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Abstract. We consider distributed algorithms for approximate maximum matching on general
graphs. Our main result is a randomized (4 + ǫ)-approximation distributed algorithm for maximum
weighted matching, whose running time is O(log n) for any constant ǫ > 0, where n is the number
of nodes in the graph. This is, to the best of our knowledge, the first log-time distributed algorithm
that achieves constant approximation for maximum weighted matching on general graphs.

In addition, we consider the dynamic case, where nodes are inserted and deleted one at a time. For
unweighted dynamic graphs, we give a distributed algorithm that maintains a (1 + ǫ)-approximation
in O(1/ǫ) time for each node insertion or deletion, for any constant ǫ > 0. For weighted dynamic
graphs we give a constant-factor approximation distributed algorithm that runs in constant time for
each insertion or deletion.
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1. Introduction. The maximum matching problem is undoubtedly one of the
most basic problems in computer science and graph theory [12]. In its unweighted
version we are given an unweighted graph, and the goal is to find a matching (a set
of disjoint edges) of maximum cardinality. In the weighted version, the edges of the
graph have positive weights, and the goal is to find a matching in the graph which
maximizes the sum of its edge-weights. This version is usually referred to as the
maximum weighted matching problem.

For the centralized setting of the problem, Edmonds gave more than forty years
ago the first centralized polynomial time algorithms for maximum matching, and for
maximum weighted matching, on general graphs [3, 4]. More than twenty years ago,
a randomized distributed algorithm for maximal unweighted matching (and thus a
2-approximation for maximum unweighted matching) was given in [8]. The expected
running time of this algorithm is O(log n) rounds (and this occurs also with high prob-
ability), where n is the number of nodes in the graph.1 Only much more recently,
Wattenhofer and Wattenhofer [14] presented distributed algorithms for computing
approximate maximum weighted matchings: For trees, they give a 4-approximation
algorithm that runs in constant time, and for general graphs, they give a randomized
algorithm that runs in O(log2 n) time, and with high probability achieves approxi-
mation factor 5. Subsequently, in [9] it was proved that any (possibly randomized)
distributed algorithm that approximates maximum matching to within a constant
must have running time Ω(

√

log n/ log log n). This lower bound holds regardless of
the size of the messages used by the algorithm.

In this paper, we give a distributed algorithm for general weighted graphs that
(with high probability) approximates the maximum weighted matching to within a
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factor of 4 + ǫ and has (deterministic) running time of O(ǫ−1 log ǫ−1 log n), for any
given ǫ > 0. Our result is, to the best of our knowledge, the first log-time distributed
algorithm that gives constant-approximation for weighted matching on general graphs.
Our algorithms for this case use messages of constant size.

We also consider the model of dynamic graphs. In this model, nodes (with all
their incident edges) are inserted and deleted one at a time. We present a distributed
algorithm which maintains a (1 + ǫ)-approximate unweighted matching in O(1/ǫ)
time per insertion or deletion, for any given ǫ > 0. For weighted graphs we present
a distributed algorithm that maintains a constant-approximation weighted matching,
and runs in constant time per insertion or deletion. Our algorithms for the dynamic
case are deterministic.

Related work. Maximum matching is a classical optimization problem that was the
target of extensive research (see [1, 12]). A number of papers studied the problem from
the distributed algorithms perspective. As mentioned above, a distributed algorithm
for unweighted maximal matching in general graphs was given in [8]. More recently,
a distributed approximation algorithm for weighted matching in general graphs was
given in [14]. In addition, Hoepman [5] gave a deterministic distributed O(n)-time
algorithm that achieves 2-approximation for weighted matching on general graphs.
Hoepman et al. [6] gave an (expected) (2 + ǫ)-approximation distributed algorithm
for unweighted matching on trees, that runs in O(1/ǫ) time. An O(log4 n) time
deterministic distributed algorithm for 1.5-approximation of maximum unweighted
matching was given in [2]. Finally, we note that subsequent to the initial publication of
our work [11], further improvements to the approximation factors of logarithmic-time
distributed algorithms for weighted and unweighted matching were presented in [10].
Specifically, [10] gives a distributed algorithm for unweighted matching that achieves
approximation ratio of 1 + ǫ for any ǫ > 0, in time logarithmic in n (but exponential
in 1/ǫ), and a distributed algorithm for weighted matching with approximation ratio
2 + ǫ (for any ǫ > 0) in time logarithmic in n (and polynomial in 1/ǫ). Furthermore,
a distributed algorithm for weighted matching with approximation ratio of 1 + ǫ (for
any ǫ > 0) in time polylogarithmic in n (and polynomial in 1/ǫ) is given; however this
algorithm may use messages of linear size.

Organization. The remainder of this paper is organized as follows. In Section 2
we describe our model. In Section 3 we present algorithms for the static case, and
in Section 4 we give algorithms for the dynamic model. Some conclusions appear in
Section 5.

2. Model. We consider the standard synchronous message passing distributed
model of computation (cf., [13]). The system is modeled as an undirected graph
G = (V, E), |V | = n, |E| = m, where nodes represent processors and edges represent
bidirectional communication links. Time progresses in synchronous rounds, where in
each round each processor may send (possibly different) messages to its neighbors. All
messages sent are then received and processed in the same round by their recipient
nodes. Processors may have unique identifiers of O(log n) bits.

For the purpose of defining weighted matching, edges may have weights, where
the minimum possible weight is defined to be 1. We denote by w(e) the weight of
edge e.

