
Paid Exchanges are Worth the Price I,II

Alejandro López-Ortiza, Marc P. Renaultb,1, Adi Rosénc

aUniversity of Waterloo, Canada
bUniversity of Wisconsin – Madison, USA

cCNRS and Université Paris Diderot, France

Abstract

We consider the list update problem as defined in the seminal work on compet-
itive analysis by Sleator and Tarjan [13]. An instance of the problem consists of
a sequence of requests to access items in a linked list. After an item is accessed,
that item can be moved to any position forward in the list at no cost (a move
called free exchange), and, at any time, any two adjacent items can be swapped
at a cost of 1 (a move called paid exchange). The cost to access an item is equal
to its current position in the list. The goal is to dynamically rearrange the list
so as to minimize the total cost (accrued from accesses and exchanges) over the
request sequence.

We show a lower bound of 12/11 on the worst-case ratio between the per-
formance of an (offline) optimal algorithm that can only perform free exchanges
and that of an (offline) optimal algorithm that can perform both paid and free
exchanges. This answers the question of the asymptotic relative power of the
two models which has been open since Reingold and Westbrook [11] showed
in 1996 that Sleator and Tarjan erred in [13] when they claimed that the two
models are equivalent.

Keywords: List update problem, online computation, online algorithms,
competitive analysis, lower bounds

1. Introduction

The list update problem is one of the basic problems studied by Sleator
and Tarjan in their seminal paper that introduced competitive analysis [13]. It
consists of a linked list of ` items and a finite request sequence. Each request is
to access an item of the list. Each item access begins at the head of the list and

IA preliminary version of this paper appeared in the Proc. of the 32nd Symposium on
Theoretical Aspects of Computer Science (STACS 2015); LIPIcs 30, 636–648, 2015.

IIResearch by the second and third authors was supported in part by ANR project NeTOC.
Email addresses: alopez-o@uwaterloo.ca (Alejandro López-Ortiz),

mrenault@cs.wisc.edu (Marc P. Renault), adiro@liafa.univ-paris-diderot.fr (Adi
Rosén)

1The work was performed while the second author was at Université Paris Diderot, France.

Preprint submitted to Elsevier April 1, 2022

follows the list item by item until the requested item is reached. The cost to
access the i-th item in the list is thus i. Then, the requested item can be moved
forward in the list at no cost and such a move is called a free exchange. At any
time, two adjacent items may be swapped at a cost of 1 and such swaps are called
paid exchanges. The goal is to dynamically rearrange the list over the request
sequence so as to minimize the total cost of accesses and paid exchanges over the
request sequence. The list update problem (also called the list access problem)
was one of only two problems studied in the fundamental work on competitive
analysis of Sleator and Tarjan [13] (the other being the paging problem). It is a
fundamental problem in the area of algorithms that has been intensely studied,
particularly, due to its importance for compression algorithms [5]. For a recent
survey on the list update problem, see [9].

The question of the relative power of the two models (free and paid exchanges
versus free exchanges only) has been open for some 20 years now, and has a
number of important consequences. First, understanding the exact structure
of the optimal (offline) schedule often yields insights useful for improving the
online algorithms. Moreover, for the particular problem at hand, the question of
the existences of efficient optimal offline algorithms (i.e., whether the problem
is NP-hard or not) seems to be sensitive to the exact mode (it is known to be
NP-hard in one, and not known if so for the other).

In [13], Sleator and Tarjan present a 2-competitive online deterministic al-
gorithm called move to front (mtf) that Irani showed later to be an opti-
mal online deterministic algorithm [7]. As its name implies, mtf moves every
requested item to the front, using a free exchange. Also, in [7, 8], Irani pre-
sented the first online randomized algorithm for the list update problem; it has
a competitive ratio of 15/8. Reingold and Westbrook presented the first barely
random online algorithm called bit that has a competitive ratio of 7/4 [12].
The best known randomized online algorithm, comb, of Albers et al. [2] has
a competitive ratio of 1.6 and only uses free exchanges. The comb algorithm
randomly uses the barely random online algorithm bit [12] with a probability
of 4/5 and the non-parameterized, deterministic online algorithm timestamp
[1] with a probability of 1/5. The best known randomized online lower bound
is 1.50115 [4]. It should be noted that all the best known online algorithms use
only free exchanges [9].

The offline problem is known to be NP-hard [3]. It is not known if this
holds if only free exchanges are permitted. In [11], an algorithm that computes
the optimal schedule that uses only paid exchanges is shown to have a running
time of O(2`(`− 1)!n), where ` is the length of the list and n is the number of
requests.2 Based on the work of [11], an alternative algorithm that computes the
optimal schedule, with a running time of O(2``!f(`)+n+`n), where f(`) ≤ `!3`!,
is presented in [6].

2As we indicate later, one can assume without loss of generality that the optimal schedule
uses only paid exchanges.

