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Abstract. We consider the model of “adversarial queuing theory” for packet networks intro-
duced by Borodin et al. [J. ACM, 48 (2001), pp. 13–38]. We show that the scheduling protocol
first-in-first-out (FIFO) can be unstable at any injection rate larger than 1/2 and that it is always
stable if the injection rate is less than 1/d, where d is the length of the longest route used by any
packet. We further show that every work-conserving (i.e., greedy) scheduling policy is stable if the
injection rate is less than 1/(d + 1).
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1. Introduction. Recent years have seen a growing amount of work being con-
centrated on analyzing packet networks under nonprobabilistic scenarios rather than
under probabilistic assumptions (see, e.g., [7, 4, 1, 14, 12, 13, 3, 5]). Much of this work
makes use of the model of “adversarial queuing theory” proposed by Borodin et al.
[7]. The model can be briefly described as follows. Time proceeds in discrete steps.
In each step, packets are injected into the network with their routes. Each packet
traverses its respective route hop by hop in a store-and-forward fashion. In each time
step, one packet may cross each link, and all other packets waiting for that link are
stored in a buffer at the tail of that link. The behavior of the system is determined
by the queuing policy. The queuing policy chooses, at each time step, for each link,
which of the competing packets should be forwarded over that link. One of the main
questions in the adversarial queuing model is the question of stability. That is, under
what conditions is there a bound on the size of the link buffers, as opposed to them
growing to infinity as time proceeds? The conditions involve the topology of the net-
work, the queuing policy used, and the injection pattern of the packets. The latter
is characterized in the framework of adversarial queuing theory by the rate at which
packets are injected. Intuitively, the rate of injection is said to be r if, for every link e
in the network, the average number of packets requiring e, injected by the adversary
in any time step, is at most r (a formal definition of the model is given in section 2).
Note that in this model one does not assume any probabilistic assumptions on the
behavior of the traffic. Rather, answers are sought under the only assumption that
the total bandwidth requested by the adversary is not more than the total bandwidth
the network provides.

In the framework of adversarial queuing theory, it is known that some networks
are stable for every greedy protocol as long as the rate of injection is less than 1,
while other networks do not exhibit this phenomenon [7, 4]. The networks which

∗Received by the editors August 21, 2002; accepted for publication (in revised form) June 17,
2003; published electronically January 22, 2004. A preliminary version of this paper appeared in
Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures, Win-
nepeg, MB, Canada, 2002, pp. 192–199.

http://www.siam.org/journals/sicomp/33-2/41330.html
†Department of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel (zvilo@eng.

tau.ac.il, boaz@eng.tau.ac.il).
‡Department of Computer Science, Technion, Haifa, 32000, Israel (adiro@technion.ac.il). This

author’s research was supported in part by the Fund for the Promotion of Research at the Technion
and by the Technion V.P.R. Fund.

286



NEW STABILITY RESULTS FOR ADVERSARIAL QUEUING 287

are always stable have been named “universally stable” networks [7] and have been
fully characterized [14, 2]. From the point of view of protocols, some protocols are
known to be universally stable; i.e., they are stable on any network topology for any
rate of injection r < 1. Such protocols are, for example, longest-in-system (LIS) and
furthest-to-go (FTG). Other natural protocols, however, are known not to always be
stable, e.g., first-in-first-out (FIFO), nearest-to-go (NTG), last-in-first-out (LIFO),
and furthest-from-source (FFS) [4]. Furthermore, the protocol NTG (and FFS and
LIFO) exhibit the phenomenon of being unstable on certain networks even at arbi-
trarily low injection rates [7]. Previous papers in this area mentioned as one of the
main interesting open problems the question of determining the rate at which the
(very commonly used) FIFO policy is guaranteed to be stable and if such rate exists
at all. Prior to the present work, it was known that FIFO is not universally stable
and that it can be unstable for r > 0.85 [4]. This bound was improved to 0.8357
by Dı́az et al. [11] and further improved to 0.749 by Koukopoulos, Nikoletseas, and
Spirakis [15]. Dı́az et al. [11] also presented a formula to calculate, for any given
network, a bound so that FIFO is stable on that network if the injection rate is below
that bound. In particular, they consider as parameters the number of edges in the
network, denoted m, the length of the longest route used by any packet, denoted d,
and the maximum in-degree in the network, denoted α; their bound is at most 1

2dmα
for any network.

The contribution of this paper is twofold. First, we show that FIFO can be
unstable for any rate greater than 1/2 and that, on the other hand, FIFO is always
stable if the rate is less than 1/d. Second, we extend the stability proof for FIFO to
show that any greedy policy is stable if the injection rate is less than 1/(d+ 1), while
previously it was only known for general greedy protocols that the system is stable
if the injection rate is bounded by 1/m [6].1 We remark that our stability proofs do
not only show that the buffers have bounded size if the rate is sufficiently low. They
show, in addition, that the buffer size in this case has an upper bound independent
of network parameters (depending only on the parameters of the adversary).

Our instability proof entails new techniques that greatly simplify the analysis of
the FIFO policy. In particular, we develop a technique that enables us to construct
adversaries for some acyclic parameterized networks that we call “gadgets” and then
compose these gadgets and adversaries to form a cyclic network and a single adver-
sary that together show instability. Furthermore, we simplify the specification of the
adversary by defining conditions under which the adversary is allowed to “reroute”
packets, thus allowing us to specify routes for the packets “on the fly.”

Recently, subsequent to the initial publication of the present work [17], Bhat-
tacharjee and Goel proved that FIFO can be unstable at arbitrarily low injection
rates [8]. Some of the techniques used in their work (such as concatenation of pa-
rameterized gadgets and packet rerouting) are similar to the techniques we use in the
present work.

Organization. The rest of this paper is organized as follows. In section 2 we define
the model formally. In section 3 we prove that FIFO can be unstable for any rate
greater than 1/2. In section 4 we prove our stability results. We conclude with some
remarks in section 5.

2. Formal model. We use the adversarial queuing model [7], defined as follows.
The communication network is modeled by a directed graph G = (V,E), and we

1Recently, we learned that Zhang, Duan, and Hou [18] proved that FIFO is stable for injection
rates less than 1/d. This result was obtained independently of ours.
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denote |V | = n, |E| = m. Each node v ∈ V represents a communication switch, and
each edge e ∈ E represents a link between two switches. In each node, there is a
buffer associated with each outgoing link. Buffers store packets. Packets are injected
into the network with a route, which is a simple directed path in G. When a packet is
injected, it is placed in the buffer of the first link on its route. The system proceeds in
global time steps numbered 0, 1, . . .. Each time step is divided into two substeps. In
the first substep, one packet is sent from each nonempty buffer over its corresponding
link. In the second substep, packets are received by the nodes at the other end of the
links; they are absorbed (eliminated) if that node is their destination, and otherwise
they are placed in the buffer of the next link on their respective routes. In addition,
new packets are injected in the second substep.