3. Weighted Matchings in Static Graphs. In this section we define a dis-
tributed algorithm that computes (with high probability) a weighted matching in
general graphs whose approximation factor is arbitrarily close to 4. For any fixed
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Fig. 3.1. Example of a partition of edge weights on a logarithmic scale. Classes are demarcated
by bold lines. Each class includes weights in the range w to w(1+1/ǫ) for some w, and each subclass
includes weights in the range w to w(1 + ǫ) for some w.
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Fig. 3.2. The weight classes rearranged. Vertically aligned subclasses are run in parallel:
starting with the heaviest subclasses (⋆, k − 1) and ending with the lightest subclasses (⋆, 0).

approximation ratio the running time of our algorithm is O(log n). For completeness
we give at the end of Section 4 a simpler algorithm that also runs in O(log n) time,
but achieves an approximation ratio of 27.

Preliminaries. Suppose that we wish to find a (4 + ǫ′)-approximation to the maxi-
mum weighted matching, for some given ǫ′ > 0. For reasons of convenience of notation,
we actually give below an algorithm whose approximation ratio is 4 + 5ǫ, for ǫ = ǫ′

5 .
We henceforth use ǫ exclusively.

Given ǫ, we define the following parameters:

α
def
= 1 + 1

ǫ
β

def
= α

α−1 = ǫ + 1

In what follows we assume, without loss of generality, that 1/n ≤ ǫ ≤ 1/2: if we are
given ǫ > 1/2, we run the algorithm with ǫ = 1/2; and if we are given ǫ < 1/n, we run
the algorithm of Hoepman [5] that runs in O(n) = O(1

ǫ
) time, getting approximation

factor 2.
We partition the edge set according to edge weights by a two-level hierarchy as

follows (see Figure 3.1). We define weight classes, where for i ≥ 0, class i includes
all edges e with w(e) ∈ [αi, αi+1). Let Ei denote the set of all edges of weight class

i. Each class is further divided into k
def
=
⌈

logβ α
⌉

subclasses, where the jth subclass
of class i, for 0 ≤ j < k, is denoted subclass (i, j). Subclass (i, j) contains all edges
of class i whose weights are in [αi ·βj , αi ·βj+1).2 Let Ei,j denote the set of edges of
subclass (i, j). We denote the highest non-empty class number in the graph by W .

3.1. The Algorithm. Overview. Our approach is to reduce the weighted
case to multiple instances of the unweighted case. Roughly speaking, the idea is to
run a black-box distributed (possibly Monte Carlo) algorithm for computing maximal

2Note that since subclass (i, k − 1) is contained in class i, its weight range is [αi ·βj , min{αi ·
βj+1, αi+1}).
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matching on each subclass separately. In what follows we call this black-box algorithm
UWM (for UnWeighted Matching). It is not hard to see that if we run UWM on
the subclasses sequentially, from the heaviest to the lightest, deleting all matched
nodes from consideration after every invocation of UWM, we get an approximation
factor of 2β = 2 + 2ǫ, but the running time of such an algorithm is linear in the
number of subclasses (times the running time of UWM). On the other hand, if we run
many instances of UWM in parallel, the result is not necessarily a matching. In our
algorithm, we balance the serial and the parallel invocations of UWM as follows.

We run a series of iterations, where in each iteration we run many instances of
UWM (see Figure 3.2). In the first iteration, we run, in parallel, a set of independent
instance of UWM, one instance for each of the heaviest subclass of each class; in the
second iteration, we run in parallel an independent instance of UWM on each of the
second-heaviest subclasses; etc. Nodes matched in an execution of UWM on class
(i, j) are removed from subsequent invocations of UWM on all subclasses of class i
(but not from other classes, see below). This ensures that by the end of all UWM
invocations, the collection of edges selected from each class is a matching (in fact,
it is a 2β-approximation of the maximum weighted matching of that class). It then
remains to resolve conflicts between edges selected from different classes. To this end,
we run a distributed algorithm that repeatedly selects heaviest edges and deletes their
incident edges. This is run for a logarithmic number of iterations. We prove that the
weight of the resulting matching is at least a (1/4 − ǫ)-fraction of the weight of the
maximum weighted matching.

Detailed description. To formally specify the algorithm, we conceptually decom-
pose the graph as follows. We define the component graph Gi,j to consist of all edges
from subclass (i, j), and all their endpoint nodes. Note that a node in the original
graph may be replicated in many component graphs.

The algorithm consists of two stages. In the first stage (specified in Figure 3.3),
we run k =

⌈

logβ α
⌉

iterations (recall that k is the number of subclasses in a class).
In iteration ℓ ≥ 1, we compute an unweighted maximal matching in each of the
component graphs G⋆,k−ℓ. That is, an iteration consists of multiple instances of UWM
running in parallel, where instance i of UWM in iteration ℓ computes an unweighted
maximal matching in Gi,k−ℓ. Note that we can run independent instances of the
algorithm in parallel because component graphs have disjoint edge sets. After all
instances of UWM in iteration ℓ terminate, we proceed as follows. For every i and
every j < k − ℓ, we remove from all component graphs Gi,j all nodes that were
matched in iteration ℓ in Gi,k−ℓ. We then proceed to iteration ℓ + 1. It is important
to note that the algorithm processes the subclasses in decreasing order within each
class.

Let A denote the set of all edges that are selected by the algorithm at the end
of the first stage. Note that A is not necessarily a matching in the original graph,
because an original node may be replicated several times in various component graphs.
In the second stage we distill a matching from A as follows. Partition the edges of
A according to weight classes. Let Ai denote the set of edges from weight class i in
A. Observe that in A, a node may have at most one incident edge from each Ai.
This is because two edges from the same class are either in the same subclass, in
which case the correctness of UWM ensures that they are not both selected to A,
or else they are from different subclasses, in which case the first one to be selected
eliminates the other. Suppose now that a node v has more than one incident edge
in A. Naturally, we would like its heaviest incident edge from A, say (v, u), to be
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Algorithm STAGE 1
for all i, j do initialization

let the component graph Gi,j consist of
the edges in Ei,j and their endpoints;

A ← ∅;
for ℓ← 1 to ⌈logβ α⌉ do iteration ℓ

for all i do in parallel
Mi,k−ℓ ← UWM(Gi,k−ℓ)
for all j < k − ℓ do

remove from Gi,j all nodes matched in Mi,k−ℓ (together with their incident edges)
A ← A∪

⋃

i Mi,k−ℓ;

Fig. 3.3. The first stage of the algorithm.