2

1.1. Free vs. Paid Exchanges
In [13], Sleator and Tarjan claim that any schedule that uses paid exchanges

and free exchanges can be converted into a schedule that uses only free exchanges
without increasing the cost. This claim turns out not to be true as Reingold and
Westbrook gave the counterexample of the request sequence 〈3, 2, 2, 3〉 for a list
of length 3 with a starting configuration of 1, 2, 3 [11]. An optimal algorithm
serves this sequence at a cost of 8 by moving item 1 to the back of the list
with paid exchanges at a cost of 2, and then serving the sequence at a cost
of 6, without further changing the list. From an enumeration of all possible
schedules that use only free exchanges, it can be seen that an algorithm using
only free exchanges serves this sequence for a cost of at least 9, implying that,
in the worst case, there is at least an additive constant in the difference between
the performance of an optimal algorithm that uses only free exchanges and an
unrestricted optimal algorithm. Further, Reingold and Westbrook show that the
opposite is true: They show that an algorithm can replace the free exchanges
by paid exchanges without increasing the cost [11]. They also show that the
permitted paid exchanges can be further restricted, without increasing the cost,
to allow only “subset transfers” (see Definition 2 below).

The competitive ratio of 1.6 for the comb algorithm [1] (as described above)
implies a multiplicative upper bound of 1.6 on the worst case ratio between
the cost of an optimal algorithm restricted to free exchanges and the cost of
an unrestricted optimal algorithm, over all finite request sequences. However,
the question of the relative power of the two models remained open, and in
particular it was not known if there exists a multiplicative gap between the
performance of the optimal offline algorithm with only free exchanges, and that
of the optimal offline algorithm with paid and free exchanges (as only an additive
gap was shown by Reingold and Westbrook [11]).

1.2. Our Contribution
In this work, we compare the cost of an optimal algorithm that can only

perform free exchanges, denoted in the present paper by opt_free, and an
optimal algorithm that can use both paid and free exchanges, denoted in the
present paper by opt. We show that there is a lower bound of at least 12/11
on the worst-case ratio, over all possible finite request sequences, between the
performance of opt_free and opt. Until now, it was not known if there is
such a gap in an asymptotic sense. We answer this question in the affirmative,
thus solving the question that has been open since Reingold and Westbrook [11]
gave the counterexample to the claim of Sleator and Tarjan.

We note that all the online algorithms for the list update problem that
achieve the best known competitive ratios use only free exchanges [9]. Thus,
the multiplicative gap that we show between the performance of opt_free and
opt suggests that, in order to achieve better randomized upper bounds, it may
be necessary to consider online algorithms that make use of paid exchanges.

3

2. Preliminaries

As defined in the introduction, the list update problem consists of a linked
list of ` items and a finite request sequence of items to access. The cost to
access an item at position i is i. Immediately after the requested item has been
accessed, it can be moved to any position forward in list (i.e. closer to the head)
at no cost. This is called a free exchange. In addition, at any time, two adjacent
items can be swapped at a cost of 1. This is called a paid exchange. The goal is
to minimize the cost of accesses and paid exchanges by dynamically rearranging
the list over the request sequence.

Note that, in the offline version of the list update problem (as defined above),
the input is still a request sequence that must be served in order. The difference
between the offline and online versions is that the offline algorithm has knowl-
edge of the entire request sequence whereas, in the online version, a request is
not revealed until all prior requests in the sequence have been served.

For a given algorithm alg and a request sequence σ, we denote the cost to
alg to serve σ by alg(σ).

We will use opt to denote an unrestricted optimal (offline) algorithm, and
we will use opt_free to denote an optimal (offline) algorithm restricted to
using only free exchanges. For the request sequences, we will denote multiple
requests in a row to the same item by using exponents, e.g., xk means that x is
requested k times in a row.

In [10, 11], Reingold and Westbrook consider the offline version of the list
update problem and show several properties of an offline optimum that uses
both paid and free exchanges, such as the following lemma.

Lemma 1. [10][Cor. 3.2] If an item x is requested 3 or more times consecutively,
then an optimal offline algorithm must move it to the front before the second
access.

In [10, 11], Reingold andWestbrook also define the notion of a subset transfer
and show that there exists an optimal algorithm that only performs such moves.

Definition 2 (Subset Transfer). Let x be a requested item. A subset trans-
fer is a move, performed just before x is accessed, of a subset of the items ahead
of x in the list to the positions immediately after x, such that the relative order
of the items in the subset is maintained.

Theorem 3. [11][Thm. 2] There is an optimal offline algorithm that does only
subset transfers.

Using Lemma 1 and Theorem 3, we get the following theorem that states
that, for any sequence consisting of at least 3 consecutive requests to every item,
mtf is opt_free.

Theorem 4. Let σ =
〈
xk1
1 , . . . , x

kj

j

〉
, where, for all i, ki ≥ 3 and, for i < j,

xi 6= xi+1. For any initial list configuration, there exists an opt_free that
moves each xi, 1 ≤ i ≤ j, to the front of the list immediately after the first
access to xi of xki

i in σ.

4

Proof. By Lemma 1, an (unrestricted) optimal algorithm must move each xi,
1 ≤ i ≤ j, of σ to the front before the second request to that item. Further-
more, by Theorem 3, there exists such optimal algorithm that only performs
subset transfers; denote this optimal algorithm by opt. Observe that if opt
does not move xi to the front immediately before the first request to xi, but
does move xi to the front immediately before the second request to xi, then it
cannot be optimal, since smaller cost could be achieved by moving xi to the
front immediately before the first request to xi. We conclude that opt is an
optimal, subset-transfer-only, algorithm, that moves each xi, 1 ≤ i ≤ j, of σ
to the front immediately before the first request to xi. Observe now that since
opt is a subset-transfer-only algorithm, then opt does not perform any other
rearrangements in the list while processing σ.

