Online Time-Constrained Scheduling
in Linear and Ring Networks

Joseph (S&) Nao®!, Adi Roséft, Gabriel Scalosuts

aComputer Science Department, Technion, Technion Cityfar3@000, Israel
bCNRS& University of Paris 11, LRI, Bat. 490, Université Parisd591405 Orsay, France
¢Department of Communication Systems Engineering, Beisumiversity of the Negev, P.O.B. 653
Beer-Sheva 84105, Israel

Abstract

We consider the problem of scheduling a sequence of packetsadinear network,
where every packet has a source and a target, as well as seréfea and a deadline by
which it must arrive at its target. The model we consider ifdrless, where packets
are not allowed to be lfifered in nodes along their paths other than at their source.
This model applies to optical networks where opto-eledgtronnversion is costly, and
packets mostly travel through farless hops. Thefliine version of this problem was
previously studied in [1]. In this paper we study the onlire¥sion of the problem,
where we are required to schedule the packets without krigele®f future packet
arrivals. We use competitive analysis to evaluate the pmdoce of our algorithms.
We present the first online algorithms for several versiohte problem. For the
problem ofthroughput maximizatiagrwhere all packets have uniform weights, we give
an algorithm with a logarithmic competitive ratio, and essome lower bounds. For
other weight functions, we show algorithms that achievénogtcompetitive ratios.

Key words: Online Algorithms, Competitive Analysis, Scheduling,
Quality-of-Service

1. Introduction

As technology advances, communication networks are cotigtgoing through
rapid change. The classic bestegt mechanisms are given up in favor of networks
that are able to provide Quality-of-Service (QoS) guaresiteThe growing use of
multimedia applications motivate this transition. Sucplagations involve continuous
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transmission of data, which requires some guarantees sdoival time, bandwidth
allocation etc. [2].

It is often the case that the overall number of packets dedtio be transmitted
through the network exceeds the network’s capacity. In sasies, packets are either
delayed or dropped. When considering streaming video oioadeta, there is very
little point in delaying such packets more than some predeted period of time.
Take, for example, a home user listening to the radio ovelriteznet. We can model
such a transmission by considering every packet to havetaiteteadline by which
it must arrive at its destination. In such a setting, havimg packet arrive after its
deadline is of no use.

Real life applications vary in importance and value as wélls rendering some
packets more important than others. Consider, for exantpéecase of MPEG en-
coding, where some packets are more important than othezs vgdtonstructing the
image at the target. This situation makes it vital to decitiectv packets to schedule at
any given time, such that the decision will eventually resuh "best” possible set of
packets, which are all delivered by their deadline.

When considering such packets with their correspondingllitess, one would
want to take into account both the packet's importance at ageits deadline when
trying to determine which packet to route first. Additioyapackets can haveftiérent
values, according to the end user’s willingness to pay foingroved quality of ser-
vice. In such a scenario, delivering valuable packets o timauld mean more profit
for the service provider, which should naturally be maxiediz Such values could be
“flat-rate”, i.e., the case where all packets have the saitue var could depend on var-
ious other aspects. One very common choice for packetségatuto have them pro-
portional to the amount of resources the packet consunggestlee length of the path it
traverses (see, e.g., [3]). Time-constraineffitras also the common case in real-time
applications, such as avionics, industrial process chrar@ automated manufactur-
ing, which necessitate coping with time constrained comioaiion in interconnection
networks [4].

In this paper we consider the problem of online schedulinggusnce of pack-
ets, each with a deadline constraint. The model underlyimgnmrk is abufferless
scheduling environment. In this model, a packet can onlyttied at its source, and
cannot be bfiered in any node along its path. Once a packet has left itespiimust
move along its designated path without interruptions oaykeluntil arriving at its des-
tination. Any interruption or delay causes the packet totmpgded. This model is the
common setting in optical networks, where trying tdtbupackets in nodes along the
path requires opto-electronic conversion of the signaftpaipitively costly operation.
This is the case in Wavelength Division Multiplexing (WDMatworks, where a packet
is assigned a wavelength along which it is supposed to bertriéted throughout its
path.

