if at the time the call is presented, there exists

a segment seg(u, v) of weight w such that |path(lca(s, t), s) ∩ seg(u, v)| ≥ 2D
w or

|path(lca(s, t), t) ∩ seg(u, v)| ≥ 2D
w .

A call that is not discarded by any of these test becomes a candidate.

94 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

Definition. For a sequence of calls σ, denote by C(σ) the set of candidates
produced by the deterministic filter out of sequence σ. Denote by C1(σ) those calls that
are discarded by Test 1 and by C2(σ) those calls that are discarded by Test 2. When
the sequence σ is clear from the context, we sometimes use the notations C, C1, C2. We
also sometimes abuse notation and use C, C1, C2 for the cardinality of the corresponding
sets.

We prove below that the number of candidates C(σ), i.e., those calls that are not
discarded by any of the two tests, is at least OPT (σ)/6. In the following we will often
say that edge e is included in a call (s, t) if e ∈ path(s, t). We give some claims and
lemmas as intermediate steps.

Claim 2.6. A call (s, t) in C ∪ C2 intersects a previous candidate (s′, t′) only if
(s′, t′) includes edge (lca(s, t), p(lca(s, t))).

Proof. If there is a previous candidate (s′, t′) that does not include edge (lca(s, t),
p(lca(s, t))) but intersects call (s, t), then lca(s′, t′) is in the subtree rooted at (lca(s, t)).
Then (s, t) intersects (s′, t′) in one of the two blocked edges of (s′, t′), a contradiction
to Test 1.

Claim 2.7. If the edges of a segment seg(u, v) have weight w > 2, then either u
is an ancestor of v or v is an ancestor of u.

Proof. If w > 2, then the edges of the segment are included in more than one
candidate call. Let (s, t) be the first such candidate call. If neither u is an ancestor
of v nor v is an ancestor of u, then lca(s, t) is internal to seg(u, v). Two edges of
seg(u, v) would have been blocked when (s, t) became a candidate. The two blocked
edges would also be part of any later call (s′, t′) that contains seg(u, v), and (s′, t′)
would not become a candidate, a contradiction.

Lemma 2.8. Let (s, t) be a call in C∪C2 (i.e., a call that passes Test 1). Consider
the intersection of path(lca(s, t), s) (resp., path(lca(s, t), t)) with the set of calls that
are candidate calls prior to the presentation of (s, t) and assume that this intersection
is not empty. Then, there exists a sequence of nodes v0, . . . , v�, � ≥ 1, such that the
following hold:

1. v0 = lca(s, t); v� is either equal to s (resp., t) or on path(lca(s, t), s) (resp.,
path(lca(s, t), t)); and the intersection of path(lca(s, t), s) (resp., path(lca(s, t), t))
with the set of previous candidate calls is path(v0, v�).

2. For 0 ≤ i ≤ � − 1, all edges between vi and vi+1 have the same weight, which
we denote Wi.

3. For 0 < i ≤ �− 1, Wi < Wi−1.

4. For 0 ≤ i ≤ � − 1, there is a set of candidates Ci such that for any edge e in
path(vi, vi+1), the set of calls that use e is exactly Ci.

5. For 0 < i < �− 1, path(vi, vi+1) is a segment.

Proof. We prove the claim for the path from lca(s, t) to s. An analogous proof
holds for the path from lca(s, t) to t.

Consider the time when call (s, t) is presented before it becomes a candidate.
First consider an edge e on path(lca(s, t), s). If there is a previous candidate call that
uses this edge, then this candidate call also uses edge (lca(s, t), p(lca(s, t)) by Claim
2.6. It follows that for any edge e on path(lca(s, t), s), if edge e is used by a previous
candidate, then all edges between e and lca(s, t) are used by this candidate. Let e be
the edge on path(lca(s, t), s) which is furthest away from lca(s, t) and is included in
a previous candidate call. Let the node adjacent to e and further away from lca(s, t)
be node v�, and let v0 be lca(s, t). This proves point 1.

Since for any edge e, any previous candidate that uses edge e also uses all edges

RANDOMIZED CALL CONTROL 95

between edge e and lca(s, t) (by Claim 2.6), it follows that going from lca(s, t) to s,
the weight of the edges is nonincreasing. If there is a decrease in the weight of the
edges, we assign the point of decrease as one of the nodes vi. We thus get a sequence
of nodes vi that satisfy points 2 and 3.

For 0 ≤ i ≤ � − 1, now consider path(vi, vi+1). We claim that there is a set of
candidates Ci such that all edges on path(vi, vi+1) are used by exactly the calls in Ci.
Consider two edges e and e′ on this path, where e′ is further away from lca(s, t) than
e. Any candidate that uses e′ also uses e, following Claim 2.6. On the other hand,
if there were a candidate that uses e, but not e′, then the weights of e and e′ would
have been different. We thus establish point 4.

We further claim that for 0 < i < � − 1, path(vi, vi+1) is the maximal path of
edges that are used by exactly the calls in Ci. For edges on path(lca(s, t), s), any edge
which is not on path(vi, vi+1) has weight not equal to Wi and thus cannot be used by
exactly the calls in Ci. Furthermore, observe that there is at least one call in Ci that
uses also the edge leading from vi+1 towards s and must also reach lca(s, t) (by Claim
2.6). Thus no edge outside of path(lca(s, t), s) can possibly be used by the calls in Ci.
It follows from the definition of a segment that path(vi, vi+1) is a segment satisfying
point 5.

The number of calls that are discarded by Test 2, while accepted in the optimal
solution, will be proved to be related to the number of segments of weight bigger than
2 ever created. We prove the following upper bound on the number of such segments.

Lemma 2.9. Consider a run of the algorithm on a sequence of calls σ. The
number of segments ever created, and which at some point in time have weight bigger
than 2, is at most 4C(σ).

Proof. Note that when a call is presented but does not become a candidate, there
is no change in the segments in the tree. Therefore, we consider events when a new
call becomes a candidate. To prove the lemma we give an upper bound on the number
of segments that at such event either are created with weight bigger than 2 or reach a
weight bigger than 2 (without changing their endpoints). We show that the number
of such segments is at most 4 per such event.

Let (s, t) be a call that becomes a candidate. If it does not intersect any previous
candidate, then no new segments of weight bigger than 2 are created. We therefore
assume that call (s, t) intersects at least one previous candidate. We distinguish
between two cases. The first one is when all the intersections of (s, t) with previous
candidates are either on path(lca(s, t), s) or on path(lca(s, t), t). The second case is
when there are such intersections on both path(lca(s, t), s) and path(lca(s, t), t).

We now consider the first case (without loss of generality assume that all intersec-
tions are on path(lca(s, t), s)). We use the sequence of nodes vi, 0 ≤ i ≤ �, guaranteed
by Lemma 2.8. A new segment of weight bigger than 2 can be created either by the
augmentation of the weight of edges of weight 2, or by the augmentation of the weight
of edges of weight already bigger than 2, but while creating new endpoints for the
segments (this may create more than one new segment).