The action by opt of moving xi to the front by subset transfer immediately
before the first request to xi, and then accessing xi ki times, can be accomplished
for the same cost by an algorithm restricted to free exchanges. This is done by
first accessing xi (on the first request to xi), then moving xi to the front by a
free exchange, and then accessing xi for the remaining ki − 1 times. It follows
that there exists an algorithm restricted to free moves, that on σ moves every
xi, 1 ≤ i ≤ j, to the front immediately after the first request to xi, and its cost
is equal to the cost of the optimal unrestricted algorithm for σ. This algorithm
must therefore be opt_free for σ.

Informally, the next theorem shows that, on a series of sequential requests
to the same item, it is not to the advantage of alg_free to delay moving the
requested item forward. That is, for an arbitrary algorithm that only performs
free exchanges, denoted by alg_free, and, for a sequence of consecutive re-
quests to an item x, such that β is the position closest to the head of the list to
which x is moved by the end of these consecutive requests, if alg_free were
to move x to β immediately after the first request to x, it would not increase its
cost. This holds for both offline and online algorithms, but online algorithms
generally are not able to take advantage of this fact given that they do not in
general know the subsequent requests.

Theorem 5. Let σ = 〈σ1, ν, σ2〉, where ν is at least two consecutive requests
to the same item x. Let β be the position of x immediately after ν for an
arbitrary algorithm alg_free. There exists an algorithm alg_free′ that
moves x to β immediately after the first request of ν such that alg_free′(σ) ≤
alg_free(σ), and alg_free′ serves σ1 and σ2 exactly as alg_free.

Proof. The algorithm alg_free′ is defined to serve σ1 in the same manner as
alg_free, to then move x to position β immediately after the first request
of ν, and to serve σ2 in the same manner as alg_free. Note that the list
configurations of alg_free′ and alg_free match prior to and after serving
ν. Therefore, the cost to both algorithms is the same for σ1 and σ2.

Since alg_free uses only free exchanges, i.e., moves of items towards
the head of the list, it follows that the cost of alg_free′ for all requests

5

in ν is no more than the cost of alg_free for those requests. Therefore,
alg_free′(σ) ≤ alg_free(σ).

3. Lower Bound for OPT_FREE

In this section, we give a lower bound for the free exchange optimal offline
algorithm as compared to the unrestricted optimal offline algorithm. That is,
we are comparing the power of paid exchanges and free exchanges together
versus only free exchanges. We show that, for the case of a list of length at
least 3, the ratio between the performance of opt_free and that of opt is at
least 12/11 > 1.09 in the worst case. More formally, we show that there exists
an infinite family of finite request sequences σr, r > 0, such that the cost of
an offline algorithm that can use paid exchanges, paid (see Section 3.2 for the
formal definition of paid), increases with r, and such that

opt_free(σr)
opt(σr)

≥ opt_free(σr)
paid(σr)

≥ 12

11
.

This implies that, for any ε > 0 and any additive constant η that does not
depend on the request sequence, there does not exist a free exchange algorithm,
alg_free, such that alg_free(σ) ≤

(
12
11 − ε

)
opt(σ) + η for all σ.

To prove the claim, we use a list of length 3. For a given initial list config-
uration L, we define the request sequence R(L) and a certain (not necessarily
optimal) deterministic offline algorithm paid that uses paid exchanges. By re-
labeling the list of paid after having served R(L) to match L, we can define
an arbitrarily long request sequence σr consisting of repeated requests to R(L)
based on a relabeling of the list of paid after each R(L). Our result applies to a
list of length at least 3: If the list has a length greater than 3, we can ignore all
but 3 items. Hence, without loss of generality, we only consider lists of length
3.

3.1. Line of Proof
As indicated above, our proof uses arbitrarily long request sequences, σr,

r ≥ 1 that are built by a repeated concatenation of r short request sequences
R(L) that are defined using a relabeling of the list of paid after each R(L).

First, we prove two claims related to the short request sequence R(L).
Namely, we show that paid serves R(L), starting with list configuration L, at a
cost of 11, and we show that any opt_free that serves R(L), starting with list
configuration L, has a cost of at least 12. This however only repeats the claim
of Reingold and Westbrook as to the existence of a request sequence with an
additive difference between the optimal performance with free exchanges only
and the optimal performance with both free and paid exchanges.

Next, we concatenate these short request sequences to create a long request
sequence. It is important to note that a multiplicative gap does not automati-
cally follow from such a concatenation. Indeed, an optimal algorithm that uses

6

only free exchanges could potentially pay more than 12 for a given request se-
quence R(L), reach a different list configuration, and then be able to serve the
next R(L) with a cost less than 12, thus paying in total no more than 23 for the
two sequences (or have such a phenomenon over a sequence of more than two
repetitions of R(L)). To overcome this difficulty, we prove that, for the long
sequences, σr, any opt_free must reach the same configuration as paid does
at the end of each R(L). From this, we can conclude that for σr the cost of
paid is 11r and the cost of any opt_free is at least 12r.

We note that the 〈3, 2, 2, 3〉 sequence of Reingold and Westbrook [11] (de-
noted henceforth σRW) does not lend itself as a building block for such con-
catenations and proof. Indeed, while the cost of opt_free on σRW is 9, an
optimal cost of 8 (with paid exchanges) can only be achieved if the final con-
figuration is 2, 3, 1. Trying to repeat the same line of proof by concatenating
σRW sequences, with relabeling based on the initial configuration 2, 3, 1, results
(for two sequences σRW) with the sequence 〈3, 2, 2, 3, 1, 3, 3, 1〉. This sequence
can however can be served, with free exchanges only, at the cost of 16.3 Fur-
thermore, computer calculations using dynamic programming show that longer
concatenations of σRW with relabeling result in sequences with only a difference
of 1 between the optimal cost and the optimal cost with only free exchanges.