The task of the protocol is to select which packet to send over a link if there
is more than one packet in the buffer associated with that link. We remark that
we are interested in greedy protocols (in fact, the definitions above allow only such
protocols), in which a link cannot be idle in a time step if its buffer is nonempty in
the first substep. The protocol FIFO selects the packets to be sent from a buffer in
the same order as their arrival order at that buffer.

The injection of the packets into the network is modeled as being done by an
adversary. Following [7], we use the following parameterized definition for the adver-
sary.

Definition 2.1. Let A be an adversary. A is called a (w, r) adversary if, for
some r ≤ 1, called the rate of A, and some integer w ≥ 1, called the window size of
A, the following holds. For any time t ∈ N , let It be the set of packets injected during
the w time steps from t to t + w − 1, inclusive. Let Πt be the set of paths that the
packets in It have to follow. Then the maximum number of times any edge appears
in Πt is at most rw.

For our instability results we use a weaker adversary, which is not allowed to inject
bursty traffic. We call this adversary a rate-r adversary [4]: for every interval of time
of length t and every edge e, a rate-r adversary may inject at most %rt& packets whose
routes require e.

3. Instability of FIFO. In this section we prove that FIFO can be unstable
at rate 1

2 + ε for any ε > 0. The high level view of the proof is as follows. First, we
define a small acyclic graph called “gadget,” which has special “ingress” and “egress”
edges. Gadgets can be composed in series by identifying the egress edge of one gadget
with the ingress edge of its successor, getting a “daisy chain.” We show that a rate-r
adversary (for r > 1

2 ) can increase the size of a given queue in the ingress edge of the
chain by any desired factor to get a large queue at the egress edge of the chain (using
a sufficiently long chain). We then prove that a queue in the egress edge of the chain
can be translated to a queue of fresh packets in the ingress edge of the chain by losing
only a fraction of the size of the queue.

Since in our construction packets have long routes, we find it more convenient to
specify the routes in an “on-line” fashion. That is, when we construct the adversary,
we do not specify the complete routes of the packets when they are injected (even
though we can, in principle). Rather, we prove below some conditions that allow us
to reroute packets without violating the capacity constraints. Formally, this is done
by altering the adversary. We find this technique useful in the sense that it makes the
construction more “localized.” We stress that this is just a matter of representation:
the actual adversary used to prove the results is the same rate-r adversary used, e.g.,
in [4, 11, 15].
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The proof is structured as follows. In section 3.1 we specify the conditions under
which packets can be rerouted. In section 3.2 we specify and analyze a rate-r adversary
for two daisy-chained gadgets. Some small adversaries used for “gluing” and the
overall adversary are specified in section 3.3.

3.1. Packet rerouting. In this section we prove a technical lemma that allows
us to construct adversaries “on the fly” for FIFO. Informally, it says that if there is a
set of packets that have routes that already share a single edge, then these packets can
be arbitrarily rerouted as long as they are routed to new edges. In fact, the rerouting
technique can be applied to a large class of queuing policies defined below.

Definition 3.1. A queue policy is called historic if the scheduling decisions are
independent of the remaining routes beyond the next edge of each packet.

Note that policies that are based on the arrival time at the buffer (such as FIFO
and LIFO), on the injection time (e.g., LIS and NIS), or on the route from the source
(e.g., FFS) are examples of historic policies. Note that a historic queue policy must
not even depend on the destinations of the packets. For example, FTG and NTG are
not historic. (Historic policies are called nonpredictive in [16].)

First, we define formally the notion of new edges.
Definition 3.2. Let G be a graph, Q a queuing policy, and A a rate-r adversary.

Let t be a time step in the execution of Q in G under A. Let P be a subset of the
packets that are in the network at time t. Let t∗ be the minimum injection time of all
packets in P . An edge e is new to P if e is not a member of any route of a packet
(either in P or not) injected by A at times τ ≥ t∗ −

⌈
1
r

⌉
.

We remark that since in this paper we deal with rates larger than 1
2 , then

⌈
1
r

⌉
≤ 2.

We can now state and prove our rerouting claim.
Lemma 3.3. Let Q be a deterministic historic queue policy, G a graph, A a rate-r

adversary, and t a time step. Let P (t) be the set of packets in the network at time
t. For each p ∈ P (t), denote the next edge to be traversed by p at time t by ep, and
denote the complete path of p by qpeprp. Let P0 ⊆ P (t) be a set of packets whose
routes have at least one edge common to all. Then for any set of paths

{
r′p | p ∈ P0

}

that consist of edges that are new to P (t), there exists a rate-r adversary A′ such that
the following holds true.

(1) The execution of the system under A and A′ is identical until time t.
(2) For every packet p injected by A there is a packet p injected by A′ at the same

time.
(3) If p ∈ P0, then its route under A′ is qpepr′p.
(4) If p /∈ P0, then its route under A′ is qpeprp.
Proof. Define A′ as follows. A′ injects the same number of packets as A and at

the same times. For p ∈ P0, set the route of p to qpepr′p. For p /∈ P0 set the route of
p to qpeprp. Clearly, claims (1), (2), (3), and (4) follow directly from the assumption
that Q is historic and by the construction. We need only to verify that A′ is a rate-r
adversary. To see this, first note that the load on any non-new edge may have only
been reduced. Now, consider any edge e in

⋃
p∈P0

r′p. Let ê be the edge common to
the routes of all p ∈ P0. Let t∗ be the minimum injection time over all packets in
P (t).

Consider any time interval [t1, t2]. If t2 < t∗, then the number of packets injected
in [t1, t2] by A′ and that require e is equal to the number of packets injected in
[t1, t2] by A and that require e. If t2 ≥ t∗ we consider time intervals I = [t1, t∗) and
I ′ = [t∗, t2]. For interval I the number of packets injected by A′ and that require e is
the same as for A′, which is at most

⌈
((t∗ −

⌈
1
r

⌉
)− t1)r

⌉
, since e is a new edge with
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Fig. 3.1. The graph F 2
n: two Fn gadgets glued together. The left gadget is called F , and the

right gadget is called F ′. Edge a′ is the egress of F and the ingress of F ′.

respect to P0 ⊆ P (t) and time t∗ is the minimum injection time of all packets in P (t)
(see Definition 3.2). For interval I ′ the number of packets injected in I ′ by A′ and
that require e is at most the number of packets injected in I ′ by A and that require
ê. This is at most %(t2 − t∗ + 1)r&. The total number of packets injected by A′ in
[t1, t2] and that require e is therefore at most

⌈
((t∗ −

⌈
1
r

⌉
)− t1)r

⌉
+ %(t2 − t∗ + 1)r&.