Algorithm COMBINE (for node v) (Stage 2)

Mark all v’s incident edges in A as “eligible.” initialization
for r ← 1 to 3⌈logα n⌉ do iteration r

Let ev be the highest-weight “eligible” edge incident to v.
Send “request” on ev.
if received “request” on ev then

(1) Output ev as part of the matching.
(2) Send “not eligible” on all other eligible edges.
(3) Halt (locally).

for each incident edge e do

if “not eligible” message was received on e then

mark e as “not eligible”.

Fig. 3.4. Algorithm COMBINE for the second stage of the algorithm.

in the final output. We say in this case that (v, u) ‘dominates’ the other edges from
A incident to v. In algorithm COMBINE, specified in Figure 3.4, the idea is to find
edges that dominate all their incident edges, at both their endpoints (this fact can
be established in constant time). However, in the case of a long ‘dominance chain,’
(where an edge dominates on one of its endpoints, and is dominated on the other
endpoint) only the last (heaviest) edge in the chain is selected, while every other edge
could be selected. To extract more weight form such chains, we iterate the procedure:
after selecting the edges that are dominating on both their endpoints, we delete them
together with their adjacent nodes, and again select edges that are dominating on
both endpoints. We repeat this procedure a logarithmic number of times.

3.2. Analysis. We now proceed to analyze the algorithm. The following concept
is useful.

Definition 3.1. Let A be a set of edges, let M ⊆ A be a set of disjoint edges,
and let δ ≥ 1. M is said to be δ-greedy maximal with respect to A if for each edge
e ∈ A we have either

• e ∈M , or
• there is an edge e′ ∈ M such that e and e′ share an endpoint, and w(e′) ≥

w(e)/δ.



6 Z. Lotker, B. Patt-Shamir, and A. Rosén

Note that for unweighted graphs, i.e., graphs where all edge-weights are the same,
a δ-greedy maximal matching, for any δ ≥ 1, is just any maximal matching.

The following lemma states the crucial property of Stage 1. Recall that Ei is the
set of all class-i edges, and that Ai = A ∩ Ei.

Lemma 3.2. Assume that all UWM instances in Stage 1 output a maximal match-
ing. Then by the end of Stage 1 of the algorithm, for each class i, Ai is β-greedy
maximal with respect to Ei.

Proof: Let Aℓ
i denote the set of class-i edges that were added to A by the end of

iteration ℓ, ℓ ≥ 1 . We show for each class i, by induction on ℓ, that Aℓ
i is β-greedy

maximal with respect to the edges of Bℓ
i

def
=
⋃

j≥k−ℓ Ei,j . The base case ℓ = 1 follows

from the correctness of the UWM algorithm: A1
i is just a maximal matching in the

component graph Gi,k−1, and Bℓ
i is exactly the edge set of Gi,k−1. For the inductive

step, assume that the invariant holds for ℓ−1, and consider ℓ. First we claim that Aℓ
i

does not contain intersecting edges. This is true for edges in Aℓ−1
i by induction; edges

added in iteration ℓ do not intersect each other by the correctness of UWM; and edges
added in iteration ℓ do not intersect edges in Aℓ−1

i due to the removal, at the end of
each iteration, of edges intersecting with edges picked during that iteration. We now
prove that Aℓ

i is β-greedy maximal w.r.t. Bℓ
i . Let e ∈ Bℓ

i . If e ∈ Aℓ
i we are done.

Otherwise, by the correctness of UWM, it must be the case that either (1) e was not
present in the graph on which the UWM ran in iteration ℓ, or else (2) e intersects
one of the edges added to Ai in iteration ℓ. In both cases, e must intersect an edge
e′ ∈ Bℓ

i whose subclass is not smaller than the subclass of e. The result follows: if e′

is in a higher subclass, then w(e′) > w(e), and if e′ is in the same subclass as e, then
w(e′) ≥ w(e)/β (in fact, w(e′) > w(e)/β).

Lemma 3.2 establishes the relation induced by the sequential nature of the itera-
tions. We now proceed to analyze Algorithm COMBINE, which manages the results
of the parallel executions within an iteration. First note that by the code, for any
edge e = (u, v) and any time, either (a) e is “eligible” on both its endpoints v and u,
or (b) one of its endpoints has halted, and e is “not eligible” on the other endpoint, or
(c) both its endpoints have halted. We can therefore talk about “not eligible” edges
(situations (b) and (c)), and “eligible” edges (situation (a)). This is formalized in the
following definition.

Definition 3.3. For any given time, an edge e is eligible if the nodes on both
its endpoints are active, and edge e is marked in both of them as eligible. Otherwise,
edge e is not eligible.

We note that when the algorithm starts all edges are eligible. We now have the
following straightforward property.

Claim 3.4. If an edge e of class i becomes “not eligible” at some point in Algo-
rithm COMBINE, then there is another edge e′ such that (1) e′ is incident to e, (2)
e′ is of class i′ > i, and (3) e′ is in the output of COMBINE.