We restrict our attention to specific network topologiedsagthe line and the ring.
The results of [5] motivate this focus, since under commamgexity assumptions,
for arbitrary graphs, no reasonable approximation can berdd in polynomial time.
Moreover, focusing on simple network topologies like theelitopology or the ring
topology is motivated by considering electro-optical mtennection networks. In such
networks, we might have a packet’s path go through sevengl hofferless hops with



very few nexus points, each enabling the expensive optieaitric conversion. This
occurs for example in a mesh network topology, employingnaedision-order routing
policy. In such a case we can use dfbtless strategy along rows and columns, and
perform a conversion to change dimensions (see [4]). Amattheantage in considering
simple topologies is the fact that they usually adhere tgBmouting-path selection.
In cases of less regularly structured networks, it is ofterdase that packets are routed
along subnetworks of such simple topologies.

1.1. Our Results

We present the first online algorithm forfberless scheduling of packets with dead-
line constraints in a linear network topology. Our goal isrtaximize the total weight
of packets delivered by their deadlines. A pagikebntributes its weight to the overall
weight gained by the algorithm only if it arrives at its targede by its deadline. We
can further show that these results extend to a ring netveqlogy.

We present results for several special cases of the proldetermined by the
weights given to the packets. In tAdroughput Maximizatioproblem the packets
have uniform weights, i.e., for every packgtits weight is equal to some constamt
where without loss of generality = 1, and thus our goal is to maximize the number
of packets scheduled successfully. In taximum Network Utilizatioproblem the
weight of each packet is defined to be its path length. Theropition problem in this
case can be considered as trying to maximize the utilizatfdhe network over time,
where only packets scheduled successfully contributeam#iwork utilization. We
further present results for the general case of arbitraigs.

We analyze the performance of our online algorithm usingipetitive analysis
(see [6, 7]), which compares the schedule produced by th@itdg to the optimal
schedule produced by an algorithm with full knowledge ofifetincoming packets.
This approach is robust in the sense that it makes no assamspin the arrival se-
quence of packets. We assume that the algorithm has no kagevibout any packet
until the packet is released at its source, at which poinatgerithm learns its source,
target, and deadline. A deterministic online algorithmdamaximization problem is
said to bec-competitivef the ratio between its performance and the performanceof a
optimal schedule is at leastd, for every possible request sequence.

In Section 2 we present @(min{log @, R})-competitive algorithm for the through-
put maximization problem, whereis the ratio between the length of the longest path
of a packet in the input sequence and the length of the shoidés andr is the num-
ber of diterent path lengths appearing in the sequence. This redo@sQ(logn)-
competitive algorithm in the worst setting. Unlike the éswf [8] and [9] for task
scheduling on a single machine, our algorithm need not kin@walue of the param-
eter o beforehand. We give an example exhibiting our analysis téidie up to a
constant factor. We additionally show that no determiaiatgorithm for the problem
can achieve a competitive ratio better than 2.

In Section 3 we give a constant competitive algorithm forgheblem of maximiz-
ing network utilization. This algorithm is an adaptationoiar model of an algorithm
given in [3]. We further derive a®(B)-competitive algorithm for arbitrary weights
whereg is the maximum ratio between any two packets’ weight-tagythmatio. Due
to the results of [10], this is the best possible, up to a @ndactor.



In Section 4 we show how our results can be applied to a ringar&ttopology.

1.2. Previous Work

The diline version of our problem in the linear network topology wiest consid-
ered by Adler et al. in [1]. They restricted their attentiorthie problem of throughput
maximization and showed that it is NP-hard, and further ged a 2-approximation
algorithm for the problem. Another model considered in d}hebuffered model,
where packets are allowed to be stored in idnof any node along their path. Adler
et al. showed that allowing the packets to b&fé&red along their paths can increase
the throughput by at most @d(logy) factor, relative to the throughput obtained by
a buterless schedule, whegeis the minimum among the network size, the number
of packets in the instance and the maximum slack a packet hadler et al. de-
vised a distributed online algorithm for theftered case, which mimics the approxi-
mation algorithm given for the litereless case. An extension of these results was later
given by Adler et al. in [5], where they present algorithmsdeveral versions of the
time constrained scheduling problem, all in affiine setting. They first describe a
2-approximation algorithm for the ffierless case in a linear network, where packets
are allowed to have arbitrary weights. They further constide case where the under-
lying network topology is a tree or a mesh in thefleuless setting. For this problem
they present constant-approximation algorithms for boghthroughput maximization
problem as well as for arbitrary weights. For thefeued case in the tree and mesh
topologies, they devise an algorithm based on the algorftmthe buferless case,
with a logarithmic approximation guarantee.