3.2. Offline Paid Exchange Algorithm
For a list of length 3 with a starting list configuration L = x, y, z, we define

the request sequence R(L) =
〈
z, y3, z3

〉
.

Let paid be an unrestricted offline algorithm for R(L) defined as follows.
Before the first request of R(L), using two paid exchanges, y and z are moved
to the front of the list. This moves x to the tail of the list. Then, immediately
before the any ν3, ν ∈ {y, z}, paid moves x to the front, using paid exchanges.

Immediately from the definition of paid, we have the following facts.

Fact 6. Given a starting list configuration of L = x, y, z, after serving R(L),
the list configuration of paid is z, y, x.

Fact 7. Given a starting list configuration of L = x, y, z, the cost of paid to
serve R(L) is 11.

Proof. The cost to bring y, z to the front by paid exchanges is 2 and the list
configuration is now y, z, x. The cost of the first access to z is 2, the cost to
the next three requests of y is 3. The second access to z costs 2 and then z is
brought to the front and the remaining two accesses cost 2. Overall, the cost to
paid is 11.

3Using mtf on the first sequence has a cost of 9 and reaches a list configuration of 3, 2, 1.
On the first request in the second repetition, one moves 1 ahead of 2 for a list configuration
of 3, 1, 2 and serves the remaining requests from this configuration. The cost for the second
repetition is 7 for a total of 16.

7

3.3. Arbitrarily Long Request Sequences
For an initial list configuration of L = x, y, z, from Fact 6, the configuration

of the list of paid after serving R(L) is z, y, x. Therefore, after serving R(L),
with a relabeling of the list of paid to that of L, R(L) can subsequently be
requested again, and this can be repeated to create arbitrarily long request
sequences. That is, if L′ = z, y, x (as is the list configuration paid after serving
R(L) for L = x, y, z), then R(L′) =

〈
x, y3, x3

〉
.

Let σr = 〈R1(L1), R2(L2), . . . , Rr(Lr)〉, such that Rj(Lj) is based on Lj ,
where Lj is the configuration of the list of paid after serving R1, . . . , Rj−1 for
1 < j ≤ r and L1 = L is the initial configuration of the list. We will use the
term round to signify a subsequence R(L) in σr.

3.4. Optimal (Offline) Free Exchange Algorithm
Let mtf be the algorithm that moves every requested item to the front.

Immediately from the definition of mtf, we have the following fact.

Fact 8. Given a starting list configuration of L = x, y, z, after serving R(L),
the list configuration of mtf is z, y, x.

Note that, when starting from the same initial list configuration and serving
R(L), the list configuration of mtf is exactly that of paid after serving R(L).

For an initial configuration L = x, y, z and R(L) =
〈
z, y3, z3

〉
, the following

lemma shows that mtf is an optimal free move algorithm for R(L).

Lemma 9. For an initial list configuration L = x, y, z, mtf(R(L)) = 12 and
opt_free(R(L)) = 12.

Proof. Irrespective of the specific free exchange algorithm, the access cost for
the first request is 3 and there are 3 possible list configurations after that access.
They are x, y, z; x, z, y; and z, x, y (the last configuration corresponds to that of
mtf). By Theorem 4, applied to the suffix of R(L) after serving the first request
of R(L) (i.e., the subsequence

〈
y3, z3

〉
) every opt_free moves y and z to the

front of the list on the first request to each item. This means that opt_free
is fixed for that suffix. Table 1 summarizes the costs of the 3 possible ways in
which opt_free can serve R(L), as a function of the list configuration after
the first request. The actions of mtf on R(L) correspond to the z, x, y column
which is a minimum.

We note that our proof will go through also if instead of using mtf we
would use the algorithm that results in the list configuration as defined in the
first configuration in the table.

3.5. The Last Round of σr
In the following lemma, we show that any opt_free moves any item x

to the front of the list immediately after the first access of three consecutive
requests, that we call a treble request, to x in Rr(Lr) of σr, i.e. in the last round
of σr. Observe that this lemma applies only to the last round of σr.

8

Table 1: For an initial list configuration of L = x, y, z, this table summarizes the potential
optimal free exchange algorithms for R(L) =

〈
z, y3, z3

〉
. From Theorem 4, we know that after

the first request every opt_free moves all the items to the front of the list for the remaining
requests. Therefore, the only variable is the configuration of the list immediately after the
first request. Columns 3 − 5 represent the three possible list configurations. Column 1 is
the index in R(L) of the request listed in column 2. From the table, the first and third list
configurations are optimal, and mtf corresponds to the third list configuration.

List Configuration
Request x, y, z x, z, y z, x, y
1 z 3 3 3
2 y 2 3 3
3 y2 2 2 2
5 z 3 3 2
6 z2 2 2 2
Total: 12 13 12

Lemma 10. For σr = 〈R1(L1), . . . , Rr(Lr)〉, every opt_free moves any item
ν to the front of the list immediately after the first access of a treble request to
ν in Rr(Lr), where L1 = x, y, z and Lj, 1 < j ≤ r, is the list configuration of
paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. Let Lr = x, y, z and let A be an arbitrary opt_free algorithm. By way
of contradiction, assume that A does not move some ν ∈ {y, z} ∈ Rr(Lr) to the
front immediately after the access to ν of ν3 ∈ Rr(Lr).