If prior to (s, t) becoming a candidate there is a segment of weight bigger than 2
that includes (lca(s, t), p(lca(s, t)) and the edge e that leads from lca(s, t) towards s,
then two new segments of weight bigger than 2 are created with a new endpoint at
lca(s, t). One of these two segments is path(v0, v1). See Figure 2.2.

Further distinguish the case where v� is inside a segment from the case where v�
is not inside a segment.

If v� is inside a segment (see Figure 2.3), two new segments are created, both

96 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

lca(s,t)

p(lca(s,t))

s

t

Fig. 2.2. Two new segments are created with endpoint lca(s, t).

vl

s

lca(s,t)

p(lca(s,t))

t

Fig. 2.3. Vertex v� is inside a segment.

with an endpoint at v�. If the weight of the segment was already bigger than 2, then
two new segments of weight bigger than 2 are created. In this case all the segments
seg(vj−1, vj), 1 < j < �, are already of weight bigger than 2; their weight will increase,
but since their endpoints do not change there are no new segments here. If the weight
of the segment was 2, then only one segment of weight bigger than 2 is created (while
the other one is a segment of weight 2 with new endpoints). Whatever the weight of
this segment was, all the segments seg(vj−1, vj), 1 < j < �, have weight bigger than
2 (by Lemma 2.8); their weight will increase, but since their endpoints do not change
no new segments of weight bigger than 2 are created here. Altogether we get at most
four new segments of weight bigger than 2.

For the case where v� is not inside a segment (see Figure 2.4), observe that the
weights of the edges on path(v�−1, v�) are doubled, thus possibly creating one new

RANDOMIZED CALL CONTROL 97

p(lca(s,t))

lca(s,t)

s

l
v

t

Fig. 2.4. Vertex v� is not inside a segment.

segment of weight bigger than 2 (which is seg(v�−1, v�)), if the weight of this segment
was not bigger than 2 beforehand. Altogether we get for this case at most three new
segments of weight bigger than 2.

We note that a new segment of weight 2 may be created as seg(v�, s) if v� �= s.

Now consider the second case where (s, t) intersects previous candidates on both
path(lca(s, t), s) and path(lca(s, t), t). Consider the two edges e1, and e2, adjacent
to lca(s, t) and leading to s and t, respectively. Since by Claim 2.6 any previous
candidate call that intersects (s, t) also uses the edge between lca(s, t) and p(lca(s, t)),
it follows that there are two candidate calls p1 and p2 such that p1 uses e1 and
(lca(s, t), p(lca(s, t)), and p2 uses e2 and (lca(s, t), p(lca(s, t)). It follows that prior to
(s, t) becoming a candidate, (lca(s, t), p(lca(s, t)) and e1 (resp., e2) cannot be in the
same segment. We now use the sequence of nodes vi guaranteed by Lemma 2.8 for
each of path(lca(s, t), s) and path(lca(s, t), t). From the above argument it follows that
the two paths path(v0, v1) (on the two paths path(lca(s, t), s) and path(lca(s, t), t))
are segments. No new segment will be created with a low endpoint at lca(s, t) when
(s, t) becomes a candidate. We therefore now consider separately path(lca(s, t), s) and
path(lca(s, t), t). We consider in what follows path(lca(s, t), s). Analogous arguments
hold for path(lca(s, t), t).

As argued above, prior to (s, t) becoming a candidate, path(v0, v1) is a segment,
seg(v0, v1). When (s, t) becomes a candidate, the weight of this segment doubles.

If prior to (s, t) becoming a candidate the weight of seg(v0, v1) was already bigger
than 2, then there is no new segment at the top of path(lca(s, t), s). Using the same
arguments as in the case where all intersections are on path(lca(s, t), s) (and not also
on path(lca(s, t), t)) it follows that there are at most 1 or at most 2 new segments of
weight bigger than 2 on path(lca(s, t), s), depending on whether or not v� equals s.

If prior to (s, t) becoming a candidate the weight of seg(v0, v1) was 2, then when
the (s, t) becomes a candidate this segment becomes a new segment with weight bigger

98 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

than 2. However, it also follows that v1 must equal v�, as there is only one previous
candidate on path(lca(s, t), s). No additional new segment of weight bigger than 2
will be created on path(lca(s, t), s). (Note that a new segment of weight 2 may be
created if v� �= s.)

We can conclude that on any of path(lca(s, t), s) and path(lca(s, t), t) at most two
new segments of weight bigger than 2 can be created. Altogether at most four new
segments of weight bigger than 2 are created when (s, t) becomes a candidate.

We now prove that the number of calls not discarded (i.e., the number of calls
that become candidates) is a good fraction of size of the optimal solution.

Lemma 2.10. For any sequence of calls σ, the number of candidate calls C(σ)
has the property that C(σ) ≥ OPT (σ)

6 .

Proof. Since σ = C ∪ C1 ∪ C2, we prove that the optimal solution accepts at most
2C calls from C ∪ C1 and at most 4C calls from C2.

First consider the calls from C ∪ C1 accepted in the optimal solution. Any call of
C ∪ C1 includes at least one blocked edge. Since there are at most 2C blocked edges
in the tree, any solution can accept at most 2C calls from C ∪ C1.

We now consider the calls from C2 accepted in the optimal solution. Consider
a call (s, t) ∈ C2. It includes, when presented, at least 2D

w edges of some segment
seg(u′, v′) of weight w > 2 either on path(lca(s, t), s) or on path(lca(s, t), t). (Observe
that no call is discarded because of a segment of weight 2 since path(lca(s, t), s) and
path(lca(s, t), t)) are of size at most D − 1.) For the sake of analysis, we assign call
(s, t) to a single such segment, seg(u′, v′).

We now show that the length of seg(u′, v′) is less than 4D
w . By definition, the

edges of segment seg(u′, v′) are included in the intersection of a set C′ of candidate
calls. Let (s′, t′) be the call of C′ presented last, and let C′′ = C′ \ {(s′, t′)}. Set C′′

defines a segment seg(u′′, v′′) at the time call (s′, t′) is presented, and this segment
includes segment seg(u′, v′). To see that, observe that path(u′, v′) is included in the
intersection of the calls in C′′ and that at the above time no other candidate includes
any edge of path(u′, v′). We know that the weight of this segment at the time call
(s′, t′) is presented is w

2 (since when (s′, t′) becomes a candidate it doubles the weights
to w). Since call (s′, t′) becomes a candidate it passes Test 2, and we can conclude that
its intersection with seg(u′′, v′′), on either path(lca(s′, t′), s′) or path(lca(s′, t′), t′), is
of length less than 4D

w . However, by Claim 2.7, either u′ is an ancestor of v′ or vice
versa, as w > 2, and path(u′, v′) is included in call (s′, t′), as seg(u′, v′) is defined
by C′. Therefore all of path(u′, v′) is included in this intersection. If follows that the
length of segment seg(u′, v′) is less than 4D

w .