The hardness results appearing in [5] motivate the focusasticplar network
topologies as they show that for any> 0, there is ndk!~*-approximation algorithm
for the problem in general networks, unless=NPP, where is the number of packets
in the instance. This hardness result is based on the hardfasx-INDEPENDENT-SET,
and it holds even if the underlying topology is either a dieélacyclic graph or a planar
graph.

The only result regarding the online version of the problergiven in [5], where
they show that no deterministic online algorithm can achi@eompetitive ratio better
thanQ(logn) when the underlying graph is a tree, in both thé&éess and the Iftered
settings, wher@ denotes the size of the network. One can compare this regthlt w
our upper bound for the linear network topology, which isrgueed to b&(logn)-
competitive.

Our problem is closely related to interval scheduling peof and other call con-
trol models, e.g., [3], [11], and [12]. In the online intehagheduling problem we
are given a sequence of intervals to schedule on a line segresome cases the
problem can be solved in polynomial time, e.g., the case @tier intervals are given
in non-decreasing order of their left end-point, all havingform weights, and pre-
emption is allowed. In other cases however there are lowendt® on the attainable
competitive ratio of any online algorithm, e.g., the casemetthe weight of an interval

2For the definition of slack, see Section 1.3.



is defined to be its length, even in a randomized setting [Add, the case where in-
tervals have uniform weights in a deterministic setting [Bhese lower bounds apply
to non-preemptive scheduling of the intervals. Our modeldwer is not reducible in
the general case to either of these. The maffedince between our model and the
ones mentioned above is the concept of time, which introgléugher constraints on
the scheduling problem. Further results related to ourlprobnvolve multiple bin-
packing, dealt with in the context of call admission conaotd wavelength division
multiplexing in optical networks [13], which were later guded to the case where calls
are allowed to be preempted [12].

Some results regarding online task scheduling on a singkhime@, where each
job must terminate by a certain deadline, are also relateditgproblem. Baruah et
al. show in [10] that when packets may have arbitrary weigiasdeterministic online
algorithm can achieve a competitive ratio better thgg), whereg is the ratio between
the largest and the smallest weight-to-length ratio of thekpts in the instance. In [8]
Koren and Shasha present an online algorithm for the prgbldmose guarantee is
exactly that of the lower bound in [10]. Their algorithm ndaetbw the value of3 in
advance. A guarantee based onfdetdlent parameter is given by Garay et al. in [9] for
the problem of throughput maximization. They present aonrélgm that is guaranteed
to be O(1/«)-competitive, where is the minimum ratio between the slack and the
processing time of all jobs in the request sequence. In #se as well, the algorithm
has to be given the value efin advance.

1.3. The Network Model

Our main results will be described for the linear network. Mé&del our problem
by a digraphG = (V,E), whereV = {1,...,n}, andE = {(i,i+1)1<i<n-1}.
An instance comprises additionally of a set of packets that@ be routed through
the network. Each packetis specified by a tuples), ty, rp, dp, Wp), wheres, andt,
denote the source and target nodes respectivglis the packet’s release time, i.e.,
the time at which the packet is available for routidg denotes the packet's deadline,
andw, is the packet's weight. We denote fy = t, — s, the length of packetp.
The algorithm learns of packetin time rp. The above definitions make it natural to
consider theslackeach packet has, also knownlasity, defined byf(p) = dp—rp—1pl.
The slack of packep captures the notion of the maximum amount of time a packet can
wait at its source node if it is to arrive at its target nodetsydieadline. We denote by
&(p) = dp — t — |p| theresidual slackof packetp in timet. A packet can be scheduled
to leave its source at any tiniéor which ¢:(p) > 0. We consider aynchronousnodel,
where at each time step at most one packet can be transmittadyoedge, and we
focus our attention on thbeufferlesscase. We make no restriction on the amount of
storage available at any node. We further assume packetsegaaemptedut cannot
be rescheduled Preemption means that a packet on route to its destinatiorbe
stopped, in which case it is dropped and cannot be reschidelen if its residual
slack allows it. Every packet arriving at its destinationitsydeadline contributes its
weight to the overall weight obtained, and is consideredsssfully scheduled. Every
other packet contributes 0 to the overall obtained weight goal is to maximize the
weight obtained.