Let σ′ = 〈R1(L1), . . . , Rr−1(Lr−1), z〉 and σ′′ =
〈
y3, z3

〉
(note that σr =

〈σ′, σ′′〉). Define Â to be a free-move-only algorithm that serves σ′ exactly as x
and moves y and z in σ′′ to the front immediately after the first request to each
item in σ′′.

Since x and Â serve σ′ in the same manner, Â(σ′) = A(σ′) and the list
configurations of A and Â are the same immediately after σ′. From Theorem 4,
given the list configuration of both A and Â after serving σ′, Â is opt_free
over the remainder of the sequence and A is strictly worse than opt_free
over the remainder of the sequence. Hence, Â(σ′′) = opt_free(σ′′) < A(σ′′).
Therefore, Â(σr) = A(σ′) +opt_free(σ′′) < A(σr) which contradicts the fact
that A is an optimal free exchange algorithm.

3.6. The Rest of σr
In the next lemma, we prove that the property shown in Lemma 10 for the

last round of σr holds for all of σr. Namely, we show that for σr there exists
an opt_free that moves any item x to the front after the first access of any
treble request. This is the main technical result, and the proof of the lemma is
by reverse induction over the treble requests, where, for each step, we show that
a free-move algorithm that moves the treble-requested item to the front has a
cost that is no more than the cost of a free-move algorithm that does not move
the item to the front.

9

Seemingly, the next lemma is a strengthening of Theorem 4; this is however
not the case. The next lemma states that, for specific types of request se-
quences, there exists an opt_free that moves the requested item to the front
on the first request of any treble request. It is interesting to note that, perhaps
counterintuitively, it is sometimes to the disadvantage of an algorithm that can
only use free exchanges to move to the front at the start of a treble request.
For example, it can be verified by enumerating all the free-move schedules that
the sequence 〈5, 5, 5, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1〉 (starting with list configuration
1, 2, 3, 4, 5) can be served by opt_free at cost of 44, whereas, if alg_free
moves item 5 to the front immediately after the first request to that item, then
the cost of alg_free is at least 45.

Lemma 11. For σr = 〈R1(L1), . . . , Rr(Lr)〉, there exists an opt_free that
moves any item ν to the front of the list immediately after the first access of a
treble request to ν, where L1 = x, y, z and Lj, 1 < j ≤ r, is the list configuration
of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. In this proof, for σr, we consider an arbitrary opt_free algorithm A
and show that, if the property does not hold for A, then there exists another
opt_free algorithm A′ that does move every item ν to the front of the list
immediately after the first access of a treble request to ν, and A′(σr) ≤ A(σr).
This will be done by defining a sequence of algorithms Aq, starting with A0 = A,
and by reverse induction on i and j over all the ν3 ∈ Rj(Lj) ∈ σr, assuming
that Lj = x, y, z. That is, we consider the rounds from Rr(Lr) to R1(L1) and
the consecutive treble requests in each round from the last treble request to the
first. Assume that Lj = x, y, z, then, for each ν3, if Aq does not move ν to the
front immediately after the first request, we define Aq+1, based on Aq, such that
the desired property holds for ν3 and all subsequent consecutive treble request,
and we show that the cost of Aq+1 does not increase as compared to the cost of
Aq.

In the proof, we use the following notations. Let ν3 be a treble request in
Rj(Lj), assuming Lj = x, y, z, for which Aq does not have the desired prop-
erty. We will denote all the requests in σr before ν3 by σ1. The requests of
σr after ν3 will be denoted by σ2. Note that σ2 could be an empty sequence.
For the analysis, we will often (Case 2 and Case 3 below) further partition σ2
into a number of subsequences 〈σ3, . . . , σp〉 such that σr =

〈
σ1, ν

3, σ3, . . . , σp
〉
.

At a risk of a slight abuse of notation, we will denote the cost of a sub-
sequence of an arbitrary σr to an algorithm, alg, that serves all of σr, as
alg(ri, . . . , rj) = alg(r1, . . . , rj)− alg(r1, . . . , ri−1), where the prefix and the
suffix are understood implicitly. That is, alg(ri, . . . , rj) is the cost accrued
by alg over the requests ri, . . . , rj of σr given that alg has served the pre-
fix r1, . . . , ri−1 and will serve the remaining requests. Therefore, we have that
alg(σr) = alg(σ1)+alg(ν3)+alg(σ3)+ · · ·+alg(σp). Further note that by
Theorem 5, we can assume without loss of generality that Aq does not move ν
further ahead in the list on the second or third requests of ν3.

10

Definition of Âq. We first define an algorithm Âq that we use extensively in the
proof. For σ =

〈
σ1, ν

3, σ2
〉
and algorithm Aq as defined previously, let Âq be

an algorithm that serves σ1 in the same manner as Aq and then moves ν from
position α > 1 to the front of the list immediately after the first request of ν.
Immediately after serving ν, the configuration of the list of Aq is some B, ν, C
and the configuration of the list of Âq is ν,B,C, where B is the set of items
ahead of ν in the configuration of Aq at this time and C is the set of items
behind ν in the configuration of Aq. As long as the list configurations of Aq

and Âq differ, for each v ∈ σ2, if Aq moves v to the front, Âq moves v to front.
Otherwise, Âq does not move v forward at all. Once the list configurations of
Aq and Âq match, Âq serves the remaining requests exactly as Aq. Note that
it is possible that the list configuration of Âq will never match that of Aq (see
Case 1 below).