This is at most %(t2 − t1 + 1)r&, as required.
Remark 1. Lemma 3.3 allows us to use a “dynamic” adversary that changes

the routes of packets on-line. However, this is only a matter of presentation: we
do not change the power of the adversary; we only construct it in a succession of
refinements. The main advantage of the lemma is that it allows us to modify the
remainder of the routes arbitrarily, under the specified restrictions (shared edge in
old routes, new edges in modified routes, and historic policy); we do not have to
worry about capacity constraints of new edges.

Remark 2. Note that a packet may be rerouted several times, as long as the
number of reroutings is finite.

3.2. Gadgets and their adversaries. We now define the gadgets that we use
and their local adversaries.

Definition 3.4. A gadget is a directed acyclic graph with one edge called ingress
emanating from a degree-1 source, and one edge called egress, leading to a degree-
1 sink. Given two gadgets G,H, define G ◦ H to be the gadget that results from
identifying the egress of G with the ingress of H. The ingress of G ◦H is the ingress
of G, and the egress of G ◦H is the egress of H.

For any gadget F , let F 0 denote the single edge graph which is both ingress and
egress. For i > 0, we denote F i = F i−1 ◦F . We call the “◦” operation daisy-chaining.

We will use a parametric gadget denoted Fn, which consists of ingress edge a,
egress edge a′, and two parallel paths of length n from the ingress edge to the egress
edge, whose edges are denoted e1, . . . , en and f1, . . . , fn. Figure 3.1 shows F 2

n .
We will construct an adversary that maintains the following gadget invariant.
Definition 3.5. C(S, Fn) is said to be true at a given time if the following holds

at that time on graph Fn.
(1) The total number of packets in the buffers of e1, . . . , en is S.
(2) For each i = 1, . . . , n, the buffer of ei is nonempty, and the packets in ei have

remaining routes ei, ei+1, . . . , en, a′.
(3) There are S packets in the buffer of edge a, all with the same remaining route

a, f1, . . . , fn, a′.
(4) There are no other packets in Fn.
In our construction, we use a daisy chain of many gadgets. However, we start by

considering two daisy-chained gadgets, namely the graph F 2
n (Figure 3.1). We denote

the first gadget of F 2
n by F , and the second by F ′, and add a prime to the name of

all edges in F ′. The conditions of the following lemma are designed to allow repeated
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rerouting, but essentially the idea is to have the condition C(S, F ) carry over from
one gadget to the next, with a larger value S.

Lemma 3.6. Let r = 1
2 + ε for some ε > 0. There exist numbers n and S0 that

depend on ε, such that for any S > S0, if in the graph F 2
n we have that for some time

τ , all packets present at time τ were injected after time τ0, and
• C(S, F ) holds at time τ , and
• F ′ is empty at time τ , and
• no packets using edges in F ′ were injected in the time interval [τ0−%1/r& , τ ],

then there exists a rate-r adversary for F 2
n such that at time τ + 2S + n, C(S′, F ′)

holds for some S′ ≥ S(1 + ε), and F is empty.

Proof. To define the adversary, we use the notation Ri
def
= 1−r

1−ri for 1 ≤ i ≤ n.
Note, for later reference, that for all i,

Ri

r + Ri
= Ri+1 .(3.1)

We first choose parameters under the constraints below:

n > max

(
log ε− 2

log r
, 1− 1

log r

)
,

S0 > max

(
2n,

n

2(Rn −Rn+1)

)
.

We remark that for small ε values, we get n = Θ(log 1
ε ) and S0 = Θ(nr−n) =

Θ( 1
ε log 1

ε ) (see the appendix for a detailed derivation of the asymptotic bounds).
Let us assume, for simplicity of notation, that τ = 0. We now specify the adver-

sary that will create a situation where C(S′, F ′) holds for S′ = 2S(1 − Rn). In the
adversary specification, as well as in the ensuing analysis, we ignore floors and ceilings
for the sake of simplicity of presentation. We remark that carrying these throughout
the computations would add only additive terms that can be compensated for by
using a larger S0 value (cf. [4, 11, 15]).
The adversary is as follows.

(1) Extend the routes of all packets stored in F at time 0 by adding the path
e′1, . . . , e

′
n, a

′′.
(2) For every edge e′i in F ′ (i = 1, . . . , n), packets are injected at rate r in the

time steps i, i + 1, . . . , i + ti, where ti
def
= 2S

r+Ri
. The route of each of these

packets is the single edge e′i.
(3) In the time interval [1, S], rS packets are injected, at rate r, with route

a, f1, . . . , fn, a′, f ′
1, . . . , f

′
n, a

′′ .
(4) Let X = S′ − rS + n. X packets are injected in the first X · 1

r time steps of
the interval [S + n + 1, S + n + S], with routes a′, f ′

1, . . . , f
′
n, a

′′. (We show
later that 0 ≤ X ≤ rS.)

First, note that this is a rate-r adversary: part (1) is justified by Lemma 3.3, since
the routes of all packets stored in F share the edge a′, and the extensions are for new
edges as defined in Definition 3.2.

Edges e′1, . . . , e
′
n are used only by part (2) at rate r. Edges f ′

1, . . . , f
′
n and a′′ are

used at rate r in parts (3) and (4), which cover disjoint time intervals. It remains to
show that 0 ≤ X ≤ rS.

Claim 3.7. For every r < 1, we have 0 < X ≤ rS.
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Proof. First we prove that X > 0. By definitions,

X > X − n = S′ − rS

= 2S(1−Rn)− rS

= S

(
2− 2− 2r

1− rn
− r

)
.

Now,

2− 2− 2r

1− rn
− r =

r − 2rn + rn+1

1− rn

>
r − 2rn

1− rn

> 2r(1− 2rn−1)

> 0 ,

since rn < rn−1 < 1/2 by the choice of n, and hence X > 0. Next we prove that
X ≤ rS. By the definitions,

rS −X = rS − (2S(1−Rn)− rS + n)

= 2S(r + Rn − 1)− n .

Since S ≥ S0 > n
2(Rn−Rn+1)

≥ n
2(r+Rn−1) by assumption, we get rS −X > 0.

We now show that in fact at time 2S + n, C(S′, F ′) holds and that F is empty.
This will be sufficient, since by the definition of S′ we have that

S′ = 2S(1−Rn)

= 2S

(
r

1− rn
− rn

1− rn

)

≥ 2S(r − 2rn)

≥ 2S

(
1

2
+ ε− ε

2

)

= S(1 + ε) .