Proof: Directly from the code of COMBINE. Assertions (1) and (3) follow since an
edge e becomes “not eligible” only when an incident edge e′ is chosen to the output.
An edge e′ is chosen to the output when both its endpoints send a “request” message.
In particular, the node where e and e′ intersect sends a “request” message on e′ when
e was eligible, which means that e′ has higher weight than e, proving assertion (2).

We now state the main loop invariant of COMBINE.

Lemma 3.5. Let W be the highest non-empty class in the graph, and let r ≥ 1.
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After iteration r of Algorithm COMBINE, for all i > W − r, every edge e ∈ Ai is
either output by COMBINE, or e intersects another edge e′ output by COMBINE,
and e′ ∈ Ai′ for some i′ > i.
Proof: We proceed by induction on r. We prove the following slightly stronger
invariant: Let M be the output of COMBINE. After iteration r ≥ 0 the following
hold:

(1) There is no eligible edge of class i > W − r; and

(2) for any edge e ∈
⋃W

i=W−r+1 Ai, either e ∈M , or it intersects an edge e′ ∈M
s.t. e′ is in a weight class higher than the weight class of e.

The basis of the induction, r = 0, is trivial: by assumption, (1) the maximum weight

class in the graph is W , and (2)
⋃W

i=W+1 Ai is empty. For the inductive step, let
r ≥ 1. We first claim that if there is an eligible edge e ∈ AW−r+1 when iteration r
starts, then e is added to the output M during iteration r. This follows since by the
induction hypothesis (applied to r−1) there are no eligible edges of classes higher than
W − r + 1, and hence by the code of COMBINE, both endpoints of e will select e as
their heaviest eligible edge. Thus e is added to the output M . It follows immediately
that e becomes “not eligible” by the end of iteration r, and this, together with the
induction hypothesis, proves that Part (1) holds after iteration r.

For Part (2), let e ∈
⋃W

i=W−r+1 Ai. We consider three cases. First, if e ∈
⋃W

i=W−r+2 Ai, we are done by the induction hypothesis. Second, if e ∈ M , Part (2)
of the invariant clearly holds. The only remaining case is when e ∈ AW−r+1, and e is
not chosen to the output before or at iteration r. As proved above, if e were “eligible”
at the beginning of iteration r, it would have been chosen at iteration r. Hence, e is
not eligible when iteration r starts. By claim 3.4, e intersects an edge e′ which is in
class i′ > W − r + 1 and is in M .

We can now prove the approximation factor of our algorithm.
Theorem 3.6. Assume that for all i ≥ 0, Ai is β-greedy maximal with respect

to Ei. Let M be the matching that algorithm COMBINE outputs, and let M be any
matching in the graph. Then

w(M) ≤ (4 + 5ǫ)w(M) .

Proof: We first bound from above the total weight of edges fromM in “light” classes,
and then bound from above the weight of the edges ofM is “heavy” classes.

Let W be the highest non-empty class in the graph. Let X be the total weight of
edges in M which are in the top 3⌈logα n⌉ classes, i.e, in classes i > W − 3⌈logα n⌉.
Let Y denote the weight of the remaining edges inM, so X + Y = w(M). Note that
Y ≤ n

2 · α
W−3⌈log

α
n⌉+1. Now, w(M) ≥ αW because M includes at least one edge

from the top weight class, and since ǫ > 1
n

we have that

Y ≤
1

n
· w(M) ≤ ǫ · w(M) .(3.1)

We now turn to bound X , the weight of edges e ∈ M which are in classes
i > W − 3⌈logα n⌉. To this end, we construct the following charging scheme, that
maps each such edge e ∈ M to an edge f(e) ∈ M . Suppose e ∈ M belongs to class
i. Then f(e) ∈M is defined as follows.

(1) If e ∈ Ai:
(1a) If e ∈M , then f(e) = e.
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Fig. 3.5. Example of the charging scheme. All thick edges are from the matching M and are
mapped to the dashed edge a from M . The edges e and e′ (case 1b) cannot be from a subclass higher
than a, and the edges gi and hi (case 2b) must belong to classes strictly lower than a’s. Furthermore,
no two gi edges belong to the same class, and no two hi edges belong to the same class.

(1b) If e /∈ M , then by Lemma 3.5, at least one of the endpoints of e is
matched in M with an edge e1 of class i′ > i (if there are two such
edges, pick one arbitrarily). In this case, we define f(e) = e1.

(2) If e /∈ Ai, then, since Ai is a maximal matching in Ei, it must be the case that
at least one of the endpoints of e is shared with an edge e2 ∈ Ai (if there are
two such edges, pick one arbitrarily). In this case, we define f(e) similarly to
Case 1 with e2 playing the role of e:
(2a) If e2 ∈M , then f(e) = e2.
(2b) If e2 /∈ M , then by Lemma 3.5, at least one of the endpoints of e is

matched in M with an edge e3 of class i′ > i (if there are two such
edges, pick one arbitrarily). In this case, we define f(e) = e3.

The situation is summarized in Figure 3.5, showing which edges ofM are mapped to
an edge of M .

Let us now bound from above the weight assigned to each edge a ∈ M , as a
function of the weight of that edge, w(a). By definition of the mapping f , an edge
a ∈ M is assigned the weight of an edge e ∈ A only if they share an endpoint (Case
1). An edge a is assigned the weight of an edge e /∈ A from class i (Case 2) only if
they share an endpoint, or if there is an “intermediate” edge e′ ∈ Ai which intersects
both a and e.

Each endpoint of a ∈ M is additionally the endpoint of at most a single edge
e ∈ M. Thus an assignment from a neighboring edge can add, for each endpoint of
a, at most the weight β · w(a): the assigned weight is at most w(a) if the edge e is
the same as a (Case 1a) or the class of a is higher than the class of e (Case 1b). The
assigned weight is at most β · w(a) if e and a are not the same edge and are in the
same class (Case 2a) since Ai is β-greedy maximal by Lemma 3.2. Note that the class
of a cannot be smaller than the class of e by Lemma 3.5.