It now follows that if we consider the calls of the optimal solution, at most one
call can be assigned to each segment of weight bigger than 2 in the way we described.
This is because any assigned call uses more than half the edges of the segment it is
assigned to, and thus any two would intersect. By Lemma 2.9, at most 4C segments
of weight bigger than 2 are ever created while the algorithm processes the sequence.
We conclude that at most 4C calls of C2 can be in the optimal solution.

Lemma 2.11. Every candidate call intersects at most �log 2D� previous candi-
dates.

Proof. By Claim 2.6, for any candidate (s, t), all the previous intersecting candi-
dates include edge (lca(s, t), p(lca(s, t))). Their number is at most �log 2D�, since once
an edge is included in �log 2D� candidates, it has weight of at least 2D.
No call can become a candidate if it includes an edge of weight 2D, as it will fail
Test 2.

RANDOMIZED CALL CONTROL 99

Proof of Theorem 2.1. The first part of the theorem is proved in Lemma 2.10.
For the second part, by Lemma 2.11 every candidate call of C(σ) intersects at most
�log 2D� previous candidates. The number of intersecting pairs is thus at most C(σ) ·
�log 2D�.

2.3. An alternative deterministic filter. In this section we describe an al-
ternative design of the deterministic filter at the cost of having a somewhat worse
performance. This filter uses the AAP (deterministic) call control algorithm [2], orig-
inally designed for general networks of high capacity. The test runs the AAP algorithm
on the tree, assuming link capacities of log 4D. A call that is accepted by the AAP
algorithm becomes a candidate, while a call that is rejected by AAP is also rejected
by the filter. This filter relies on the following property: if the capacity is increased in
that way, then the set of calls accepted by AAP is a constant fraction of the optimal
set accepted by an adversary that has only capacity 1. (A similar result is also de-
rived in [18] if the capacity is increased by a factor of Ω(logn).) On the other hand,
since the capacity of each link is bounded, the number of intersections between the
candidate calls is small.

In Appendix A we give for completeness the AAP algorithm for this specific
setting and prove the following claim.

Theorem 2.12. If for every e ∈ E the AAP algorithm has capacity u(e) = log 4D
while the adversary has capacity u(e) = 1, then the AAP algorithm has competitive
ratio 5.

Based on the above theorem we can now give the properties of the filter.

Lemma 2.13. The above filter based on the AAP algorithm, applied to trees of
diameter D, achieves the following for any sequence σ: (1) C(σ) ≥ OPT (σ)/5; (2)
The number of pairs of calls in C(σ) that intersect is at most C(σ) · 2�log 2D�.

Proof. The first part of the claim follows from Theorem 2.12. For the second
part of the claim we consider an intersection graph of paths on a tree.5 Our claim
follows from the fact that if each edge in the tree is included in at most g of these
paths, then the intersection graph is a (2(g − 1))-inductive graph (see [6]).6 Since
the capacity used by the AAP algorithm is log 4D, any edge is used by at most
log 4D calls. Therefore the intersection graph of the candidate calls is a 2(log 4D−1)-
inductive graph, which implies that the total number of edges in this graph is at most
C(σ) · 2(log 4D − 1) = C(σ) · 2 log 2D. This is a bound on the number of pairs of
candidates that intersect.

The randomized selection procedure used in conjunction with this filter is the
same as for our first filter. The results stated in Theorem 2.2 are proved in a similar
way with necessary modifications in the constants.

3. A bound on the probability to achieve a “good” solution. We have
presented O(logD)-competitive algorithms for call admission on trees that for any
sequence σ, with OPT (σ) = Ω(logD), achieve any constant fraction of the expected
benefit with at least constant probability. The probability tends to some constant
as OPT (σ) tends to infinity. The obvious question is then if the rate of convergence
and the limit probability can be improved for O(logD)-competitive algorithms and
in particular if the limit can be 1.

5The intersection graph has a node for each one of the paths. There is an edge between two
nodes in the intersection graph if and only if the corresponding two paths intersect.

6A d-inductive graph is a graph G = (V,E) for which there is an ordering of the vertices such
that for any i, |{j : i < j, (i, j) ∈ E}| ≤ d.

100 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

In this section we give a partial answer to this question. We show that for any
algorithm with an O(logD)-competitive ratio, there is a sequence σ with OPT (σ) =
Θ(D1−c), for any 0 < c < 1/2, for which with probability Ω(c), the on-line benefit is
o(OPT (σ)/ logD) (in fact the on-line benefit is only a n−ε fraction of the expectation
for some constant ε > 0).

We give our lower bound on a line network of n + 1 vertices, with n = 2s, for
some s. Observe that on such a line network we have D = n. Given a randomized
k log n-competitive algorithm for the line, we present a sequence of requests formed by
l = �α · log n�+1 (α < 1/2) phases, plus a final extra phase. At phase i, 0 ≤ i ≤ l, 2i

pairwise disjoint calls of size n
2i are presented. These are calls ((j− 1) n2i +1, j n

2i +1),
1 ≤ j ≤ 2i. Thus, during phase l, 2l calls of size n/2l are presented. We will prove that
for any k log n-competitive algorithm, at least one of these calls has the property that
with probability at least α

4k all its edges are occupied by the time phase l ends. Then,
we present n/2l disjoint calls of length 1 on these edges. The optimal solution is of
size n/2l ≥ n/2α logn = n1−α, while with probability at least α

4k the on-line algorithm
can achieve a benefit of at most 2l ≤ 2α logn = nα. We get that the algorithm cannot
be close (by any constant fraction) to its expectation with probability 1 − o(1) (as a
function of D), even when the size of the optimal solution is Ω(n1−c).

We now turn to prove our claim. Let pim be the absolute probability that the mth
call of phase i is accepted. We denote by P l

m the sum of the absolute probabilities
of acceptance of all the calls that include call m of level l, plus the probability that
this call itself is accepted. We will show that for any k log n-competitive randomized

algorithm,
∑2l

m=1 P
l
m ≥ 2l · α

4k . Therefore, there is at least one call m′ such that
P l
m′ ≥ α

4k , from which our claim follows.
We have

2l∑
m=1

P l
m =

l∑
i=0

2l−i

 2i∑
m=1

pim

≥
l∑

i=0

2l
1

2

l∑
j=i

2−j

 2i∑
m=1

pim

= 2l−1
l∑

j=0

2−j
j∑

i=0

 2i∑
m=1

pim

 .

The first equation follows since the absolute probability pim of accepting call m of
phase i is summed up for the 2l−i included calls of level l. Now, observe that∑j

i=0(
∑2i

m=1 p
i
m) is the algorithm’s expected benefit after the calls of phase j have

been presented.