(The inequalities follow from the fact that 1− rn ≤ 1 and since rn ≤ 1/2 and 4rn < ε
by the choice of n.)

We now proceed to prove that C(S′, F ′) holds at time 2S + n. Let us call the
packets described in part (1) of the definition of the adversary old packets, the packets
described in part (2) new short packets, and the packets described in parts (3) and
(4) new long packets.

We start with the following straightforward property.
Claim 3.8. In each step in the time interval [1, 2S], one old packet crosses a′.
Proof. Since there are S old packets in the buffers of edges ei, there are no other

packets in these buffers, and none of them is empty at time 0, then these S packets
will arrive at the tail of a′ one in each time step in time interval [1, S]. The S packets
stored at the tail of a at time 0 will arrive at the tail of a′, one in each time step, in
the time interval [n, S + n]. Since S > n, the claim follows.

The next claim shows that old packets cross edges e′i at rates that decrease as i
grows. This is due to the injection of the new short packets.

Claim 3.9. The following holds for any edge e′i, i ∈ [1, n].
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(1) At times [0, i], no packet arrives at the tail of e′i.
(2) At times [i + 1, 2S + i], old packets arrive at the tail of e′i at rate Ri.
(3) At time i + 2S + 1, there are no new short packets in the buffer of e′i.
Proof. Part (1) is straightforward by the fact that old packets must cross at least

i + 1 edges before they arrive at the tail of e′i and because no new packet is injected
for e′i before time i. Part (2) is proven by induction on i. For the basis i = 1 we have
that packets arrive at the tail of e′1 at rate R1 = 1 by Claim 3.8. For the induction
step, let i > 1. The induction hypothesis says that packets arrive at the tail of e′i−1 at
rate Ri−1. By part (2) of the definition of the adversary, new packets are injected at
the tail of e′i−1 at rate r. Note that Ri−1 + r > 1. Since the queue policy is FIFO, it

follows that old packets cross e′i−1, and hence arrive at the tail of e′i, at rate Ri−1

Ri−1+r .

By (3.1) this is exactly Ri. This proves part (2). To see that part (3) is true, note
that as a consequence of part (2), we have that short new packets cross e′i at rate

r
Ri+r . The last short new packet for e′i is injected at time i + ti = i + 2S

r+Ri
, in which

time there are ti(r + Ri − 1) packets in the buffer of e′i. Using the definition of ti, it
follows that all new short packets of e′i will be absorbed by time

i + ti + ti(r + Ri − 1) = i + ti(r + Ri) = i + 2S .

Using the above claims, we show that C(S′, F ′) holds at time 2S + n. We start
with part (1) of C(S′, F ′).

Claim 3.10. At time 2S+n, there is a total of S′ old packets stored in the buffers
of edges e′i.

Proof. By Claim 3.9, 2S · Rn old packets cross a′′ by time 2S + n. On the
other hand, by Claim 3.8, all the 2S old packets crossed a′ by time 2S. The claim
follows.

Next, we prove that part (2) of C(S′, F ′) holds.
Claim 3.11. If S > S0, then none of the buffers of e′i is empty at time 2S + n.

Moreover, the route of any packet stored in e′i at that time is e′i, . . . , e
′
n, a

′′.
Proof. The claim on the remaining routes is obvious from the construction. We

now prove that the buffer of e′i is not empty. The last short packet for e′i is injected in
e′i at time i+ ti, and, as argued in the proof of Claim 3.9, it crosses e′i at time 2S + i.
Hence all packets that arrive at the buffer of e′i in the time interval [i+ ti, 2S + i] are
still in the buffer of e′i at time 2S + i. All these packets are old packets that arrive

from ei−1. By Claim 3.9, there are (2S − ti)Ri such packets. Let Qi
def
= (2S − ti)Ri

be the number of packets in the buffer of e′i at time 2S + i. Note that by definition,
ti ≤ ti+1 and Ri ≥ Ri+1, and hence Qi ≥ Qi+1 for 1 ≤ i < n. In addition, since
only n− i packets may leave the buffer of e′i in the time interval [2S + i, 2S + n], it is
sufficient to prove that Qn ≥ n. Substituting the values we get

Qn = (2S − tn)Rn

= 2SRn − tnRn

= 2S

(
Rn −

Rn

r + Rn

)

= 2S (Rn −Rn+1) .

Since S ≥ S0 > n
2(Rn−Rn+1)

, we get that Qn ≥ n.

We now prove that part (3) of C(S′, F ′) holds.
Claim 3.12. The number of packets at the tail of a′ at time 2S + n is S′.
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Proof. First, observe that in time interval [1, S + n] the number of packets that
arrive at the tail of a′ is exactly 2S, and they start arriving at time 1. Therefore at
time S + n there are exactly S − n packets in the buffer of a′. In addition, by part
(3) of the definition of the adversary, rS new long packets are injected at the tail
of a in the time interval [1, S]. These packets start crossing a at time S + 1, since
they are queued behind the S old packets stored in a at time 0. Hence the new long
packets start arriving at a′ at time S+n+1. In addition, part (4) of the definition of
the adversary says that X new long packets are injected at the tail of a′ during time
interval [S + n, 2S + n]. In conclusion, there are X + rS new long packets arriving at
a′ in the interval [S + n, 2S + n]. Together with the S − n packets stored at the tail
of a′ at time S + n, we have that at time 2S + n, the number of packets stored in the
buffer of a′ is exactly rS +X −n = S′, by definition of X. All these packets have the
paths that are required by C(S′, F ′).

To conclude the proof of Lemma 3.6, we argue that F is empty at time 2S + n.
This follows from the fact that there are no injections into edges of F during time
interval [0, 2S + n] and that all the 2S packets present in F at time 0 arrive at the
tail of the ingress of F ′ by time S + n.

3.3. Putting the gadgets together. In this section we describe how to con-
struct the overall adversary, using the gadget adversary described in section 3.2, and
a few other simple adversaries used to glue things together.

The idea of the proof is to use a sufficiently long daisy chain of gadgets that
blows up the queue size by a sufficiently large factor (that depends on the length of
the chain and r) and then “stitch together” the egress of the chain to its ingress,
getting a queue of fresh packets. The stitching process loses a fraction (that depends
on r) of the queue size, but this loss is more than compensated by the chain of gadgets.

Fix r = 1
2 + ε for ε > 0 and S0 and n as in the proof of Lemma 3.6. Consider the

graph FM
n that consists of a daisy chain of M Fn gadgets, where M is a parameter.