We now consider the “indirect” assignments of Case 2b. Note that for each
endpoint of a there can be at most one edge from each Ai that contains this endpoint.
All edges e mapped to a by Case 2b must be from classes strictly lower than the class
of a. Therefore the total weight mapped to a by Case 2b, per endpoint, is at most

w(a) ·
∞
∑

s=0

α−s = w(a) ·
α

α− 1
= w(a)β .

We can therefore conclude that the total weight assigned to edge a by edges
of M that intersect a is at most 2β · w(a), and that the total weight assigned to
edge a by edges of M that do not intersect a is at most 2β · w(a). The total is at
most 4β · w(a). Summing over all edges, and combining with Eq. (3.1), we get that
w(M) = X + Y ≤ ǫ · w(M) + 4β · w(M) = (4 + 5ǫ)w(M).
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The next theorem states the running time of our algorithm.
Theorem 3.7. The running time of the algorithm is O(log n/ log 1

ǫ
+(1

ǫ
log 1

ǫ
)TUWM),

where TUWM is the running time of each invocation of UWM.
Proof: The number of iterations in the first stage is k = ⌈logβ α⌉, and each iteration
takes TUWM rounds. Now, since 0 < ǫ ≤ 1/2, we have that

logβ α =
lnα

lnβ
=

ln(1 + 1
ǫ
)

ln(1 + ǫ)
≤

2 log 1
ǫ

ǫ
.

It follows that the total running time of the first stage is O((1
ǫ
log 1

ǫ
)TUWM), for 0 <

ǫ ≤ 1/2. The number of iterations in the second stage is ⌈3 logα n⌉ = O(log n/ log 1
ǫ
)

for 0 < ǫ ≤ 1/2, and each iteration takes constant time.

As mentioned above, the algorithm that computes maximal unweighted matching
(denoted UWM) is treated as a black-box. To be useful within our algorithm, this
black-box algorithm must have a deterministic upper bound on its running time. We
denote this upper bound TUWM: after TUWM rounds, all nodes output which of their
incident edges is in the maximal matching, and the next iteration can start. As for
its correctness, it is sufficient that UWM computes a maximal matching with high
probability

Finally, to get our result we plug the algorithm of [8] as the black-box imple-
mentation of UWM, where TUWM is O(log n), and the probability of success of each
invocation is set to at least 1− 1

n4 (see Section 3.3 below). Note that the total number
of invocations of UWM is upper-bounded by

(

n
2

)

, because there can be at most |E|
non-empty subclasses. Hence we have from the union bound that the probability that
no UWM invocation fails is at least 1− 1/n2. We thus arrive at the top-level result
of this section.

Corollary 3.8. Let ǫ > 0. Our algorithm for weighted matching, using the
unweighted maximal matching algorithm of [8] as an implementation of UWM, runs
in time O(ǫ−1 log ǫ−1 log n), and with high probability finds a matching whose weight
is at least 1/(4 + ǫ) of the maximum weighted matching.

We note that the algorithm uses messages of constant size.
Remark: For completeness, we note that an extension of the algorithm of [14] yields
(with high probability) approximation factor 2+ǫ in O(ǫ−1 log2 n) deterministic time,
for any constant ǫ > 0, assuming that the largest edge weight is known. Without loss
of generality we assume that 1/n ≤ ǫ ≤ 1/2 (cf. comments above). Briefly, the idea is
to divide the edges into weight classes of the form [(1 + ǫ)i, (1 + ǫ)i+1), and then run
a UWM algorithm on each class in descending order of weights. The algorithm starts
with the highest non-empty class, and goes down for 3⌈log1+ǫ n⌉ classes. After each
execution of UWM, all edges selected by UWM are output, and they are removed
along with all their incident edges. We use the algorithm of [8] as an implementation
of UWM by running it for O(log n) time, ensuring that each invocation computes a
maximal matching with probability at least 1 − 1

n4 (see Section 3.3 below). We get
a randomized algorithm with (deterministic) running time of O(log1+ǫ n · log n) =

O(ǫ−1 log2 n). Since the number of nonempty edge classes is at most
(

n
2

)

, using the
Union Bound we get that the probability that all invocations of UWM compute a
maximal matching is at at least 1− 1

n2 . In this case, the weighted matching computed
by the algorithm is within a factor of 2 + 3ǫ of the maximum weighted matching: it
is a 2(1 + ǫ) approximation with respect to the maximum weighted matching of the
highest 3 log1+ǫ n edge classes; the weight lost in the remaining classes represents at
most an ǫ fraction of the weight of the computed matching (since 1/n ≤ ǫ).
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3.3. Implementation of UWM. We implement UWM using the randomized
algorithm of [8], which we call below “Algorithm RMM” (for Randomized Maximal
Matching). To complete the analysis, we argue about using Algorithm RMM in our
algorithm. The following proposition is a direct consequence of the main argument of
[8].

Proposition 3.9. Let G be a graph with at most m edges. There exists a constant
c > 0 such that for any x ≥ 1, if Algorithm RMM is run for x · c log m rounds, then
it outputs a maximal matching with probability at least 1−m−x.

Proposition 3.9 proves the following lemma.
Lemma 3.10. Let G be a graph with at most n nodes. There exists a constant

γ > 0 such that if we implement UWM as algorithm RMM with TUWM = γ log n, then
the output of UWM is a maximal matching with probability at least 1− 1

n4 .
Proof: In our algorithm, all invocations of UWM are run on component graphs.
Obviously, the number of edges in any component graph is at most

(

n
2

)

< n2/2.
Therefore, when implementing UWM by Algorithm RMM, we have from Proposition
3.9 (by taking m = n2, and x = 2), that there exists a constant γ > 0 such that if
we run Algorithm RMM for γ log n rounds, the output is correct (i.e., the output is a
maximal matching) with probability at least 1− 1/n4.