From the definition of Âq, and the fact that the list has length of 3, we have
the following useful properties.

Âq(σ1) = Aq(σ1) , (1)
1 ≤ |B| ≤ 2 , (2)
|C| = 2− |B| , (3)
β = |B|+ 1 , (4)

where β is the position to which ν is moved by Aq. Further, given that Aq

moves x from α to β, 1 < β ≤ α, and Âq moves ν from α to the front of the
list, we have the following properties.

Aq(ν
3) = α+ 2β , (5)

Âq(ν
3) = α+ 2 (6)

= Aq(ν
3)− 2β + 2 , (7)

where (7) follows by replacing α in (6) by the value of α in (5).

We now turn to the inductive proof. For a list of length 3, there are two
alternating list configurations for paid (i.e. values for Lj) before each Rj(Lj):
x, y, z and z, y, x. Therefore, y is requested in every Rj(Lj), and z and x are
requested in alternating Rj(Lj)’s.

For ν ∈ {y, z} ∈ Rj(Lj), which is the last point in σr for which Aq does not
move ν to the front immediately after the first request of a treble request, we
can distinguish between three cases: (1) ν is never requested again in σr; (2)
ν is requested again in Rj+1(Lj+1), i.e. in the next round; (3) ν is requested
again in Rj+2(Lj+2), i.e. in the round after the next round. Note that this
partitioning is exhaustive.

At each inductive step such that Aq does not have the desired property, we
define an algorithm Aq+1 based on Aq, for q ≥ 0, and show that Aq+1(σr) ≤
Aq(σr). This is done by case analysis over the three cases defined above.

11

Case 1: ν ∈ Rj(Lj) is never requested again in σr.
Recall that σr =

〈
σ1, ν

3, σ2
〉
. When j = r, this case follows immediately

from Lemma 10 by defining Aq+1 to be the algorithm defined in the proof of
Lemma 10.

When j < r, we define Aq+1 to be Âq as defined above. For a list of length
3, this only occurs when j = r − 1 and i = 2, where Lr−1 = x, y, z and, hence,
Rr−1(Lr−1) =

〈
z, y3, z3

〉
. For Lr−1 = x, y, z, Rr(Lr) =

〈
x, y3, x3

〉
and z is not

requested in Rr(Lr).
Denote σ1 =

〈
R1(L1), . . . , Rr−2(Lr−2), z, y

3
〉
,

σ2 =
〈
x, y3, x3

〉
.

Cost for σ2 =
〈
x, y3, x3

〉
. By the induction hypothesis we know that Aq moves

y to the front of the list on the first request to y in σ2, and moves x to the front
of the list on the second request to x in σ2. It follows that the configurations of
the lists of Âq and Aq match before the third request to x is processed.

If x is in B, then the total cost to access x for Âq over σ2 is at most 2 more
than that of Aq over σ2. This follows from the fact that there are two requests
to x before Aq must move x to the front, according to the induction hypothesis
and, by the definition of B, if x is in B, then Âq has y in front of x, whereas Aq

does not.
If x is in C, the total cost to access x for Âq over σ2 is at most 1 more than

that of Aq over σ2. This can occur if, on the first access to x in σ2, Aq were to
move x between y and z in its list. Then, on the second access, x is one item
closer to the front in the list of Aq as compared to the list of Âq.

By the induction hypothesis, Aq must move y to the front on the first request
to y in σ2. Therefore, if y is in B, the first access costs 1 more to Âq as compared
to Aq and, if y is in C, the cost for the first access is the same for both Âq and
Aq.

Note that, for every combination of x and y in B or C, the additional cost
to Âq as compared to Aq for σ2 can be bounded by 2|B| + |C| − 1. This gives
that for σ2,

Âq(σ2) ≤ Aq(σ2) + 2|B|+ |C| − 1

= Aq(σ2) + |B|+ 1 , (8)

where the last equality follows by applying (3).
Using (1), we get

Âq(σr) = Aq(σ1) + Âq(ν
3, σ2)

≤ Aq(σr)− 2β + |B|+ 3 , using (7) and (8),
= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

Case 2: ν ∈ Rj(Lj) and ν ∈ Rj+1(Lj+1), i.e. ν is requested in the next round.
For Lj = x, y, z, Rj(Lj) =

〈
z, y3, z3

〉
and Rj+1(Lj+1) =

〈
x, y3, x3

〉
. Recall

that σr =
〈
σ1, y

3, σ2
〉
. For this case, we define Aq+1 to be Âq as defined above.

12

Define σ1 = 〈R1(L1), . . . , Rj−1(Lj−1), z〉,
σ3 =

〈
z3, x, y3

〉
,

σ4 =
〈
x3, Rj+2(Lj+2), . . . , Rr(Lr)

〉
.

Note that σ2 = 〈σ3, σ4〉 =
〈
z3, Rj+1(Lj+1), . . . , Rr(Lr)

〉
.