Let the kth gadget be denoted by F (k) for 1 ≤ k ≤ M . We now prove the following
lemma.

Lemma 3.13. Let M be a positive integer, and consider the graph FM
n . If for

some time τ we have that all packets present in the network were injected after time
τ0, and

• C(S, F (1)) holds at time τ for S ≥ S0,
• there are no other packets in FM

n at time τ , and
• the edges of FM

n \ F (1) were not used by any injection in the time interval
[τ0 − %1/r& , τ ],

then there is a rate-r adversary such that at some time t > τ , there are S′ packets at
the egress of FM

n , for S′ ≥ S(1 + ε)M−1/2, and there are no other packets in FM
n .

Proof. We first prove the following claim.
Claim 3.14. Let 1 ≤ i ≤ n. If at time τ we have that all packets present in the

network were injected after time τ0, and
• C(S, F (1)) holds for S ≥ S0,
• there are no other packets in F (1), . . . , F (i), and
• the edges of F (2), . . . , F (M) were not used by any injection in the time in-

terval [τ0 − %1/r& , τ ],
then there is a rate-r adversary and time ti ≥ τ such that

• C(S′, F (i)) holds for S′ ≥ S(1 + ε)i−1 at time ti,
• there are no other packets in FM

n , and
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• the edges of F (i + 1), . . . , F (M) were not used by any injection in the time
interval [τ0 − %1/r& , ti].

Proof. The proof is by induction on i. For i = 1 the claim is trivial with t1 = τ .
For the induction step, assume that the lemma holds for 1 < i < M , i.e., that
there exists an adversary Ai and time ti such that at time ti, C(Si, F (M)) holds for
Si ≥ S(1+ε)i−1. Consider now the subgraph that consists of F (i) and F (i+1). By the
induction hypothesis, we may apply Lemma 3.6 to know that there exists an adversary
A such that at time ti + 2Si + n, C(S′, F (i+ 1)) holds for S′ ≥ Si(1 + ε) ≥ S(1 + ε)i.
We note that the packets injected by A (as specified in Lemma 3.6) do not use any
edge in F (i + 2), . . . , F (M) and that the application of this adversary leaves F (i)
empty of packets. This proves the claim with ti+1 = ti + 2Si + n and the adversary
that results from concatenating the adversaries Ai and A.

To complete the proof of Lemma 3.13, we observe that if at time t we have that
C(S, Fn) holds for some gadget Fn and S ≥ S0, and if no injections are done in the
interval [t, t+ S + n], then at time t+ S + n there are at least S/2 packets queued at
the egress of Fn. This is true since during time interval [t + 1, t + S + n] exactly 2S
packets arrive at the tail of the egress of Fn, and, therefore, at time t + S + n there
are S − n ≥ S0 − n ≥ S/2 packets in the egress buffer.

Note that a packet may be rerouted in the whole construction at most M − 1
times: once for each gadget F (2), . . . , F (M). This completes the proof of Lemma
3.13.

We now specify two more constructions. The first shows how to establish C(S, Fn)
starting from a state in which the only packets in Fn are in the buffer of the ingress
of Fn. The second construction shows how to replace a queue of packets with another
queue of fresh packets. This is necessary so we can stitch the end of the daisy chain
to its beginning.

We now claim the existence of an adversary that establishes C(S, Fn) starting
from a single buffer. The construction is a variant of the adversary presented in the
proof of Lemma 3.6.

Lemma 3.15. For any ε > 0, let n and S0 be as in Lemma 3.6. Let S > S0,
and let τ be a time step. Suppose that at time τ all the packets in the network are
2S packets stored in the ingress edge of Fn, they all have remaining routes of length
1, and they were all injected after time τ0 for some τ0. If the other edges of Fn were
not used by any injection in the time interval [τ0 − %1/r& , τ ], then there is a rate-r
adversary for r = 1

2 + ε such that at time τ + 2S + n condition C(S′, Fn) holds for
S′ ≥ S(1 + ε).

Proof. Let us again assume for convenience of notation that τ = 0. We use the
notations and definitions of ti and Ri from the proof of Lemma 3.6. We also define
S′ = 2S(1−Rn). The adversary is defined as follows.

(1) Extend the route of the packets stored in the ingress edge a to be a, e1, e2, . . . ,
en, a′.

(2) For each 1 ≤ i ≤ n, inject packets at rate r with the single edge route ei in
the time interval [i, ti].

(3) In the first (S′ + n)/r time steps of time interval [1, 2S] inject S′ + n packets
at rate r. The first n packets have path of length 1 (i.e., a only), and the rest
have the path a, f1, . . . , fn, a′. Observe that indeed (S′ + n)/r ≤ 2S, by the
choice of n and S0.

We first note that this is a rate-r adversary by Lemma 3.3. We now prove that
C(S′, Fn) holds at time 2S+n. First, observe that in each step of the interval [1, 2S],
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Fig. 3.2. The graph used in the proof of Theorem 3.17. The edge between F (i) and F (i + 1) is
the egress of F (i) and the ingress of F (i + 1), and it is part of both F (i) and F (i + 1).

a single packet crosses a. By the same arguments as those in the proofs of Claims
3.9, 3.10, and 3.11 (applied here to Fn, instead of F ′ there), we have that at time
2S+n there are S′ packets in the buffers of edges e1, . . . , en, that none of these buffers
is empty, and that the packets in ei have remaining routes ei, ei+1, . . . , en, a′. Next,
consider a. After 2S time steps, all old packets leave a; after additional n time steps
all packets with path of length 1 injected in step (3) disappear too, and therefore,
at time 2S+n, we have exactly S′ packets in a, with remaining routes a, f1, . . . , fn, a′,
as required.

We now show the existence of an adversary that replaces a queue of old packets
with another (smaller) queue of fresh packets. To do this, we consider a graph of
three edges in series, called a0, a1, and a2. The routes that will be traversed by old
packets will all end at a0, and the fresh packets all start at the tail of a2. (We use
three edges instead of two so as to avoid cyclic routes in our final construction.)

Lemma 3.16. Suppose that at time τ there are S packets stored in the buffer of a0

with remaining routes of length 1. Then for any r > 0 there exists a rate-r adversary
such that at time τ + S + rS + r2S there are r3S packets stored in the buffer of a2

and there are no other packets in the network. Moreover, all the packets stored in the
buffer of a2 were injected at the tail of a2 after time τ + S.

Proof. Let us assume for convenience of notation that τ = 0. Call the packets
that exist in the network at time 0 old packets. The execution is as follows.

(1) In the time interval [1, S], rS packets are injected at the tail of a0. These
packets have routes a0, a1, a2. All these packets are queued behind the old
packets, and they start to move only at time S.