1.4. Terminology

We follow the geometric representation introduced in [1]e Wéfine the concept
of wavesupon which we "mount” the packets to be scheduled. Consitieoalimen-
sional array whos¥-axis represents the linear network, numbered.1 nto designate
the network nodes, and i¥-axis represents time, numbere®.l . . to designate dis-
crete time steps. Given a packethat was presented at tinmg with slack£(p), in
order for it to arrive at its destination by its deadline, iish be sent from its source
at some timet € {rp, o+ f(p)}. Every such scheduling gf starting att can be
geometrically viewed as packing an interval of lengghon a SW-NE line starting at
point (sp, t) and ending intp, t + [p]). We call each such SW-NE lineveave Every
such wave represents the network resources used over tiaoh facket has a set of
eligible waves, defined according to the packet’s parameters, whpaelket can be
mounted on any of its eligible waves. Figure 1 shows an exawiithe waves eligible
for a packetp for which £(p) = 4, and the location in which it can be mounted in every
one of them. For each packgtwe consider the waves eligible for pacleas ordered
from earliest (crossing poinsg, rp)) to latest (crossing poinsg, rp+£(p))). A feasible
schedule solution is a packing of the packets upon the wauek,that on any wave no
two packets intersect, and every packet is scheduled onsttane wave. Consider for
example an instance where all packets have zero slack. dicéisie, every packet has
only one eligible wave. We therefore seek to compute a maxismdependent set,
in an online fashion, for each wave independently. Sincerppion is allowed, for
such instances this can be done optimally (in the case obumifveights). To see this
notice that when focusing on a single wave, the packets sporeding to this wave are
given in increasing order of their left end-point. This isedo the fact that packetis
introduced in time . We can therefore preempt a currently scheduled papéatthe
wave in favor of a packep for whicht, < tq. This mimics exactly the behavior of an
offline algorithm for finding a maximum independent set in anrirgkegraph in these
settings, which finds an optimal solution. If we allow packet have positive slack,
the plot thickens, as demonstrated in Section 2.1.

In what follows we will use the following notation. Leé¥l = max,|p| and let
m = miny |p|. We leta denote the ratid/m andR is the number of dierent packet
lengths appearing in the input. Define tensityof packetp to bep(p) = wp/|pl.

Denote byp,,, = Minp o(P), Pmax = MaX p(P) and 1etB = P/ Prin-

2. Throughput Maximization

We first consider the case where for every pagketv, = w for some constant
w. Without loss of generality we assume= 1, and thus our goal is to maximize the
number of packets scheduled.

2.1. Online Byferless Lower Bound

Theorem 1. No deterministic online algorithm can achieve a competitiatio better
than2. This holds even if rescheduling is allowed.
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Figure 1: Geometric representation of waves

Proof. Consider a linear network with 4 nodgs, . .., v4}. We now describe an adver-
sary. The adversary releases at time 0 a pagkeith slack= 1, going fromv; to v;.

If the algorithm schedules it on its first wave (i.e., it ssamoving att = 0), then the
adversary releases at tihe- 2 a packety with zero slack, going froms to v,. If, on
the other hand, the algorithm schedugesn its second wave (i.e., it starts moving at
t = 1), then the adversary releases at tirse2 a packet) with zero slack, going from
V, to vs. In either case, the algorithm can deliver at most one ofwloetackets, while
an optimal solution delivers both. Notice that in both caffabe algorithm preempts
p in favor of g, then it cannot reschedufeon any other wave, because at the time of
preemptiorp has a negative residual slack, i.e., it can no longer reachriget node by
its deadline. We can repeat this procedure an arbitrary eumftimes, thus ensuring
no deterministic online algorithm can achieve a competitatio better than 2. O

2.2. Online Byferless Upper Bound

2.2.1. A Simple Randomized Strategy

A simple greedy strategy can be used to devise a randorfided n)-competitive
non-preemptive algorithm for the problem. Consider a neekpgjust arrived. If it
can be scheduled (considering the previously schedulekkgcon any wave, then
schedule it. Otherwise, discard it. Since this algorithnfis- 1)-competitive when
considered on any single wave, using the multiple-bin pagkiethodology appearing
in [13], it follows that the above algorithm ig (+ 2)-competitive for our problem. We
now introduce randomization: Consider a partition of thekess intoO(log n) classes



according to their length, where classonsists of all packets whose length falls in the
interval (2, 2+1], and we have = 0,...,logn — 1. Pick uniformly at random a class
i, and use the greedy strategy described above to schedylpackets from class
Denote by, the ratio between the maximum length to the minimum lengtbeakets

in classi. Since for every we havey; < 2, using linearity of expectation, we conclude
that the above randomized non-preemptive algorith@(ieg n)-competitive.