4. Dynamic graphs. In this section we consider dynamic graphs. In this model,
the input is a sequence of topological changes; without loss of generality, we assume
that each topological change is either the insertion or the deletion of a single node
along with its incident edges (edge insertion and deletion can be simulated by deleting
a node and re-inserting it with the new set of incident edges). After each topological
change, the system makes a computation, and outputs a local indication for each edge,
whether it is in the matching or not. We consider both the unweighted and weighted
graphs cases, and present distributed deterministic approximation algorithm for each
case.

4.1. Unweighted Dynamic Graphs. In this section we prove the following
result.

Theorem 4.1. Let ǫ > 0. There exists a distributed algorithm whose running
time per topological change is O(1/ǫ), and whose output, after processing the change,
is at least 1

1+ǫ
times the size of the maximum matching.

We need the following standard concept.
Definition 4.2. Let G = (V, E) be a graph, let M ⊆ E be a set of non-

intersecting edges in E, and let k ≥ 1. A path v0, v1, . . . , v2(k−1), v2k−1 is an augment-
ing path of length 2k − 1 with respect to M if for all 1 ≤ i ≤ k − 1, (v2i−1, v2i) ∈M ,
for all 1 ≤ i ≤ k (v2(i−1), v2i−1) /∈M , and both v0 and v2k−1 are not endpoints of any
edge in M .

Our algorithm relies on the following graph-theoretic proposition (cf., for example,
[7]).

Theorem 4.3. Let G = (V, E) be a graph, and let M ⊆ E be a set of non-
intersecting edges. Let k be a positive integer. If there is no augmenting path of
length 2k − 1 or less w.r.t. M , then the size of the largest matching in G is at most
k+1

k
· |M |.
The idea behind our algorithm is to maintain the invariant that the output never

contains augmenting paths shorter than ⌊2/ǫ⌋. This invariant implies, by Theorem 4.3,
that the size of the output matching is close to the size of the best possible matching,
as stated in Theorem 4.1. It remains to show how to maintain that invariant.
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We start with the event of node insertion. We use the following property.

Lemma 4.4. Let G = (V, E) be a graph, let M ⊆ E be a matching, and suppose
that there are no augmenting paths in G of length at most ℓ w.r.t. M . Let v′ /∈ V be
a new node, and let E′ ⊆ {v′} × V be its incident edges. Let G′ = (V ∪ {v′} , E ∪E′)
be the resulting graph. Then any augmenting path of length at most ℓ in G′ has v′ as
one of its endpoints.

Proof: Let P be an augmenting paths of length at most ℓ in G′ (if there are no
such paths we are done). First, note that P must contain v′. Otherwise, P is an
augmenting path in G of length at most ℓ, contradicting the assumption. Next, note
that v′ cannot be in the middle of P , because no edge incident to v′ is in M , and any
augmenting path w.r.t. M alternates between edges in M and edges not in M .

In our algorithm, upon the insertion of a new node v′, we search for all augmenting
paths that start with v′ and whose length is at most 2 · 1

ǫ
− 1. If no such path exists,

we are done. Otherwise, let P be the shortest such path. We augment along P , i.e.,
we switch the roles of the edges in P as follows. Let PM be the set of edges in P ∩M ,
and let PA be the set of edges in P \M . We set M ′ = M ∪ PA \ PM , and declare M ′

as the new output.

The correctness of our algorithm relies on the following key lemma, which may
be of independent interest.

Lemma 4.5. Let G be a graph, let M be a matching in G, and let ℓ be such that
there are no augmenting paths of length ℓ or less w.r.t. M in G. Let G′ be the graph
obtained from G by adding a node v′ and its incident edges. Let P be the shortest
augmenting path in G′, and suppose that |P | ≤ ℓ. Let M ′ be the matching obtained
by augmenting M along P . Then in G′ there are no augmenting paths of length ℓ or
less with respect to M ′.

Proof: Denote the nodes in P by v′, v1, v2, . . . , vn (by Lemma 4.4, v′ must be one of
the endpoints of P ). Let P ′ be any augmenting path w.r.t. M ′ in G′. If P ′ does not
contain any node from P , then P ′ is an augmenting path w.r.t. M in G, and hence
its length is more than ℓ, and we are done. Therefore suppose that P ′ shares at least
one node with P . Observe that P and P ′ must share an edge, because that node is
matched in M ′, and P (resp. P ′) contains all edges of M ′ incident to nodes in P
(resp. P ′). Fix an arbitrary orientation of P ′, and under that orientation, let vi be
the first node in P ′ which is also in P , and let vj be the last node in P ′ which is also
in P . Without loss of generality assume i < j (otherwise reverse the orientation of
P ′; equality is ruled out by the observation above).

Consider P ′. In general, P ′ may take a “detour” leaving P between vi and vj

and later return to P . Let ṽ be the node after which P ′ leaves P for the first time
(after vi), and let v̂ be the last node on that detour (i.e., P and P ′ coincide between
v̂ and vj). We proceed by case analysis, depending on whether edge (vi, vi+1) is in
M or not, and whether edge (vj−1, vj) is in M or not (as noted above, it must be the
case that j ≥ i + 1 and hence both edges must exist, but possibly they are the same
edge). There are 4 cases to consider (see Figure 4.1). In each case, we construct from
P and P ′ a new augmenting path w.r.t. M in G′ , and using the fact that P is the
shortest such path, we prove that |P ′| > ℓ.