We continue with 2−j
∑j

i=0(
∑2i

m=1 p
i
m) ≥ 1

k log n , since the algorithm is k log n-

competitive, and the optimal solution can accept 2j calls after phase j. We get

2l∑
m=1

P l
m ≥ 2l−1 l + 1

k log n
> 2l · α

4k

(for large enough n), which proves our claim. We can conclude the following theorem.
Theorem 3.1. For any k log n-competitive algorithm for call admission on the

line of n nodes, and any constant probability p (p < 1
8k), there is a sequence σ with

RANDOMIZED CALL CONTROL 101

OPT (σ) = n1−O(p) such that with probability at least p, the algorithm does not achieve
any constant fraction of the expected benefit.

4. Further extensions for trees. In this section we show that a better com-
petitive ratio can be obtained at the expense of a larger deviation. We obtain a
competitive ratio of 6�log 4D� which improves upon the previously known bound of
48 log 2D [4]. We also consider extensions of our algorithms to trees with edges of any
uniform capacity and point out that any algorithm for call admission on trees can be
converted to apply to uniform-capacity trees with almost the same competitive ratio.

First, we give an algorithm with a competitive ratio of 6�log 4D�. This is done
at the expense of a larger deviation from the expectation. To obtain the improved
competitive ratio we use our general framework, with the first version of the deter-
ministic filter (section 2.2), but a different randomized selection procedure. We now
use a variation of the “classify and randomly select” technique [3]: we use a set of
�log 4D� colors and define an arbitrary order on them. We first choose uniformly at
random one color among these colors, and we denote it A. When a new candidate
call is presented to the randomized selection procedure, we assign to it the first color
(according to the defined order) that was not assigned to any of the previous candi-
dates that intersect the present one (i.e., we color the candidate calls with a proper
coloring in their intersection graph). By Lemma 2.11, �log 4D� colors are sufficient,
since each candidate intersects at most �log 2D� previous candidates. The algorithm
will now accept those candidates that are assigned the color A. Since the above col-
oring procedure classifies the candidate calls into �log 4D� disjoint classes, each class
fully acceptable, we obtain the following theorem.

Theorem 4.1. There exists a 6�log 4D�-competitive randomized algorithm for
call admission on trees of diameter D.

Proof. We partition C into a set of �log 4D� disjoint classes. Class Ci, i =
1, . . . , �log 4D�, contains all the candidates which are assigned color i. All the candi-
dates of a class can be accepted together in a solution since they are nonintersecting.
The algorithm accepts a set of calls A that corresponds to the randomly selected class.
The expected size of the on-line solution is E(A) ≥ 1

�log 4D�
∑

i=1 Ci = 1
�log 4D�C ≥

OPT
6�log 4D� , since, by Lemma 2.10, C ≥ OPT

6 .

We also point out that our algorithms also apply to trees with any uniform ca-
pacity. In fact, any c-competitive algorithm for call admission on trees of capacity 1

can be converted into a 2 e1/c

e1/c−1
≤ (2(c+1))-competitive algorithm for call admission

on trees with arbitrary uniform capacity. Given any c-competitive algorithm for the
capacity-1 case, we run a “first fit”-based technique [1] that uses k copies of the orig-
inal algorithm on k copies of the tree but each with capacity 1. If the call is accepted
by any of the algorithms we accept it into the actual k-capacity tree. Using [1, 9]

we get for this case that we have a e1/c

e1/c−1
-competitive algorithm with respect to an

adversary that uses k distinct, capacity-1 trees. Since this adversary is only a 1/2
fraction away from the original adversary that has a single tree of uniform capacity k

(cf. [4]), we obtain a 2 e1/c

e1/c−1
≤ (2(c+ 1))-competitive algorithm for the problem.

5. Routing on meshes with high probability. In this section we propose a
randomized algorithm for the on-line maximum edge-disjoint paths problem on meshes
that has a logarithmic competitive ratio. The algorithm achieves the best possible
competitive ratio up to a constant multiplicative factor and a benefit close to the
expectation with high probability on any sequence of a large class of input instances.

102 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

Kleinberg and Tardos [16] presented the first O(log n)-competitive algorithm (de-
noted KT in the following) for the on-line maximum edge-disjoint paths problem on
meshes. They partition the input sequence into two classes: short calls and long calls.
Define the distance between two vertices of the mesh as the number of edges on a
shortest path connecting the two vertices. According to the partitioning of KT, every
call with endpoints at distance bigger than a given value d = Θ(logn) is a long call.
KT decides with equal probability to accept only long calls or only short calls. KT
has thus the drawback of obtaining benefit 0 with probability at least 1/2 on any
input sequence containing only calls with endpoints at distance bigger than d (or only
calls with endpoints at distance at most d).

We propose an algorithm with a logarithmic competitive ratio that achieves a
constant fraction of its expected benefit with probability tending to 1 as the size of
the optimal solution grows. Our algorithm for meshes is composed of a randomized
stage followed by a deterministic stage. The first stage of the algorithm is a randomized
filter that selects a subset C of candidate calls out of the input sequence σ. Calls of
σ \ C are discarded to make space for the routing of candidate calls. The calls in C
form a new input sequence for the second stage of the algorithm, which is a completely
deterministic procedure. The subset of C accepted by the second stage is the set of
calls finally accepted by the algorithm. Our algorithm uses a routing strategy different
from that of KT. Some of its ideas are borrowed from the algorithm of Bartal and
Leonardi [6] for on-line path coloring on meshes [6] .

Let us denote by ON(T) and OPT (T) the subsets, of some sequence T , that are
accepted (out of T) by our on-line algorithm and by the optimal solution, respectively,
and their cardinalities.

We prove (see Lemma 5.2) that E(OPT (C)) is at least a constant fraction of
OPT (σ) and that OPT (C) is within a constant fraction of E(OPT (C)) with probabil-
ity tending to 1 as the optimal solution grows. We present the deterministic procedure
in section 5.2. We denote by OND(T) the set of calls accepted by the deterministic
procedure, out of some sequence T , and its cardinality. We prove (see Lemma 5.8)
that for any sequence of candidates C, OPT (C) = O(log n)OND(C). Combining the
two statements (for the randomized filter and for the deterministic procedure), we
conclude with the following theorem.

Theorem 5.1. There exists an O(log n)-competitive algorithm for call control
on the n × n mesh such that for any δ ∈ (0, 1] and any sequence σ, Pr[ON(σ) ≥
(1− δ)E(ON(σ))] ≥ 1− 2 exp(− δ2OPT (σ)

O(log4 n)
).

Our algorithm thus has asymptotically optimal O(log n)-competitive ratio and it

is close to the expectation with probability tending to 1 as OPT (σ)
log4 n

tends to infinity.