2.2.2. The Deterministic Case

The non-preemptive simple strategy applied above will roitcthe deterministic
setting. To see this, consider an input sequence consadtadbzero slack packets. One
packet which needs to traverse the entire network, follolyed sequence oh(- 2)
unit-path-length non-intersecting packets, each inttirsg the path of the first packet
on a diferent link. It follows that any non-preemptive determiitistigorithm can be
Q(n)-competitive at best. We apply affirent method for the deterministic case to
balance between "long” and "short” packets. We analyze ieofem 2 the competitive
ratio guarantee of our algorithm, which we call MT (See Algon 1 below).

Algorithm 1 Algorithm MT
Given a new packet just arrived,

1: if there exists a wave eligible for p such thatp doesn’t intersect any currently
scheduled packet anthen

2: scheduleponc
3 ese
4: let c be the earliest eligible wave fqr
5: while cis still eligible for p andp is not yet scheduledo
6: let g be the first (i.e., leftmost) packet scheduledcamhich intersectp
7 if [pl <lgl/2 andt, < t; then
8: replaceq by p > p evictsq
o: end if
10: cC—cCc+1
11 end while
12: end if

We say that packet evictgpacket if the condition in line 7 holds angis replaced
by p. Let us first make sure that the algorithm is well defined, anigéd produces a
feasible schedule.

Lemma 1. For any sequence of h packets, MT produces a feasible sehedul

Proof. Proof by induction orh. Forh = 0, the claim clearly holds. Assume the claim
is true for any sequence of— 1 packets. Lep be theh'th packet introduced. I

is scheduled on a wawesuch thatp doesn’t intersect any currently scheduled packet
ongc, then the schedule remains feasible. Otherwise, assunewdoy wavec eligible

for p, there are scheduled packets intersecpngn c. If p is not scheduled by MT,
then clearly the schedule remains feasible. Otherwise,betthe wave on which MT
scheduleg. Let Sy, be the set of packets intersectipgon ¢, and letq € Sy, be the



first packet (i.e., leftmost packet) which intersepten c. Sincep is scheduled or,
by the condition in line 7 it follows that, < ty, henceS, = {qg}, and therefore sincg
is evicted in favor ofp, all the packets intersectingon c are evicted, which results in
a feasible schedule. O

We now turn to show the competitive ratio guarantee of MT.

Theorem 2. Algorithm MT is an @min{log ¢, R})-competitive algorithm, where is
the ratio between the longest and shortest packets, and fReisumber of gferent
packet lengths.

Proof. Let A be the set of packets scheduled by MT &hbde the set of packets sched-
uled by some optimal schedule. Denotelbthe set of packets never scheduled on any
wave by MT. We distinguish between two types of packe® inA.

Packets schedule@onsider a packgi € (O \ A) n N. Letc be the wave on which
p was scheduled. Packptwas not successfully sent 8y and therefore was evicted
from ¢ by some packet. Note that this can only happen if the condition of line 7 is
met. Note thaty is not necessarily i either, sinceg might have been later evicted
by a packety. However, notice that continuing this scenario eventuadbults in a
packet that is successfully sent Bysince the line is of finite length, and in every time
step we have a finite number of packets’ arrivals. Denote anlg maximal sequence
by qi,..., 0k Whereq; is a packet scheduled anwithout evicting any other packet,
andqy is a packet eventually sent &y We therefore have, by the condition of line 7,
|Gi1l < lopl/2 foralli=1,..., k- 1.