(2) In the time interval [S + 1, S + rS], r2S packets are injected at the tail of a2.
These packets mix with the packets that were injected in step (1). At time
S + rS, there is a queue of r2S packets waiting for a2, and no other packets
exist in the network.

(3) In the time interval [S + rS, S + rS + r2S], r3S new packets are injected at
the tail of a2. These packets are queued behind the packets injected in steps
(1) and (2).

Note that by time S+rS+r2S, all packets from steps (1) and (2) are absorbed.
We are now ready to prove our main result. Note that the assumption of a specific

initial state does not restrict the generality of the statement (see, e.g., [4]).
Theorem 3.17. For every ε > 0 there exists a graph Gε, a rate-r adversary for

r = 1
2 + ε, and an initial configuration such that FIFO is unstable on Gε under that

adversary starting from that initial configuration.
Proof. The graph is defined as follows. Let S0 and n be as required by Lemma

3.6 for ε. Choose M such that r3(1+ε)M

4 > 1. The graph consists of FM
n (i.e., M

daisy-chained gadgets), with one additional edge called e0 connecting the head of the
egress edge of the last gadget in the chain (F (M)) to the ingress edge of the first
gadget in the chain (F (1)). See Figure 3.2.

In the initial configuration, there are S∗ > 2S0 packets in the ingress edge of
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F (1), all with paths of length 1 (i.e., their paths are composed of the ingress of
F (1)). The adversary is defined by an iterative construction that works as follows.
Let S1 = S∗.

(1) Apply the adversary of Lemma 3.15 to get a configuration where C(S2, F (1))
holds for S2 ≥ S1

2 (1 + ε).
(2) Apply the adversary of Lemma 3.13 to get a configuration where S3 packets

are stored in the egress of F (M) for S3 ≥ S2
(1+ε)M−1

2 .
(3) Apply the adversary of Lemma 3.16 to the three-edge path that consists of

the egress of F (M), then e0, and then the ingress of F (1). This results in S4

packets stored at the tail of the ingress of F (1), all with paths of length 1,
for S4 ≥ r3S3. Let S1 ← S4, and go to step (1).

We first claim that the above construction is indeed a valid rate-r adversary. We
claim inductively that the conditions that allow the construction of each adversary
by Lemmas 3.15, 3.13, and 3.16 hold when these constructions are applied. We base
the proof for each iteration of the adversary on the following condition, which we will
prove by induction on time to hold at the start of each iteration. The condition is that
when the iteration starts at time τ , then it holds that all the buffers in the network
are empty except the buffer of the ingress of F (1); that all packets in this buffer have
routes of length 1; and that in time interval [τ0 − %1/r&, τ ] there were no injections of
packets requiring any other edge in the network, where τ0 is the earliest injection time
of any packet residing in the buffer of the ingress of F (1) at time τ . This condition
clearly holds for time τ = 0 when we start with the initial configuration as described
above.

Now assume that the above condition holds at time τ when an iteration starts.
Then the conditions of Lemma 3.15 hold. We therefore can apply the adversary of
Lemma 3.15. The resulting situation is the situation as required by the conditions
of Lemma 3.13. Observe that the adversary of Lemma 3.15 does not use any edge
in the network beyond the edges of F (1); therefore the conditions of that lemma on
the nonuse of the edges of FM

n \ F (1) hold. We can therefore apply the adversary of
Lemma 3.13. The resulting situation is the situation in the conditions of Lemma 3.16.
Observe also that by Lemma 3.13 there are no other packets in the network at that
time. We can now apply the adversary of Lemma 3.16. This results in a set of packets
in the buffer of the ingress of F (1). Note that now there are no other packets in the
network. Further observe that all the packets at the ingress of F (1) were injected at
least S time steps into the activation of the adversary of Lemma 3.16 and that once
they start being injected, no other packet is injected. Therefore it follows that no
edge of the graph, except the ingress of F (1), was used by the adversary after time
τ0−%1/r&, where τ0 is the earliest injection time of the packets at the ingress of F (1).
We therefore have that the condition for the start of the iteration holds again.

We note that no packet is rerouted more than M times: once in step (1) and at
most M − 1 times in step (2).

Finally, we show that S1 grows unboundedly under this adversary. After step
(1) is executed, we have that S2 ≥ S1

2 · (1 + ε). Hence, after step (2) we have that

S3 ≥ S2
(1+ε)M−1

2 ≥ S1
(1+ε)M

4 . Finally, after step (3), we have that the number of

packets stored at the tail of the ingress edge of F (1) is S4 ≥ r3S3 ≥ S1
r3(1+ε)M

4 . By
the choice of M we have that S4 > S1.

4. Stability under low injection rates. In this section we show that FIFO,
and in fact any greedy protocol, is stable if the injection rate is below some threshold.
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We start with the case where the network is initiated with empty buffers. We later
consider the case where the adversary starts the system with an arbitrary initial
configuration of an arbitrary set of packets in the buffers.

We start with the case where the network starts with empty buffers. We prove
that any network is stable with any greedy protocol in the face of a (w, r) adversary,
if r ≤ 1/(d + 1), where d denotes the length (in edges) of the longest path followed
by any packet. In particular, we prove below that any packet stays in any one queue
no more that *wr+ time steps. For a certain class of protocols, which includes the
protocol FIFO, the bound can be improved to 1/d.

Theorem 4.1. For any network, if the sequence of packets is injected by a (w, r)
adversary, with r ≤ 1/(d + 1), and the schedule is a greedy schedule, then no packet
stays in the same buffer more than *wr+ time steps.

Proof. We prove, by induction on t, that any packet that arrives at a buffer at
time step t leaves this buffer by time t + *wr+.

The base of the induction is any t ≤ dwr+1. Let p be a packet that arrives at the
buffer at the tail of edge e at time t ≤ dwr+1. Assume towards a contradiction that p
is in the same buffer at the end of time step t+ *wr+. This means that for each of the
*wr+ time steps in [t + 1, t + *wr+] some other packet was sent over edge e (since we
consider a greedy protocol). Therefore we can identify *wr+ + 1 packets that require
edge e and are injected into the network by the end of time step t + *wr+ − 1 (these
are the packet p itself and the *wr+ packets that were sent over e). Since t ≤ dwr+1,
we have t + *wr+ − 1 ≤ (d + 1)wr. By the definition of the adversary the number of
packets that require e and are injected by the end of any time step t′ ≤ (d + 1)wr is
at most %(d + 1)r&*wr+. Since we assume r ≤ 1/(d + 1) this is at most *wr+. This is
a contradiction to the fact that we identified *wr++ 1 packets.