Case 1 : (vi, vi+1) /∈ M , and (vj−1, vj) /∈ M . P ′ goes from w to vi, and from vi

it must turn to vi+1, and eventually get to vj−1 (and then to vj). Note that the last
edge on P ′ before vi is not in M ; therefore, the path v′  vi  w is an augmenting
path in G′ w.r.t. M . Since P is a shortest augmenting path in G′ w.r.t. M , then,
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Case 1:
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2

v’

a
1
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2

Fig. 4.1. Schematic representation of the cases considered in the proof of Lemma 4.5. Thick
lines denote edges in M , and dashed lines denote paths. The values a, b, c, etc., denote the number
of edges in the sub-paths indicated by the curly brackets.

using the notation in Figure 4.1, we have that it must hold that

a + d ≥ a + b1 + b2 + b3 + c ⇒ d ≥ c .(4.1)

Similarly, u vj  vn is an augmenting path in G w.r.t. M , and by assumption on
the length of the shortest augmenting path in G w.r.t. M , we have

e + c > ℓ ,(4.2)

and hence we have that

|P ′| = d + b1 + f + b3 + e ≥ c + e > ℓ ,

which proves case 1.
Case 2 : (vi, vi+1) ∈ M , and (vj−1, vj) /∈ M . As before, P ′ = w  vi  ṽ  

v̂  vj  u. The path v′  ṽ  v̂  vi  w is an augmenting path in G′ w.r.t. M ,
and since P is a shortest augmenting path in G′ w.r.t. M , we have

a1 + f + b1 + d ≥ a1 + a2 + b1 + b2 + c ⇒ f + d ≥ c .(4.3)

Similarly to Case 1, we have an augmenting path w.r.t. M in G vn  vj  u,
and hence

e + c > ℓ.(4.4)
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v2v1v’ vn

w

v3

unu4

v4

Fig. 4.2. Example showing that augmenting along the shortest augmenting path is necessary.
Bold lines denote edges in the matching.

Therefore,

|P ′| = d + a2 + f + b2 + e ≥ a2 + b2 + c + e > ℓ ,

which proves case 2.
Case 3 : (vi, vi+1) /∈ M , and (vj−1, vj) ∈ M . In this case the path v′  vi  w

is an augmenting path in G′ w.r.t. M , and by the minimality of P

a + d ≥ a + b1 + b2 + c1 + c2 ⇒ d ≥ b2 + c2 .(4.5)

Furthermore, we have that u  vj  ṽ  v̂  vn is an augmenting path in G
w.r.t. M and hence

e + b2 + f + c2 > ℓ .(4.6)

Therefore,

|P ′| = d + b1 + f + c1 + e ≥ b2 + c2 + b1 + f + c1 + e > ℓ ,

which proves case 3.
Case 4 : (vi, vi+1) ∈ M , and (vj−1, vj) ∈ M . Then the path v′  ṽ  v̂  vn is

an augmenting path in G′ w.r.t. M , and by the minimality of P

a1 + f + c2 ≥ a1 + a2 + b + c1 + c2 ⇒ f ≥ b .(4.7)

Also, the path w  vi  vj  u is an augmenting path w.r.t. M in G, and therefore

d + b + e > ℓ .(4.8)

Again, we obtain

|P ′| = d + a2 + f + c1 + e ≥ d + a2 + b + c1 + e > ℓ ,

which proves case 4.

The algorithm. Based on the above observations, the algorithm is straightforward.
We inductively assume that before any topological change there is no augmenting path
or length at most ⌊2/ǫ⌋. This is clearly true when the algorithm starts with an empty
graph. Whenever a node v′ is inserted, it initiates an exploration of the topology of
the graph up to distance 2/ǫ+1 from itself, so as to find any augmenting path (w.r.t.
the current matching M) which starts with v′, and is of length at most ⌊2/ǫ⌋. If no
such path is found the algorithm terminates. Otherwise, a shortest augmenting path
is chosen (ties broken arbitrarily), and its edges flip their role: matching edge become
non-matching edge and vice versa. Note that this algorithm uses messages that are
large enough to encode neighborhoods of radius O(1/ǫ), whose size in general may be
linear in the size of the graph.
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When a node v is deleted, there are two cases. If v was not matched, then the
algorithm terminates immediately. Otherwise, suppose that (v, v′) ∈ M for some
node v′. In this case, the algorithm re-inserts v′ using the insertion algorithm. Note
that if there are no augmenting paths of length at most ℓ in G, then there are no such
paths in G \ {v, v′}.

Importance of augmenting along the shortest path. We note that augmenting
along an arbitrary augmenting path of length at most ℓ does not preserve the invariant
that there are no augmenting paths of length ℓ or less. Consider the situation as
depicted in Figure 4.2. If the lengths of the paths v3  vn and v3  un are slightly
more than ℓ/2 edges, then the path un  v3  vn is not an augmenting path of
length ℓ or less, but v′  vn is (unless ℓ is very small). If we augment along v′  vn

instead of along v′  w, then w  un becomes an augmenting path of length ℓ or
less.

4.2. Weighted Dynamic Graphs. We now show how to maintain constant
approximation weighted matching in dynamic graphs (when the edges are weighted).
Following each topological change, our algorithm runs in constant time. In our algo-
rithm and analysis below we do not attempt to optimize the constants.

Our algorithm is based on the idea to reduce the weighted case to the unweighted
case, and apply a simplified version of the COMBINE algorithm. More formally, the
algorithm is as follows.
Algorithm WeightedDynamic

(1) We partition the edges into disjoint classes, where all edges in class i ≥ 0
have weight in [3i, 3i+1). For each such class our algorithm will maintain a
2-approximation maximum unweighted matching.