Let us map each sughto its correspondingk. Eachp that maps to a specifiy,
is mapped via one of the packejsthat evicts it. Notice that the proof of Lemma 1
implies that any sucty is responsible for evicting at most one packet fr@n (A) N N.
We therefore have a one-to-one correspondence betweestpackQD \ A) N N and
packets in any such maximal sequence. Let us turn to boursizbef each sequence:

m< o < 27 *Vjgy| < 274 Dm

which in turn yields
k<loga + 1. 1)

It follows that|(O\ A) n N| < (k — 1)|A| since for each sequence we have one packet
that is eventually sent b

Packets never schedule@onsider a packegph € (O \ A) n N. Packetp was never
scheduled because on each wawigible for p the condition of line 7 was not met.
This specifically holds for the wave on whichO schedules. Let q be the packet
scheduled by A ort specified by the algorithm in line 6, preventipgfrom being
scheduled owo. We show that any suapmay prevent the schedule of at most 3 packets
in (O\ A) N N. There might be at most one packet@® A) N N that is rejected by
due to its end point being later than that of the conflictingqesig scheduled byA. This
is becaus® produces a valid schedule, so there is at most one packef cisim any
edge, specifically at most one using the edge leaving thecémidpf g. Furthermore,
notice that such a packgtcan be responsible for the rejection of at most 2 packets in
(O\ A) N N that sdfer from excess length. This is because all packet®igA) N N



are successfully scheduled oim the optimal schedule, and therefore do not intersect
onc. Since every such packet has length greater ity#8, there can be at most two
such packets. It therefore follows that any sgainay prevent the schedule of at most
3 packets in@\ A) N N. The same maximal sequences identified in the analysis of
the packets in@\ A) N N occur here. There are at mdssuch packets in any such
sequence, where each one is "responsible” for the non-stihgaf at most 3 packets.
It follows that|(O \ A) N N| < 3Kk|A.
We can now conclude the proof of the theorem. The above asaligdds

O] I(O\NA) N NI+ [(O\A) NN+ A
(k—1+3k+ 1)A
4K A

I IAIA

Note that by the condition of line 7, any maximal sequegge. ., g satisfiedq| >
|92l > ... > |akl, hencek < R. Combining this with Eq. (1) gives a competitive ratio of
O(min{loga, R}), which completes the proof. O

MT has running time ofO(sn) per packet, wheré is the maximal slack of any
packet in the sequence, ands the network size. Note that MT need not know the
values ofe or Rin advance.

2.3. ATight Example for MT

We now give an example showing that the above analysis i tighto a constant
factor. l.e., the above algorithm cannot achieve a perfanaauperior tad2(logn).
Assume thah = 2 and letr = k/2 — 1. Definex = 21 We therefore havg,; = x/2.

We consider two series of packe®:= {py, p2,..., pr} andP’ = {p’l, [ p;},
all with zero slack, where each packet is defined by its reléate and its path:

e Packetp;: release times = n(1 — x) and path §, n].
o Packetp: release times =n(1-x)+1+iandpath§,s +nx.q + 1].
Figure 2 shows an outline of the above sequence.

| Py |

I P [, [ s |

Figure 2: Outline of the sequence showing MT0dog n)-competitive. The order induced by the release
times is {1, 7. P2, P, - - - Pr. Pr)-

10



ObservationFor alli, 5 < § < s,1. The first inequality follows from the defini-
tion, whereas the second follows from the fact that

S«a—§ = “NXa+nx-1-i
nXe1—1-1i
20+ D _(i+1)>0

foralli<k/2-1=r.

Lemma?2. Foreveryi, if pis scheduled by MT at the end of timethen j is rejected
by MT.

Proof. Assumep; is currently scheduled by MT. By the previous observatiba,next
packet in the sequencepé. Since

Ipil = nX = 2nx.1 < 2(NX41 + 1) = 2pjl,
then by the condition in line 7y is rejected by MT. O

Lemma 3. For every i, if p is scheduled by MT at the end of timg then upon the
arrival of p;,1, MT preempts pand schedules;p, instead.