We now prove the claim for any t > dwr+1. This is done based on the induction
hypothesis that for any packet that arrives at some buffer at time t′ < t, this packet
leaves the buffer by time step t′ +*wr+. Let p be a packet that arrives at the buffer at
the tail of edge e at some time step t. Consider any packet that requires edge e and was
injected by time step t− d*wr+. Using the induction hypothesis we know that such a
packet left the buffer into which it was injected by time step t−d*wr++*wr+, left the
next buffer by time step t−d*wr++2*wr+, and left the ith buffer on its path by time
step t−d*wr++ i*wr+. It therefore arrived at its destination by time step t−d*wr++
d*wr+ = t (since the length of its path is at most d, and all its “arrival times” are earlier
than t, so the induction hypothesis holds). It follows that any packet that can delay
packet p from going over edge e must be injected at time step t− d*wr++ 1 or later.
Now assume towards a contradiction that packet p is still at the tail of edge e at the end
of time step t+*wr+. That is, there are *wr+ other packets that crossed edge e in [t+
1, t+*wr+]. As before, this identifies *wr++1 distinct packets that require edge e, are
present in the network at the end of time step t or later, and are injected by time step
t+*wr+−1. However, we know that any packet injected by time step t−d*wr+ already
left the network by the end of time step t. Therefore those *wr++1 packets must have
been injected in [t−d*wr++1, t+*wr+−1]. There are *wr+(d+1)−1 time steps in this
interval; therefore the number of packets that require e and can be injected during this
interval is bounded by %(d + 1)r&*wr+. Since r ≤ 1/(d + 1) this is at most *wr+, a
contradiction.

For protocols where a packet arriving at a certain buffer at time t has priority
over any packet injected after time t, we can relax the condition that r ≤ 1/(d + 1)
to be r ≤ 1/d. Note that among such protocols are the protocols FIFO and LIS.
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Specifically, we define the following concept.

Definition 4.2. A time priority protocol is a greedy protocol under which a
packet arriving at a buffer at time t has priority over any other packet that is injected
after time t.

For time priority protocols, we have the following.

Theorem 4.3. For any network, if the sequence of packets is injected by a (w, r)
adversary, with r ≤ 1/d, and the protocol is a time priority protocol, then no packet
stays in the same buffer more than *wr+ time steps.

The proof of Theorem 4.3 is the same as the proof of Theorem 4.1 with one change
applied at two places: in the present case, when assuming towards a contradiction
that packet p is still in the same buffer at the end of time step t+*wr+ and identifying
the packets that cause this delay, we know that those packets must have been injected
no later than time step t (rather than time t + *wr+ − 1). This is because packets
injected after time step t will not delay packet p if the protocol is a time priority
protocol. This allows us to prove the lemma with the relaxed condition that r ≤ 1/d.
For completeness we give below the full proof.

Proof. We prove that any packet that arrives at any buffer at time step t leaves
this buffer by time step t + *wr+. The proof is by induction on t.

We prove the base of the induction for any t ≤ dwr. Let p be a packet that arrives
at the buffer at the tail of edge e at time t ≤ dwr. Assume towards a contradiction
that p is in the same buffer at the end of time step t+ *wr+. This means that during
the *wr+ time steps in [t+1, t+*wr+] some other packet was sent over edge e (since we
consider a greedy protocol). We can therefore identify *wr+ + 1 packets that require
edge e (these packets are the packet p itself and the *wr+ packets that were sent over
e). These packets must have been injected into the system by the end of time step
t; any packet injected after t will not delay p according to a time priority protocol.
Now, by the definition of the adversary the number of packets that require e and are
injected by the end of any time step t ≤ dwr is at most %dr&*wr+. Since we assume
r ≤ 1/d this is at most *wr+. This is a contradiction to the fact that we identified
*wr++ 1 packets.

We now prove the claim for any t > dwr. This is done based on the induction
hypothesis that for any packet that arrives at some buffer at time t′ < t, this packet
leaves this buffer by time step t′ + *wr+. Let p be a packet that arrives at the buffer
at the tail of edge e at some time step t. Consider any packet that requires edge e and
was injected by time step t − d*wr+. Using the induction hypothesis we know that
such a packet left the buffer into which it was injected by time step t− d*wr++ *wr+,
left the next buffer by time step t − d*wr+ + 2*wr+, and left the ith buffer on its
path by time step t − d*wr+ + i*wr+. It therefore arrived at its destination by time
step t − d*wr+ + d*wr+ = t (since the length of its path is at most d, and all its
“arrival times” are earlier than t, so the induction hypothesis holds). It follows that
any packet that can delay packet p from going over edge e must be injected at time
step t− d*wr++ 1 or later. Now assume towards a contradiction that packet p is still
at the tail of edge e at the end of time step t + *wr+. That is, there are *wr+ other
packets that crossed edge e in [t + 1, t + *wr+]. As before, this identifies *wr+ + 1
distinct packets that require edge e and are injected by the end of time step t; any
packet injected after t will not delay p since the protocol is a time priority protocol.
However, we know that any packet injected by time step t − d*wr+ already left the
network by the end of time step t. Therefore those *wr++ 1 packets must have been
injected in [t−d*wr++1, t]. There are *wr+d time steps in this interval; therefore the
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number of packets that require e and can be injected during this interval is bounded
by %dr& *wr+. Since r ≤ 1/d this is at most *wr+, a contradiction.

We now show that similar results hold when the adversary is allowed to initiate the
system with an arbitrary set of packets in the network. In this case, the requirement
for the rate is that it is less than (rather than at most) 1/(d + 1) (or 1/d for time
priority protocols). This follows from the fact that if an adversary starts the system
with some initial set of packets and then injects packets as a (w, r) adversary, then
the same sequence of packets can be given by an adversary that starts the system
with an empty initial configuration and then injects packets as a (w∗, r∗) adversary
for any r∗ > r and an appropriately chosen w∗. In the following we call an initial
configuration an S-initial-configuration, for S ≥ 0, if S is the maximum, over the
edges e ∈ E, of the number of packets requiring e, in the initial configuration. We
now give the following observation.

Observation 4.4. Any sequence of packets given by a (w, r) adversary that starts
with an S-initial-configuration can be given by a (w∗, r∗) adversary that starts with a
0-initial-configuration (i.e., with empty buffers) for any r∗ > r and w∗ = %S+w+1

r∗−r &.
Proof. We show that indeed a (w∗, r∗) adversary can inject the same sequence of

packets without the need of an initial nonempty configuration. The new adversary
will start with an empty configuration, will inject the packets of the initial state in
time step 1, and will later inject in every time step t the same packets that the old
adversary injected in time step t−1. By construction the new adversary starts with an
empty configuration. It remains therefore to show that it is a valid (w∗, r∗) adversary.