(2) When a node is inserted, it initiates the unweighted algorithm for each weight
class, according to the weights of its incident edges. The algorithms are run
with ǫ = 1, which in fact means that each new edge is added to the output
(of its class) greedily, i.e., if and only if both its endpoints are not matched
in that class. After this step we again have for each class a 2-approximation
maximum unweighted matching.

(3) After O(1) time, all algorithms terminate, and each node may have at most
one incident edge matched for every weight class. Each node then picks among
these edges, as a candidate for the output, the matched incident edge having
the highest weight class (if such edge exists).

(4) An edge is output if and only if it is chosen as the candidate by both its
endpoints.

Note that each of the weight-class algorithms works only to distance O(1/ǫ) =
O(1) from the location of the topological change, and therefore the only possible
changes in the output are in that neighborhood. It follows that Steps 3 and 4 need to
be carried out only at distance O(1/ǫ) = O(1) from the location of the change—more
remote nodes in the graph do not change their output.

Analysis. Let Ai be the output of the algorithm for weight class i, and let OPT
denote the optimum weighted matching. We start with the following simple property.

Lemma 4.6. w(OPT) < 6 ·
∑

i w(Ai).
Proof: Let OPTi be the optimum weighted matching, if only edges of class i are
considered. Then |Ai| ≥ |OPTi|/2, and for all e ∈ Ai and all e′ ∈ OPTi we have
w(e) > w(e′)/3. Therefore w(OPTi) < 6w(Ai) for each i. Summing over all weight
classes yields the claim.



Distributed Approximate Matching 15

1

1

1/3
1/3

1/3
1/3

1 e

1/9

1/9

Fig. 4.3. Trees of rejected Ai edges hanging on an edge e ∈ M (see Lemma 4.7).

Let M be the matching output by algorithm WeightedDynamic. We now give a
lower bound on the weight of M as a function of the weights of the Ai’s.

Lemma 4.7.
∑

i w(Ai) < 9
2 · w(M).

Proof: We bound the total weight of the edges that are in the Ai’s but are not in
M by mapping each such rejected edge to an edge in M . The mapping is natural:
an edge in Ai is not in M only if it is incident to an edge in Aj for some j > i.
Transitively, we have a tree of rejected Ai edges hanging on each endpoint of each
edge which is in the output matching M . We now bound the total weight in such a
tree. Let e ∈M , and denote the weight class of e by i0. On each endpoint of e there
may be at most one edge from each weight class smaller than i0 that was rejected by
e. Each such edge e′ may in turn have rejected an edge from each class smaller than
its own. By induction, it follows that the number of rejected edges from weight class
i0 − j, j ≥ 1 (per endpoint of e) is at most j. The weight of the edges in class i0 − j
is less than w(e)/3j−1, and thus we have that the total weight of one tree of rejected
edges hanging from e is strictly less than

∞
∑

j=0

w(e) ·
j + 1

3j
= w(e)

(

∞
∑

i=0

3−j

)2

= w(e) ·
9

4
.

Since there is one such tree for each endpoint of e, it follows that the total weight
rejected by e is less than w(e) · 9/2. Summing over all edges in M yields the claim.

We can now summarize with the following theorem.
Theorem 4.8. w(OPT) < 27 · w(M).

Proof: Follows from Lemma 4.6 and Lemma 4.7.

Note that all the algorithms for the various weight classes run in parallel in time
O(1/ǫ) = O(1) (since we use ǫ = 1). The combining stage runs in constant time.
If follows immediately that the running time of our algorithm is constant per node
insertion or deletion. We note that since we run the unweighted dynamic algorithms
with ǫ = 1, then each new edge is added to the unweighed matching of its class
greedily, and thus messages of constant size are sufficient for the algorithm for dynamic
weighted graphs.
Remark: We note that the above algorithm also suggests a logarithmic-time, constant-
approximation distributed algorithm for static weighted graphs as follows. Partition
the edges into classes i ≥ 0, such that class i contains exactly all edges whose weight is
in [3i, 3i+1). Run in parallel UWM within each class for O(log n) rounds. The output



16 Z. Lotker, B. Patt-Shamir, and A. Rosén

of each of these algorithms is, with probability at least 1− 1
n4 , a 2-approximation un-

weighted matching for the relevant class (cf. Section 3.3). Since there are at most
(

n
2

)

non-empty classes, all UWM executions terminate correctly with probability at least
1− 1

n2 . To obtain a single weighted matching, combine the results of these algorithms
in constant time as in algorithm WeightedDynamic (Steps 3 and 4). The analyses of
Lemmas 4.6 and 4.7 apply as is, implying an approximation ratio of 27. The running
time is obviously O(log n) rounds.

5. Conclusions. Distributed matching is a fundamental network problem, which
has been the subject of active research for decades. Yet, determining the exact com-
plexity of this problem remains an elusive target. In this paper we have narrowed
the gap between the lower and upper bounds for weighted matching. In particular,
we have given the first, to the best of our knowledge, log-time distributed algorithm
that achieves constant approximation for maximum weighted matching on general
graphs. We note that following our work, several improvements on logarithmic-time
distributed algorithms for matching were presented in [10]. However, several very
interesting questions remain open. For example, a long-standing open problem is
to find a deterministic log-time distributed algorithm for maximal matching. This
problem is in fact a special case of the maximal independent set problem, which has a
log-time randomized distributed algorithm, but no deterministic log-time algorithm is
known to work for general graphs. Another interesting question is whether maximum
weighted matching can be approximated to within a factor of 1 + ǫ for any constant
ǫ > 0 in polylogarithmic time using messages of O(log n) bits.
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