Cost for σ3 =
〈
z3, x, y3

〉
. After serving y3, the configuration of the list of Âq

is y,B,C and the configuration of the list of Aq is B, y, C. By the induction
hypothesis, Aq moves z to the front on the first request to z in σ3. This request
and the request to x will each cost 1 more to Âq than to Aq if they are in y. If
they are in z, there is no additional cost to Âq as compared to Aq. Finally, on
the first request to y in σ3, y is no further from the front in Âq than it is in Aq.
Then, by the induction hypothesis, Aq moves y to the front for the remaining
requests to y in σ3, as does Âq. Therefore,

Âq(σ3) ≤ Aq(σ3) + |B| . (9)

List Configuration after σ3. By the induction hypothesis, Aq moves z and y to
the front of the list immediately after the first access to each one in σ3. Consider
the state of the lists of Aq and Âq immediately after serving σ3, depending on
whether or not Aq moves x to the front. If Aq does not move x to the front of
the list, the configuration of its list will be y, z, x, and, by the definition of Âq,
the configuration of the list of Âq will also be y, z, x. If Aq does move x to the
front of the list, the configuration of its list will be y, x, z, and, by the definition
of Âq, the list configuration of Âq will also be y, x, z.

Cost for σ4 =
〈
x3, Rj+2, . . . , Rr

〉
. After serving σ3, the configurations of the

lists of Âq and of Aq are the same. Therefore, according to the definition of Âq,

Âq(σ4) = Aq(σ4) . (10)

Summing (1), (7), (9), and (10), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + 2 + |B|
= Aq(σr)− |B| , using (4),
< Aq(σr) , by (2).

Case 3: ν ∈ Rj(Lj) and ν ∈ Rj+2(Lj+2), i.e. ν is requested in the round after
next.

We define Aq+1 to be Âq. For Lj = x, y, z, we have Rj(Lj) =
〈
z, y3, z3

〉
,

Rj+1(Lj+1) =
〈
x, y3, x3

〉
, and Rj+2(Lj+2) =

〈
z, y3, z3

〉
. Recall that σr =〈

σ1, z
3, σ2

〉
.

Define σ1 =
〈
R1(L1), . . . , Rj−1(Lj−1), z, y

3
〉
,

σ3 =
〈
x, y3, x3

〉
, and

σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉.
Note that σ2 = 〈σ3, σ4〉.

13

Cost for σ3 =
〈
x, y3, x3

〉
. After serving

〈
σ1, z

3
〉
, the configuration of the list of

Âq is z,B,C and the configuration of the list of Aq is B, z, C. By the induction
hypothesis, Aq moves x to the front of the list on the second request to x in
σ3 and moves y to the front of the list on the first request to y in σ3. This is
exactly the same scenario as σ2 for Case 1. Similarly to (8) for Case 1 we have,

Âq(σ3) ≤ Aq(σ3) + |B|+ 1 . (11)

List Configuration after σ3. Since both x and y are moved to the front of the
list in σ3 by both Aq and Âq, the configuration of the lists of both Aq and Âq

after serving σ3 is x, y, z.

Cost for σ4 = 〈Rj+2(Lj+2), . . . , Rr(Lr)〉. After serving σ3, the configurations
of the lists of Âq and of Aq are the same. Therefore, according to the definition
of Âq,

Âq(σ4) = Aq(σ4) . (12)

Summing (1), (7), (11), and (12), we get that the cost for Âq over σr is

Âq(σr) ≤ Aq(σr)− 2β + |B|+ 3

= Aq(σr)− |B|+ 1 , using (4),
≤ Aq(σr) , by (2).

To conclude, for each of the three cases possible at each inductive step, we
have shown that there exists an algorithm with the desired property. Overall,
we have shown that A′(σr) = Aq(σr) ≤ · · · ≤ A0(σr) = A(σr) which concludes
the proof.

For σr as defined above, Lemma 11 shows that there exists an opt_free
that moves ν to the front when ν is requested at least three times in a row.
Let opt_free∗ be such an opt_free. It follows that the list configuration of
opt_free∗ after each Rj(Lj) ∈ σr is the same as that of paid. For an initial
list configuration of L = x, y, z, Lemma 9 shows that the algorithm mtf is an
optimal free move algorithm for R(L). Since the list configuration of mtf after
serving R1(L1), . . . , Rj(Lj), 1 ≤ j ≤ r, is the same as that of opt_free∗, com-
bined with the previous fact, this implies that mtf is an optimal free exchange
algorithm for σr. Hence, mtf serves all Rj+1(Lj+1) at a cost no more than that
of opt_free∗. This is formally stated in the following lemma.

Lemma 12. For σr = 〈R1(L1), . . . , Rr(Lr)〉, mtf(σr) = opt_free(σr), where
L1 = x, y, z and Lj, 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Proof. By Lemma 11, there exists an opt_free that has the same configura-
tion as paid and mtf immediately before Rj(Lj), 1 ≤ j ≤ r. Let opt_free∗ be
such an opt_free. Since the list configuration of mtf and opt_free∗ match
prior to serving every Rj(Lj), Lemma 9 implies that mtf(σr) = opt_free(σr).

14

Using the fact that, for any r > 0, mtf is an optimal free exchange al-
gorithm for σr, we can, in the following lemma and theorem, give a lower
bound on the worst-case ratio between opt_free(σ) and opt(σ) by analysing
the ratio between mtf(σr) and paid(σr) for σr = 〈R1(L1), . . . , Rr(Lr)〉, where
L1 = x, y, z and Lj , 1 < j ≤ r, is the list configuration of paid after serving
〈R1(L1), . . . , Rj−1(Lj−1)〉.

Lemma 13. For r > 0,

opt_free(σr)
opt(σr)

≥ opt_free(σr)
paid(σr)

=
12

11
> 1.09 .