5.1. The randomized filter. The n×n two dimensional mesh G is partitioned
into a set of disjoint squares. Let B = �log n�. We assume n large enough such that
B ≥ 16. Let L = �γ log n� for γ = 13. Let s = �nL�, and let s1 = n mod L = n− s ·L.
We partition the mesh into s× s submeshes of logarithmic size. The partition of the
mesh is obtained by segmenting each of its sides into s − s1 contiguous segments of
size L and then s1 segments of size L+1. Note that with the above assumption on B
this segmentation is always attainable, and that s1 can be 0, in which case each side
is segmented into s segments of size L. Every submesh is called a square, even if the
size of its two sides differs by 1.

The first ring in a square S consists of all nodes of S that either are incident to
a node outside of S or are on the border of the mesh. Recursively, the ith ring of S

RANDOMIZED CALL CONTROL 103

for i > 1 consists of all nodes of S that are incident to a node of ring i− 1 of S. Each
ring, except the innermost, forms a rectangle of nodes. The first ring of a square is
also called the border of the square. Denote by Sv the square containing vertex v.

In any square S we define three regions S1, S2, and S3. Region S1 consists of
rings 1 to 2B, region S2 consists of rings 2B + 1 to 4B, and region S3 is formed by
rings 4B + 1 to 6B. The remaining part of S is called the central region of S (see
Figure 5.1). The central region is a rectangle with sides of size at least B.

S

S

S

1

2

3

Fig. 5.1. The routing of a long call.

The randomized filter makes the following random choice before starting the pro-
cessing of the sequence.

For every square S choose one of the regions S1, S2, S3 with equal probability.
The region that has been chosen for square S is called the selected region of S.
Every call (s, t) ∈ σ, when presented, is submitted to the following test:
Add call (s, t) to C if s is not in the selected region of Ss and t is not in the

selected region of St, otherwise discard (s, t).
As a result of this filtering procedure, no call (s, t) of C has an endpoint in the

selected region of a square. The selected region will be used later to route calls through
the square without blocking calls with endpoints inside the square.

Lemma 5.2. For any input sequence σ, E(OPT (C)) ≥ 1
3OPT (σ). For any

constant δ ∈ (0, 1], for any sequence σ, Pr[OPT (C) ≥ (1 − δ)E(OPT (C))] ≥ 1 −
2 exp(− OPT (σ)δ2

82(
γ logn�)4).
Proof. For the first part of the lemma we prove that every call (s, t) of OPT (σ) is

part of set C with probability at least 1/3. A call (s, t) becomes a candidate if both s
and t are not in the selected region of Ss and St. We distinguish between (i) calls with
both endpoints in the same square and (ii) calls with endpoints in different squares.

(i) Ss = St. If s and t are in the same region of Ss, then this region is not selected
with probability 2/3. If s and t are in different regions, the probability that the region
not containing s and t is selected is 1/3. The claim then follows.

(ii) Ss �= St. Vertex s (resp., t) is outside the selected region of Ss (resp., St)
with probability 2/3. The probability that both s and t are outside a selected region
is then at least 4/9. The first part of the claim is thus proved.

For the second part of the claim we use the “independent bounded differences
inequality” in the formulation proposed by Maurey.

Lemma 5.3 (see [10]). Let X1, . . . , Xm be independent random variables with
Xk taking values in a set Ak for each k. Suppose that the (measurable) function
f :
∏m

k=1 Ak → � satisfies |f(x) − f(x′)| ≤ ck, whenever the vectors x and x′ differ
only in the kth coordinate, for some constant ck. Let Y be the random variable
f(X1, . . . , Xm). Then, for any t > 0,

Pr[|Y − E(Y)| ≥ t] ≤ 2 exp

(−2t2∑
k c

2
k

)
.

104 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

In our problem we consider m = s2 = (�nL�)2 independent random variables
X1, . . . , Xm to indicate the selected region for every square. Every random variable
assumes one of three values with equal probability. For the function f(x), we will
use the function |OPT (σ)∩C(x)|, where x ranges over all the possible assignments of
x = (X1, . . . , Xm). Note that |OPT (C(x))| ≥ |OPT (σ)∩C(x)|. A different assignment
of variable Xk results in a maximum absolute variation ck for f(x), where ck is equal
to the number of calls of OPT (σ) with an endpoint in the kth square. For a square
that does not contain any endpoint of a call of the optimal solution, we have ck = 0.

Let K be the set of squares that contain the endpoint of at least one call of the
optimal solution. We also denote by K the cardinality of the set K. Every square
contains at most 2(L+1)2 edges. This is clearly a bound on the number of calls with
both endpoints in the same square that can be accepted in a solution. The number of
calls with only one endpoint in a square that can be accepted in a solution is bounded
by the the number of edges that have one endpoint in the square and one endpoint
outside of it, i.e., 4(L+ 1). Altogether, ck ≤ 3(L+ 1)2 (using that L is large enough)
for any square k ∈ K.

We have µ = Ex(OPT (σ) ∩ C(x)) ≥ 1
3OPT (σ), and clearly OPT (σ) ≥ K/2.

From the bounded differences inequality of Lemma 5.3 it follows that

Pr[|OPT (σ) ∩ C(x)| < δµ] < 2 exp

(−2(δµ)2∑
k c

2
k

)

≤ 2 exp

(
−2(δOPT (σ)

3)2

K · 9(L+ 1)4

)
≤ 2 exp

(−δ2OPT (σ)

81(L+ 1)4

)

≤ 2 exp

(−δ2OPT (σ)

82L4

)
≤ 2 exp

(−δ2OPT (σ)

82(�γ log n�)4
)
,

from which the claim follows.

5.2. The deterministic procedure for meshes. The deterministic procedure
receives as input the set of candidate calls C accepted by the randomized filter in the
order they appear in the input sequence σ.

We follow KT and partition the set of calls into the set of long and the set of
short calls. A call (s, t) is a short call if both s and t are in the same square and a
long call if s and t are in different squares. Set C is partitioned into the set of long
calls L = {(s, t) ∈ C : Ss �= St} and the set of short calls S = {(s, t) ∈ C : Ss = St}.
Long and short calls are dealt with differently by the algorithm. However, as opposed
to KT, we will accept both long calls and short calls at the same time.

The selected region of every square is dedicated to the routing of long calls through
the square. For every square S, we number the columns from left to right and the
rows from top to bottom. The routes assigned to long calls will traverse the border
between two adjacent squares only on columns or rows in the interval 6B+1, . . . , 7B.
A crossbar row (column) of square S is defined as a path on a row (column) in the
interval 6B +1, . . . , 7B connecting the central region of S to the closest vertex of the
border of S. For every square S and two rings a and b, with ring a of index higher
than ring b, define a straight-line extension of ring a as a path from a corner of ring
a to ring b that does not include edges of a. Observe that the straight-line extensions
starting from two distinct rings of a square are edge-disjoint.