To see that we show that in every consecutive w∗ time steps the adversary injects
at most *w∗r∗+ packets requiring any particular edge. We first note that

*w∗r∗+−w∗r > w∗r∗−1−w∗r = w∗(r−r∗)−1 =

⌈
S + w∗ + 1

r∗ − r

⌉
(r−r∗)−1 ≥ S+w .

Therefore,

*w∗r∗+ > S + w + w∗r ≥ S + wr + w∗r ≥ S +

⌈
w∗

w

⌉
*wr+ .

We have two types of time intervals: one time interval that includes time step
1 (i.e., [1, w∗]) and any other time interval of w∗ consecutive time steps. For the
latter case, the new adversary injects in some time interval [τ, τ + w∗ − 1] the same
packets as the old adversary injected in time interval [τ −1, τ −1+w∗−1]. For every
edge e the maximum number of packets requiring e injected by the (w, r) adversary
is at most %w

∗

w &*wr+, so the new adversary does not violate its constraints. For time
interval [1, w∗], the number of packets requiring any particular edge given by the
(w, r) adversary, either in the initial configuration or the first w∗ time steps, is at
most S + %w

∗

w &*wr+.
The following two corollaries now follow immediately from the above observation

and from Theorems 4.1 and 4.3.
Corollary 4.5. For any network, if the system is started with an S-initial-

configuration, the sequence of packets is injected by a (w, r) adversary with r < 1/(d+
1) and the schedule is a greedy schedule, then no packet stays in the same buffer more
than *%S+w+1

1
d+1−r

& · 1
d+1+ time steps.

Corollary 4.6. For any network, if the system is started with an S-initial-
configuration, the sequence of packets is injected by a (w, r) adversary with r < 1/d
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and the protocol is a time priority protocol, then no packet stays in the same buffer
more than *%S+w+1

1
d−r

& · 1
d+ time steps.

5. Conclusions. In this paper we show upper and lower bounds on the rates at
which FIFO is stable. These results improve upon previous bounds [4, 11, 15]. We
note that our lower bounds use shortest-paths (and hence noncircular) routes.

We also show that any greedy protocol is always stable against a (w, r) adversary
for r < 1/(d + 1), where d is the length of the longest route used (or r < 1/d for a
certain class of protocols). Results in [7] show that the protocol FTG (and in fact
also LIFO and NTS) can be unstable for arbitrarily low rates. The proofs there use a
network and a set of paths such that in order to show that FTG is unstable for rate
r, packets with paths of length 16/r are used. In view of these results, our bounds on
r, in terms of d, are optimal up to a small constant factor. Furthermore, our stability
results indicate that in order to show that FIFO can be unstable at arbitrarily low
rates, one would need correspondingly long paths for the packets, as opposed to the
(small) constant size networks (and hence constant size packet routes) used to prove
previous results on the instability of FIFO.

The technique we use for the instability result, of constructing gadgets and chain-
ing them, can be applied to various gadgets. For example, one can extract a gadget
structure from the constructions of [4] or [11], compose them as in Theorem 3.17,
and improve on the original bounds. Conceptually, our lower bound consists of two
elements: the chain idea and a “good” gadget. We believe that this technique may
lead to further improvements.

Appendix: Asymptotic bounds for Lemma 3.6. In this appendix we give
asymptotic bounds for the parameters n and S0 used in Lemma 3.6. Specifically, we
show the following. Let ε > 0 be given. We define the following quantities:

r =
1

2
+ ε ,(5.1)

Ri =
1− r

1− ri
for all i ≥ 0 ,(5.2)

n = max

(
log ε− 2

log r
, 1− 1

log r

)
,(5.3)

S0 = max

(
2n,

n

2(Rn −Rn+1)

)
.(5.4)

We prove that n = Θ(log 1
ε ) and S0 = Θ(nr−n) = Θ(1

ε log 1
ε ) when ε→ 0+ (i.e., since

all quantities are functions of ε, we may consider the case when ε→ 0+).
We remark that in what follows we do not attempt to get tight constant factors.

We use only crude estimates that, however, allow us to prove tight asymptotic bounds.
We start with n. Note first that by (5.1), log ε < log r, and hence log ε − 2 <

log r − 1. For ε < 1
2 , we also have log r < 0, and hence log ε−2

log r > 1 − 1
log r . It follows

from (5.3) that for ε < 1/2, n = log ε−2
log r . Moreover, for 0 < ε < 1/

√
2− 1/2, we have

1/2 < r < 1/
√

2, and therefore

log ε− 2

−1
< n <

log ε− 2

−1/2
.

The latter bounds are equivalent to

log
1

ε
+ 2 < n < 2 log

1

ε
+ 4 ,(5.5)
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and hence, for ε→ 0+, we have that

n = Θ

(
log

1

ε

)
.(5.6)

We now consider S0. To show the claim, we bound S0 for 0 < ε < 1/4. We start
by estimating the difference Rn −Rn+1. Using (5.2) we have

Rn −Rn+1 =
1− r

1− rn
− 1− r

1− rn+1

=
(1− r)(1− rn+1)− (1− r)(1− rn)

(1− rn)(1− rn+1)

=
1− rn+1 − r + rn+2 − 1 + rn + r − rn+1

(1− rn)(1− rn+1)

= rn · 1 + r2 − 2rn+1

(1− rn)(1− rn+1)
.(5.7)

Using (5.7), we bound (Rn − Rn+1)/rn from both sides by constants as follows. For
0 < ε < 1/4 we have 1

2 < r < 3
4 , and by (5.5) we have n > 4. Hence

1 < 1 + r2 − 2rn+1 <
1 + r2 − 2rn+1

(1− rn)(1− rn+1)
<

1 + r2 − 2rn+1

1
4

< 8 .(5.8)

Therefore, Rn − Rn+1 = Θ(rn) for ε → 0+. Moreover, for 0 < ε < 1/32 we have by
(5.7), (5.8), and (5.5) that Rn −Rn+1 < 1

4 , and hence 2n < n
2(Rn−Rn+1)

. It therefore

follows from (5.4) that for ε→ 0+,

S0 =
n

2(Rn −Rn+1)
= Θ(nr−n) ,(5.9)

as desired. Finally, note that by (5.3) we have that for ε < 1/2,

nr−n = nr−
log ε−2
log r = 4n2− log ε =

4n

ε
.(5.10)

Combining (5.6), (5.9), and (5.10), we conclude that S0 = Θ
(

1
ε log 1

ε

)
for ε→ 0+.
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