Proof. Let σ = 〈R1(L1), . . . , Rr(Lr)〉, where L1 = x, y, z and Lj , 1 < j ≤ r, is
the list configuration of paid after serving 〈R1(L1), . . . , Rj−1(Lj−1)〉.

From Lemma 12 and Lemma 9, mtf is an optimal free move algorithm for
σr with a cost of 12r and, from Fact 7, the cost of paid for σr is 11r. Therefore,

opt_free(σr)
opt(σr)

≥ opt_free(σr)
paid(σr)

=
12

11
.

Theorem 14. Let alg_free be an algorithm that only makes free exchanges
and that alg_free(σ) ≤ α · opt(σ) + η for any finite request sequence σ. For
any η not dependent on σ, α ≥ 12/11.

Proof. Given any η ≥ 0 not dependent on σ, assume towards a contradiction
that α = 12

11−ε for some ε > 0. Hence, in particular for the sequences σr defined
in our proof, we have alg_free(σr) ≤

(
12
11 − ε

)
opt(σr)+ η. Because opt(σr)

is increasing with r, we can pick a large enough r∗ such that opt(σr∗) > η/ε.
We have

12

11
· opt(σr∗) ≤ opt_free(σr∗) ≤ alg_free(σr∗) ≤ (

12

11
− ε) · opt(σr∗) + η ,

where the first inequality follows from Lemma 13, and the last inequality follows
by the assumption above. It follows that opt(σr∗) ≤ η/ε, a contradiction to
the choice of r∗.

4. Conclusions

We have shown that the gap between the performance of the offline optimal
algorithm restricted to free exchanges and that of the unrestricted offline optimal
algorithm is at least a multiplicative factor of 12/11.

We note that all the currently known online algorithms for the list update
problem with best known competitive ratios use only free exchanges (cf. [9]).
Our results bring up the possibility that improving the currently best random-
ized competitive ratio for the list update problem might necessitate introducing

15

paid exchanges into the algorithm. The same might apply also to offline ap-
proximation algorithms.

Further to the present work, it would be interesting to also consider upper
bounds on the gap between the performance of an optimal (offline) algorithm
restricted to free moves, and an unrestricted optimal algorithm, that is, to de-
termine the exact worst case ratio between the performances of the two optimal
algorithms. One important step towards this goal would be to find an (offline)
algorithm restricted to free exchanges that improves upon the 1.6 upper bound
that follows from the randomized online algorithm comb [2].

Acknowledgements. The authors would like to thank Amos Fiat, Rob van Stee,
and Uri Zwick for useful discussions. We also wish to thank the anonymous
STACS reviewer who pointed out a minor change allowing an improvement of
the lower bound from 13/12 to 12/11.

[1] Albers, S., 1995. Improved randomized on-line algorithms for the list up-
date problem. In: Clarkson, K. L. (Ed.), SODA. ACM/SIAM, pp. 412–419.

[2] Albers, S., von Stengel, B., Werchner, R., 1995. A combined bit and times-
tamp algorithm for the list update problem. Inf. Process. Lett. 56 (3),
135–139.

[3] Ambühl, C., 2000. Offline list update is np-hard. In: Paterson, M. (Ed.),
ESA. Vol. 1879 of Lecture Notes in Computer Science. Springer, pp. 42–51.

[4] Ambühl, C., 2002. On the list update problem. Ph.D. thesis, ETH Zürich.

[5] Bentley, J. L., Sleator, D. D., Tarjan, R. E., Wei, V. K., 1986. A locally
adaptive data compression scheme. Commun. ACM 29 (4), 320–330.

[6] Hagerup, T., 2007. Online and offline access to short lists. In: Kucera, L.,
Kucera, A. (Eds.), Mathematical Foundations of Computer Science 2007,
32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Re-
public, August 26-31, 2007, Proceedings. Vol. 4708 of Lecture Notes in
Computer Science. Springer, pp. 691–702.
URL http://dx.doi.org/10.1007/978-3-540-74456-6_61

[7] Irani, S., 1991. Two results on the list update problem. Inf. Process. Lett.
38 (6), 301–306.

[8] Irani, S., 1996. Corrected version of the split algorithm for the list up-
date problem. Tech. Rep. 96-53, ICS Department, University of California,
Irvine.

[9] Kamali, S., López-Ortiz, A., 2013. A survey of algorithms and models
for list update. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A.
(Eds.), Space-Efficient Data Structures, Streams, and Algorithms - Papers
in Honor of J. Ian Munro on the Occasion of His 66th Birthday. Vol. 8066
of Lecture Notes in Computer Science. Springer, pp. 251–266.
URL http://dx.doi.org/10.1007/978-3-642-40273-9_17

16

[10] Reingold, N., Westbrook, J., 1990. Off-line algorithms for the list
update problem. Tech. Rep. YALEU/DCS/TR-805, Yale University,
http://cpsc.yale.edu/sites/default/files/files/tr805.pdf.

[11] Reingold, N., Westbrook, J., 1996. Off-line algorithms for the list update
problem. Inf. Process. Lett. 60 (2), 75–80.

[12] Reingold, N., Westbrook, J., Sleator, D. D., 1994. Randomized competitive
algorithms for the list update problem. Algorithmica 11 (1), 15–32.

[13] Sleator, D. D., Tarjan, R. E., 1985. Amortized efficiency of list update and
paging rules. Commun. ACM 28 (2), 202–208.

17