We say that a ring, a crossbar row or column, or a straight-line extension is
assigned to an accepted call if they contain at least one edge of the path assigned to

RANDOMIZED CALL CONTROL 105

the accepted call.
We first describe the algorithm for long calls and then the algorithm for short

calls.
Long calls.
Every call (s, t) of L is first submitted to the following test:
1. If a short or a long call with endpoint in Ss or St has been previously accepted,

then discard (s, t). Otherwise add (s, t) to set L′.
Calls of L′ are dealt with using the idea of KT to build a simulated network

G′, with links of higher capacity, and run AAP on this network. A vertex of G′ is
associated with every square of the original mesh. Two vertices of G′ are connected by
an edge if and only if there is at least one edge in the original mesh that connects two
nodes, each on the border of one of the corresponding squares (i.e., the two squares
are adjacent in the mesh).

Every call (s, t) of L′ is transformed into a call between the two vertices of G′

associated with Ss and St and then submitted to the AAP algorithm. If AAP accepts
(s, t), then (s, t) is added to OND(C), the set of calls accepted by the algorithm. Calls
not accepted by AAP are discarded.

We use the AAP algorithm with the parameter ε = 6/7. Observe that one can use
AAP with this value of ε, since the capacity B of the edges in the simulated network
is high enough. To see that, recall that we assumed B = �log n� ≥ 16. Thus (see also
Appendix A)

ε logD + 1 + ε ≤ 6

7
log n+ 1 +

6

7
≤ 6

7
log n+ 2 ≤ 6

7
(B + 1) +

1

8
B ≤ B .

If AAP accepts call (s, t) it also returns a route in G′ that has a straightforward
interpretation as a sequence of squares S1, . . . , Sp in the original mesh with S1 = Ss
and Sp = St. Our algorithm will assign call (s, t) to a path (i) from s to the border
between S1 and S2, (ii) from the border between Si−1 and Si to the border between
Si and Si+1, i = 2, . . . , p− 1, and (iii) from the border between Sp−1 and Sp to t. In
the following description we give the details of this route assignment.

(i) From s to the border between S1 and S2.
Without loss of generality assume that the border between S1 and S2 is on
a column. We consider two cases: (a) s is outside the central area; (b) s is
inside the central area.

(a) The call is routed from s through the ring containing s until it meets
an unassigned crossbar row leading to the border between S1 and S2; this
crossbar row is followed until the border between S1 and S2.

(b) The call is routed from s through the ring containing s until a corner
of the ring is reached, where a straight-line extension is followed until ring
6B. From there the path continues as in point (a).

(ii) From the border between Si−1 and Si to the border between Si and Si+1.
Without loss of generality, assume that the border between Si−1 and Si and
the border between Si and Si+1 are on columns of G. The path enters the
border between Si−1 and Si on a crossbar row that is followed until an unas-
signed ring of the selected region. The path is routed through the ring of
the selected region until an unassigned crossbar row leading to the border
between Si and Si+1 is met. This crossbar row is followed until the border
between Si and Si+1.

(iii) From the border between Sp−1 and Sp to t. This case is equal to case (i).

106 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

Fig. 5.2. The routing of short calls.

Figure 5.1 shows the routing of a long call with an endpoint in the first region
and an endpoint in the third region.

Short calls.

A short call (s, t) is accepted on the basis of the following test:

1. If the ring containing s or the ring containing t has been previously assigned,
then discard (s, t).

2. If either s or t, but not both, is in the central area, the other vertex is in
region S1 or S2, but all rings in the range from 4B + 1 to 6B are already
assigned, then discard (s, t).

3. Otherwise, add (s, t) to OND(C).
In the following we describe the route assigned to an accepted call (s, t).

If s and t are on the same ring, we route (s, t) on a path contained in the ring of
s and t. Otherwise, we assume without loss of generality that the ring of s is internal
to the ring of t and distinguish between two cases:

1. Both s and t are inside or are both outside the central area. We route (s, t)
through the ring of s until a corner of the ring. There, we continue on a
straight-line extension until the ring of t, which is then followed until t itself.

2. Either s or t, but not both, is in the central area. One of the rings from
4B + 1 to 6B must be unassigned and will be assigned to (s, t) (possibly the
ring containing t). A straight-line extension from a corner of the ring of s to an
unassigned ring of S3 not intersecting the crossbar row or column assigned to
the single long call with endpoint in Ss is assigned to (s, t). The path follows
the ring of s until the corner of the selected straight-line extension that is
followed until the assigned ring of S3. There, if t is in S3, we follow the ring
until t, otherwise we continue as at point 1.

Figure 5.2 shows the routing of short calls.

Proof of correctness. We prove that the algorithm described above routes accepted
calls on edge-disjoint paths. To that end, we prove the following lemmas.

Lemma 5.4. The maximum number of calls routed between two adjacent squares
is B.

Proof. Each edge in the simulated network has capacity B and AAP does not
violate the capacity constraints.

Lemma 5.5. Let S be a square. There are at most 2B calls routed through square
S.

Proof. Every call routed through a square consumes two units of bandwidth
on the edges incident to the vertex of G′ associated with the square. The overall

RANDOMIZED CALL CONTROL 107

bandwidth on the edges incident to a vertex of G′ is 4B; thus at most 2B calls are
routed through a square.

Lemma 5.6. The following claims hold at any time during the execution of the
algorithm:

1. Every crossbar row or column is assigned to at most a single call.
2. Every ring is assigned to at most a single call.
3. Every straight-line extension is assigned to at most a single call.

Proof. Clearly the claims hold before any call is accepted. We now assume that
the claims hold before call (s, t) is accepted and prove that they still hold after call
(s, t) is accepted.

1. Assume (s, t) is accepted on a path crossing the border between S and S′.
Without loss of generality assume that the border is on a column. By Lemma
5.4 at most B− 1 (long) calls have been previously routed between S and S′.
We conclude that there is an unassigned crossbar row of S and an unassigned
crossbar row of S′ leading to the border between S and S′, both contained
in the same row, that can be assigned to (s, t).

2. Two cases: (i) (s, t) is a long call; (ii) (s, t) is a short call. (i) We prove that
the rings assigned to call (s, t) are not assigned to any other call. Call (s, t)
is accepted by AAP on a path crossing a sequence of squares S1, . . . , Sp, with
S1 = Ss and Sp = St. A ring for every square Si is assigned to (s, t). We first
consider squares Ss and St. By step 1 of the algorithm for long calls, no long
or short call is previously accepted in Ss and in St. Since vertices s and t are
outside the selected regions of Ss and of St, the rings containing s and t are
unassigned when (s, t) is accepted. Call (s, t) is also assigned to a ring of the
selected region in every square Si, i = 2, . . . , p − 1. By Lemma 5.5, at most
2B−1 rings of the selected region of a square Si are previously assigned when
(s, t) is accepted. A ring of the selected region of Si is then still available to
be assigned to (s, t). (ii) By steps 1 and 2 of the routing algorithm for short
calls, if (s, t) is accepted, it is assigned to at most three rings which were not
previously assigned to any other call.