Proof. Assumep; is scheduled by MT at the end of tinse By Lemma 2,p/, which is
the next packet in the sequence, is rejected. The followanggt isp;.1, for which we
have|pi| = X% > 2X+1 = 2|pi+1), and in additionp;,; doesn’t terminate aftep;. By the
condition in line 7,p; is preempted by MT ang;,; is scheduled in its place. O

Lemma4. MT finishes scheduling only one packet from P, while thest®aischedul-
ing that schedules all the packets ih P

Proof. Since MT starts by scheduling, then by Lemmas 2 and 3 it finishes schedul-
ing only p;. On the other hand notice that we can schedule all the paickBts Since
the end point oy is

S+n%aa+1l = nA-x)+1+i+nx1+1
= N1-x41)+1+(+1)
= S,+l’
its path does not intersect with thatjf ,'s. O

Since|P’| = Q(logn), this example shows our analysis is tight up to a constant
factor.
3. Non-Uniform Weights

3.1. Maximum Network Utilization

Assume that every packgthas weightw, = |pl, and recall that our goal is to
maximize the sum of the weights of delivered packets. Thingecorresponds to

11



optimizing network utilization. Unlike the case of uniforreights, the idea here is to
prefer longer packets, which give a better utilization & tretwork. Letp denote the
golden ratic®. Consider the following algorithm for the problem, which vail MNU
(see Algorithm 2 below).

Algorithm 2 Algorithm MNU
Given a new packet just arrived,

1: if there exists a wave eligible for p such thatp doesn’t intersect any currently
scheduled packet anthen

2: scheduleponc
3 dse
4: let c be the earliest eligible wave fqr
5: while cis still eligible for p andp is not yet scheduledo
6: let S, be the set of packets scheduledamhich intersect.
7: if |pl > ¢ - maxes, |l then
8: replaceS, by p > P evictsSy
o: end if
10: c—c+1
11 end while
12: end if

MNU is an adaptation to our model of the algorithm given by &aet al. in [3],
for the problem of call admission, where a call’s value igdtste length.

We say packep wasrejected by packet if g is the packet with maximal length in
Sp, andp is rejected by the algorithm. In case more than one such pagiss, we
choose one of them arbitrarily. We will sometimes abusetiwtareferring to a packet
as the set of its edges and to a set of edges as the set of iatdefaned by them.
Assume the packets arrived in the orgbgy. .., p«. We first introduce some notation.
For every 1< i < k, and every wave, let A%(i) be the set of packets scheduled on
c after the arrival of tha'th packet. For every packgi € A°(i), let us denote the
following:

e S - the set of packets preempted by MNU in order to schegu{enight be
empty).

e T§ - the transitive closure &, i.e., T = Ugess Tg- This set is defined immedi-
ately afterp arrives and remains unchanged thereafter, since it onlgripon
packets scheduled arwhich arrived prior to the arrival gb.

e R;(i) - the set of packets up to ti¢h packet, rejected by packetsTi§ U {p}.

e I5(i) - the collection of all edges in the paths of packet$ fru R (i) U {p}.

12



Lemma5. For every wave c, every i, and evengegpA(i),

150) < [sp = ¢lpl. tp + ¢lpl].

Proof. Clearly, the scheduling and preemption of packets on anyewavof no con-
sequence to packets scheduled on waves othecth&le may therefore deal with each
wave independently. Lat be any wave. We prove the claim by inductionionThe
claim trivially holds fori = 0. Assume the claim holds far— 1. Let p be thei'th
packet that arrived. I is not eligible forp then the claim clearly holds, so assuais
eligible for p.

Assume first thap is scheduled on, and does not intersect any currently scheduled
packet orc. In this case, for every packgt A%(i) other tharp, I5(i) = 15(i—1) and the
induction hypothesis ensures the required result.fRoe haveSy = T§ = Ri(i) = 0,
hencel (i) = {eleis in p's path}, and the claim trivially holds.

Assume next thap is not scheduled on. Let q be the packet responsible for
rejectingp. Henceq = arg maxess/wl. We need to show that C [sq — ¢ldl, tq + ¢lq].
Assume the contrary. Therefops path contains a point to the left & — ¢lq, or it
contains a point to the right @ + ¢lql. Sincep was rejected because gfclearly p
andq intersect. Hencep| > ¢|q|, contradicting the fact thai was rejected because of
g, and should therefore satisfigl < ¢ - maXessW = ¢lq.

The last case to consider is the case wheie scheduled or, and preempts the
packets inS;. We only need concern ourselves withas for every packeq € A%(i)
other thanp, I5(i) = 15(i — 1). We will show that for every packete S; preempted by
p, 15(i — 1) € [sp — ¢Ipl, tp + ¢l pl], which will complete our proof. Sinceg € S, p and
gintersect. Furthermore, singavas preempted by we have thalg| < |p|. One of the
following must therefore be true: eithgy < s; < tp, orsp < tg < t,. In both cases we
have [& — ¢ldl, tq + ¢ldl] < [sp — (Ial + ldl), tp + (Ia] + ¢la)]. Sincelpl > ¢ldl, we have
lal + #lal < [pl/¢ + Ipl = #lpl, where the last equality follows from the defintiongf
This concludes the proof of the lemma. O

We will use the above lemma, to analyze the performance ofighgn MNU.