3. All the straight-line extensions in a square are edge-disjoint. A straight-line
extension is assigned to a call if it starts from a ring that is also assigned to
that call. By point 2 of the claim, every ring is assigned to at most a single
call. Therefore, every straight-line extension is assigned to at most a single
call.

We can now prove the main lemma.

Lemma 5.7. Every pair of accepted calls is routed on two edge-disjoint paths.

Proof. By Lemma 5.6, every crossbar row or column, ring, and straight-line
extension is assigned to at most a single call. Rings and straight-line extensions
are edge-disjoint, as are rings and crossbar rows and columns. Only straight-line
extensions from the central region of a square may intersect crossbar rows or columns.
We prove that the edges common to a straight-line extension from a ring of the central
region and to a crossbar row or column are not assigned to more than one call.

Consider square S. We first exclude intersections between calls with an endpoint
in S and calls that are routed through S. By point (i)b of the routing algorithm
for long calls and by step 2 of the routing algorithm for short calls, a straight-line
extension from a ring of the central region is followed by the route of a call at most
until a ring of S3. In this case the selected region in S is either S1 or S2. Therefore,
by point (ii) of the routing algorithm for long calls, a call routed through S includes

108 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

only edges of S1 and S2 that belong to a crossbar row or column. Therefore, there is
no intersection with calls routed through S.

We now consider a long call (s, t) with an endpoint, say, s, in S and a call (s′, t′)
assigned to a straight-line extension from a ring of the central region. By step 1 of the
algorithm for long calls, (s′, t′) must be a short call accepted after (s, t), (s, t) being
the single long call with endpoint in S that is accepted. There could be a potential
intersection only if (s′, t′) is in the central region, and (s, t) has an endpoint in S3.
There are four possible straight-line extensions that connect the ring of s′ with a ring
of S3. By step 2 of the algorithm for short calls, (s′, t′) is assigned to a straight-line
extension that does not overlap with the crossbar row or column assigned to (s, t).
No edge of S3 on the chosen straight-line extension is thus assigned to more than one
call.

The analysis. We conclude the proof that the algorithm is O(log n)-competitive
by showing the following lemma.

Lemma 5.8. For any set of candidate calls C, OPT (C) = O(log n)OND(C).
Proof. We will prove the following lemmas:
1. OPT (L \ L′) = O(log n) OND(C) (Lemma 5.9).
2. OPT (L′) = O(log n) OND(L′) (Lemma 5.10).
3. OPT (S) = O(log n) OND(C) (Lemma 5.11).
The proof then easily follows:

OPT (C) = OPT (L ∪ S) ≤ OPT (L \ L′) +OPT (L′) +OPT (S)

= O(log n) OND(C) .
Lemma 5.9. OPT (L \ L′) = O(log n) OND(C).
Proof. A call (s, t) of L is discarded if a long or a short call with an endpoint in

Ss or in St has been previously added to OND(C). At most 4(L+1) long calls with an
endpoint in a given square can be accepted by the optimal solution, since the border
of S is formed by at most 4(L+1) vertices (and edges). Then, for every call accepted
in OND(C), at most 8(L+ 1) calls of L \ L′ are accepted by the optimal solution. As
L = �γ log n� the claim follows.

Lemma 5.10. OPT (L′) = O(log n) OND(L′).
Proof. Every call of L′ is submitted to the AAP algorithm on G′ with edges of

bandwidth B = �log n�. Note that this capacity is large enough to allow AAP to
work correctly if we use the AAP algorithm with ε = 6/7 (and using the assumption
that B ≥ 16). The benefit OPT (L′), obtained by an optimal solution on the set
L′, is bounded by the benefit obtained by an optimal algorithm on G′ with edges of
bandwidth L+1, which is the maximum number of calls that can be routed between
two adjacent squares. The AAP algorithm is still O(log n)-competitive even if the
bandwidth used by the on-line algorithm (AAP) on the edges is smaller by a constant
multiplicative factor than the bandwidth used by the off-line algorithm (see [2, 16];
for completeness this is also proved in the appendix). In our case this constant factor
is at most 14. The claim then follows.

Lemma 5.11. OPT (S) = O(log n) OND(C).
Proof. Let us restrict our attention to a single square. Let S1 and S2 be the set of

calls discarded at steps 1 and 2 of the algorithm for short calls. We have OPT (S) ≤
OPT (S1) + OPT (S2) + OND(S). The proof of the lemma derives from the two
following statements: (i) OPT (S1) = O(log n) OND(C); (ii) OPT (S2) ≤ 8 OND(C).

(i) For every accepted call, at most three rings of a square are assigned by the
algorithm to that call. The number of edges incident to a ring is at most 4(L+1). This

RANDOMIZED CALL CONTROL 109

is a bound on the number of calls with an endpoint on a ring that can be accepted in
an optimal solution. Therefore, the number of calls of OPT (S) that are discarded at
step 1 of the algorithm for short calls, per each call in OND(C), is at most 12(L+1).
As L = �γ log n�, this proves the first statement.

(ii) Short calls with an endpoint in the central region and an endpoint outside the
central region are discarded at step 2 of the algorithm if all the rings of S3 outside
the central region are assigned. At most two rings of S3 are assigned to an accepted
call. If a short call is discarded at step 2, we thus have the evidence that B calls with
an endpoint in S have already been accepted. For the sake of the proof we charge,
for every accepted long call, the value of 1/2 to S and the value of 1/2 to the square
containing its other endpoint. A square is therefore already charged with at least the
value of B/2 if a short call of the square is discarded at step 2. The number of short
calls of OPT (S2) with endpoints in S is bounded by 4B, as this is the number of
vertices on the border of the central region. The ratio between the number of calls of
S2 with endpoints in S that belong to OPT (S2), and the number of calls of OND(C)
charged to S, is thus at most 8. This proves the second statement.

Appendix A. The AAP algorithm. For completeness we describe a restricted
version of the AAP algorithm. We consider the case where all calls are of infinite
duration, request bandwidth of 1, and are of uniform benefit that without loss of
generality we assume equals to D, the length of the longest simple path in the network.
Let u(e), for e ∈ E, be the capacity of edge e and assume that for all e ∈ E,

u(e) ≥ ε logD + 1 + ε for some 0 < ε ≤ 1.(A.1)

Let bj(e) be the number of calls routed trough edge e by AAP among the first j
presented calls. Define the relative load of edge e, just after call j has been processed,

to be λj(e) =
bj(e)
u(e) . Define the cost of edge e just after call j has been processed to

be cj(e) = u(e)[µλj(e) − 1], where µ = 21+1/εD. A request (sj , tj) is accepted to path
Pj if

∑
e∈Pj)

1
u(e) · cj−1(e) ≤ D.

The above algorithm has competitive ratio O(21/ε/ε+21/ε logD). We give below
a sketch of the proof. The proof follows the proof that appears in [8].