Theorem 3. MNU is a(2¢ + 1)-competitivé algorithm for the problem of maximum
network utilization, where denotes the golden ratio.

Proof. An immediate consequence of Lemma 5 is the fact that for evawec, every

i, and everyp € A%(i), [I5())l < (1 + 2¢)|pl. Intuitively, this means that by scheduling

p we have lost at most a factor of {12¢) in the objective function due to packets
previously rejected or preempted to accommodate for thedsding ofp. Given a set

of packetsX, let U(X) = X xIpl. Consider the set of packe®scheduled in some
optimal solution. Denote biyl the set of packets that MNU schedules. Every packet in
the sequence contributes its edges to at least orlg(sgtfor some wavee, and some

p € A%(n) (since every packet is either scheduled, or was rejectgatemmpted). In
particular every packet i® contributes its edges to at least one such set. We therefore

42¢ +1 ~ 4.236
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have

u(o) D 2upeac(n) 5 (NI
Zwavec ZpeAC(n)(l + 2¢)| p|
1+ 29)U(M)

which completes the proof of the theorem. O

I IA A

Baruah et al. ([10]) present a lower bound of 4 for a problewndihe task schedul-
ing on a single machine, which applies to our model as wefbllidws that any deter-
ministic algorithm for our problem cannot have a competifiactor better than 4.

3.2. Arbitrary Weights

Clearly algorithm MNU appearing in Section 3.1 is guaradt®eproduce a sched-
ule which is within a factor of (2 + 1)8 = O(B) from an optimal schedule. A lower
bound ofQ(B) for arbitrary weights follows from a lower bound for the ptem of
online task scheduling on a single machine, appearing ih [Ldllows that algorithm
MNU has the best competitive ratio one could hope for, up torestant factor.

4. The Ring Topology

Our results readily extend to a ring network topology. To té® notice that our
algorithms for a linear network compute a packing of the p#&lon the waves. We
therefore need only present an appropriate notion of wawes fing topology, which
we callring-waves Given these waves, our algorithms can be adapted in alsti@iig
ward manner to the ring topology.

Aring is characterized by an underlying digraph- (V, E), whereV = {0,...,n— 1}
andk = {(i,i+1 modn)|1<i < n-1}. Inthelineartopology, we have an unbounded
number of waves, each of finite length defined by the size oh#tevork. In a ring
topology, however, we have a finite humber ring-waves, ddfime the size of the
network, where each ring-wave is of infinite length. Evengriwave is specified by
sequence of pairg,(j), wheret represents a time step, apdepresents a node in the
network. Ring-wave corresponds to the sft, j)it— j+i =0 modn}. See Figure 3
for an illustration of the ring waves for a ring of size 6.

5. Discussion

We have presented the first online algorithms for the proldéimufferless time-
constrained scheduling of packets in a linear network. &hesults extend to the
ring topology as well. For the problem of maximum throughpwt, when packets
have uniform weights, our algorithm achieves a competitt® of O(min{loga, R}),
whereq is the ratio between the longest and shortest path lengtlaslkephas, and
Ris the number of dferent lengths of packet paths appearing in the input seguenc
We additionally show that no online deterministic algamitban achieve a competitive
ratio better than 2 for this setting. We present a constamtpetitive algorithm for
the problem of maximizing network utilization, where theighe of each packet is its
length. For the case of arbitrary packet weights we give gardthm with competitive

14
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. - \
ring-wave 1——— |

Figure 3: Geometric interpretation of ring-waves for a retwof size 6. The hexagon represents the ring,
and the solid lines represent time. Each wave is represégtadiotted line.

ratio O(B), whereg is the ratio between the maximum and minimum weight-todeng
ratios. Our algorithms for these cases are optimal up to ataahfactor.

It would be interesting to try and close the gap between tipeuand lower bounds
for the problem of throughput maximization, as well as to kee rescheduling can
effect the performance of such algorithms.
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