Theorem A.1. The above AAP algorithm has competitive ratio 21+1/ε logµ+1.

Proof. Let σ = σ1, σ2, . . . , σn, be the sequence of requests. Let A be the set of
indices of requests that are accepted by AAP and let A′ be the set of indices of requests
that are rejected by AAP but are accepted by the adversary. Let C =

∑
e∈E cn(e).

Let Q(σ) denote the benefit obtained by algorithm AAP on sequence σ. We prove
the following two claims that yield the desired result.

1. C ≤ (21+1/ε logµ) · |A| ·D.
2. |A′| ·D ≤ C.

The result follows from the above two inequalities since Q(σ) = |A| · D, and
OPT (σ) ≤ Q(σ) + |A′| ·D.

The proof of inequality 1 can be found in [8]. We repeat here the proof of in-
equality 2 since we slightly modify it below to give the corollaries we need.

For a call σj that is accepted by the off-line algorithm let P ∗
j be the path that is

used by the off-line algorithm to accept this call. For any j ∈ A′

D < min
Pj

∑
e∈Pj

1

u(e)
cj−1(e) ≤

∑
e∈P∗

j

1

u(e)
cj−1(e) .

110 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

We get

|A′| ·D <
∑
j∈A′

∑
e∈P∗

j

1

u(e)
cj−1(e)

≤
∑
j∈A′

∑
e∈P∗

j

1

u(e)
cn(e)

=
∑
e

cn(e)
∑

j∈A′:e∈P∗
j

1

u(e)

≤
∑
e

cn(e)

= C.

The last inequality follows since the capacity of the adversary on any edge e is
u(e), that is, it can route at most u(e) calls though edge e.

We now give two corollaries of the above theorem.

Corollary A.2. If for all e ∈ E, u(e) satisfied condition A.1, and the off-line
algorithm has capacity c · u(e) for each edge e, for some constant c, then AAP is
(1 + c(21+1/ε logµ))-competitive.

Proof. We slightly modify the above proof for inequality 2. Since for each e ∈ E
the capacity available to the off-line algorithm is c · u(e), then the last inequality in
the proof would yield

|A′| ·D <
∑
e

cn(e) · c = C · c .

Thus we get (|A′| ·D)/c ≤ (21+1/ε logµ) · |A| ·D. And we get

OPT (σ) ≤ Q(σ) + |A′| ·D ≤ Q(σ) + c(21+1/ε logµ) · |A| ·D
= (1 + c(21+1/ε logµ)) · Q(σ).

Corollary A.3. If AAP, with ε = 1, has for each e ∈ E capacity u(e) = log 4D,
while the off-line algorithm has for all e capacity 1, then the competitive ratio is 5.

Proof. We use ε = 1 and slightly modify the above proof of inequality 2. We
again modify the last inequality of the the proof. Since the off-line algorithm has for
each e only capacity u(e)/ log 4D, we get

|A′| ·D <
∑
e

cn(e)/ log 4D ,

i.e.,

|A′| ·D < C/ log 4D .

We get

RANDOMIZED CALL CONTROL 111

OPT (σ) ≤ Q(σ) + |A′| ·D
≤ Q(σ) + C/ log 4D

≤ Q(σ) + ((21+1/ε logµ) · |A| ·D)/ log 4D

= Q(σ) + ((21+1/ε logµ) · |A| ·D)/ logµ

= Q(σ) + 4 · |A| ·D = 5 · Q(σ) .

Acknowledgments. Special thanks are due to Amos Fiat for suggesting to
us to look into the relationship between the competitive ratio and the deviation of
the result from its expectation in randomized benefit on-line algorithms. We thank
Dimitri Achlioptas and Hannah Bast for useful discussions and suggestions. We also
thank an anonymous referee for very useful comments.

REFERENCES

[1] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén, On-line competitive algorithms
for call admission in optical networks, in Proceedings of the Fourth European Symposium
on Algorithms, Lecture Notes in Comput. Sci. 1136, Springer, Berlin, 1996, pp. 431–444.

[2] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive online routing, in Proceed-
ing of the 34th Symposium Foundations of Computer Science, 1993, pp. 32–40.

[3] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call control,
in Proceedings of the Fifth Annual Symposium on Discrete Algorithms, Arlington, VA,
1994, pp. 312–320.

[4] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line admission control and
circuit routing for high performance computing and communication, in Proceedings of the
35th Symposium Foundations of Computer Science, 1994, pp. 412–423.

[5] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph problems with applica-
tion to on-line circuit and optical routing, in Proceedings of the 28th Symposium Theory
of Computing, 1996, pp. 531–540.

[6] Y. Bartal and S. Leonardi, On-line routing in all-optical networks, in Proceedings of the
24th International Colloquium on Automata, Languages, and Programming, Lecture Notes
in Comput. Sci. 1256, Springer, Berlin, 1997, pp. 516–526.

[7] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–14.

[8] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, Cambridge, UK, 1998; also available online from
http://www.cup.org/Titles/56/0521563925.html.

[9] M. F. G. Cornuejols and G. Nemhauser, Location of bank accounts to optimize float, Man-
agement Sci., 62 (1977), pp. 789–810.

[10] C. M. Diarmid, On the method of bounded difference, in Surveys in Combinatorics, London
Math. Soc. Lecture Note Ser. 141, J. Siemon, ed., Cambridge University Press, Cambridge,
UK, 1989.

[11] N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for
integral flow and multicut in trees, with applications to matching and set cover, in Pro-
ceedings of the 20th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Comput. Sci. 700, Springer, 1993, pp. 64–75.

[12] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems,
in Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC99),
1999, pp. 19–28.

[13] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[14] J. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, Ph.D. thesis, MIT,
Cambridge, MA, 1996.

[15] J. Kleinberg and R. Rubenfield, Short paths in expander graphs, in Proceedings of the 37th
Symposium Foundations of Computer Science, 1996, pp. 86–95.

[16] J. Kleinberg and E. Tardos, Disjoint paths in densely embedded graphs, in Proceedings of
the 36th Symposium Foundations of Computer Science, 1995, pp. 52–61.

112 LEONARDI, MARCHETTI-SPACCAMELA, PRESCIUTTI, ROSÉN

[17] M. Kramer and J. van Leeuwen, The complexity of wire routing and finding the minimum
area layouts for arbitrary vlsi circuits, in Advances in Computing Research 2: VLSI Theory,
F. Preparata, ed., JAI Press, London, 1984, pp. 129–146.

[18] S. Leonardi and A. Marchetti-Spaccamela, On-line resource management with applica-
tions to routing and scheduling, in Proceedings of the 22nd International Colloquium on
Automata, Languages, and Programming, Lecture Notes in Comput. Sci. 944, Springer,
Berlin, 1995, pp. 303–314.

[19] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer program, J. Comput. System Sci., 2 (1988), pp. 130–143.

[20] D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
ACM, 28 (1985), pp. 202–208.

