
Online Time-Constrained Scheduling
in Linear and Ring Networks✩

Joseph (Seffi) Naora,1, Adi Rosénb, Gabriel Scalosub∗,c

aComputer Science Department, Technion, Technion City, Haifa 32000, Israel
bCNRS& University of Paris 11, LRI, Bât. 490, Université Paris Sud, 91405 Orsay, France

cDepartment of Communication Systems Engineering, Ben-Gurion University of the Negev, P.O.B. 653
Beer-Sheva 84105, Israel

Abstract

We consider the problem of scheduling a sequence of packets over a linear network,
where every packet has a source and a target, as well as a release time and a deadline by
which it must arrive at its target. The model we consider is bufferless, where packets
are not allowed to be buffered in nodes along their paths other than at their source.
This model applies to optical networks where opto-electronic conversion is costly, and
packets mostly travel through bufferless hops. The offline version of this problem was
previously studied in [1]. In this paper we study the online version of the problem,
where we are required to schedule the packets without knowledge of future packet
arrivals. We use competitive analysis to evaluate the performance of our algorithms.
We present the first online algorithms for several versions of the problem. For the
problem ofthroughput maximization, where all packets have uniform weights, we give
an algorithm with a logarithmic competitive ratio, and present some lower bounds. For
other weight functions, we show algorithms that achieve optimal competitive ratios.

Key words: Online Algorithms, Competitive Analysis, Scheduling,
Quality-of-Service

1. Introduction

As technology advances, communication networks are constantly going through
rapid change. The classic best-effort mechanisms are given up in favor of networks
that are able to provide Quality-of-Service (QoS) guarantees. The growing use of
multimedia applications motivate this transition. Such applications involve continuous

✩A preliminary version of this paper appeared inIEEE INFOCOM 2005, The 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, pp. 855-865, Miami, FL, USA, March 13-17,
2005.
∗Corresponding author
Email addresses:naor@cs.technion.ac.il (Joseph (Seffi) Naor),adiro@lri.fr (Adi Rosén),

sgabriel@bgu.ac.il (Gabriel Scalosub)
1This research is supported in part by a foundational and strategical research grant from the Israeli Min-

istry of Science, and by a US-Israel BSF Grant 2002276.

Preprint submitted to Elsevier December 12, 2010

transmission of data, which requires some guarantees as to its arrival time, bandwidth
allocation etc. [2].

It is often the case that the overall number of packets destined to be transmitted
through the network exceeds the network’s capacity. In suchcases, packets are either
delayed or dropped. When considering streaming video or audio data, there is very
little point in delaying such packets more than some predetermined period of time.
Take, for example, a home user listening to the radio over theInternet. We can model
such a transmission by considering every packet to have a certain deadline by which
it must arrive at its destination. In such a setting, having the packet arrive after its
deadline is of no use.

Real life applications vary in importance and value as well,thus rendering some
packets more important than others. Consider, for example,the case of MPEG en-
coding, where some packets are more important than others when reconstructing the
image at the target. This situation makes it vital to decide which packets to schedule at
any given time, such that the decision will eventually result in a ”best” possible set of
packets, which are all delivered by their deadline.

When considering such packets with their corresponding deadlines, one would
want to take into account both the packet’s importance as well as its deadline when
trying to determine which packet to route first. Additionally, packets can have different
values, according to the end user’s willingness to pay for animproved quality of ser-
vice. In such a scenario, delivering valuable packets on time would mean more profit
for the service provider, which should naturally be maximized. Such values could be
“flat-rate”, i.e., the case where all packets have the same value, or could depend on var-
ious other aspects. One very common choice for packets’ values is to have them pro-
portional to the amount of resources the packet consumes, e.g., the length of the path it
traverses (see, e.g., [3]). Time-constrained traffic is also the common case in real-time
applications, such as avionics, industrial process control, and automated manufactur-
ing, which necessitate coping with time constrained communication in interconnection
networks [4].

In this paper we consider the problem of online scheduling a sequence of pack-
ets, each with a deadline constraint. The model underlying our work is abufferless
scheduling environment. In this model, a packet can only be stored at its source, and
cannot be buffered in any node along its path. Once a packet has left its source, it must
move along its designated path without interruptions or delays, until arriving at its des-
tination. Any interruption or delay causes the packet to be dropped. This model is the
common setting in optical networks, where trying to buffer packets in nodes along the
path requires opto-electronic conversion of the signal, a prohibitively costly operation.
This is the case in Wavelength Division Multiplexing (WDM) networks, where a packet
is assigned a wavelength along which it is supposed to be transmitted throughout its
path.

We restrict our attention to specific network topologies such as the line and the ring.
The results of [5] motivate this focus, since under common complexity assumptions,
for arbitrary graphs, no reasonable approximation can be obtained in polynomial time.
Moreover, focusing on simple network topologies like the line topology or the ring
topology is motivated by considering electro-optical interconnection networks. In such
networks, we might have a packet’s path go through several long bufferless hops with

2

very few nexus points, each enabling the expensive optical-electric conversion. This
occurs for example in a mesh network topology, employing a dimension-order routing
policy. In such a case we can use a bufferless strategy along rows and columns, and
perform a conversion to change dimensions (see [4]). Another advantage in considering
simple topologies is the fact that they usually adhere to simple routing-path selection.
In cases of less regularly structured networks, it is often the case that packets are routed
along subnetworks of such simple topologies.

1.1. Our Results
We present the first online algorithm for bufferless scheduling of packets with dead-

line constraints in a linear network topology. Our goal is tomaximize the total weight
of packets delivered by their deadlines. A packetp contributes its weight to the overall
weight gained by the algorithm only if it arrives at its target node by its deadline. We
can further show that these results extend to a ring network topology.

We present results for several special cases of the problem,determined by the
weights given to the packets. In theThroughput Maximizationproblem the packets
have uniform weights, i.e., for every packetp, its weight is equal to some constantw,
where without loss of generalityw = 1, and thus our goal is to maximize the number
of packets scheduled successfully. In theMaximum Network Utilizationproblem the
weight of each packet is defined to be its path length. The optimization problem in this
case can be considered as trying to maximize the utilizationof the network over time,
where only packets scheduled successfully contribute to the network utilization. We
further present results for the general case of arbitrary weights.

We analyze the performance of our online algorithm usingcompetitive analysis
(see [6, 7]), which compares the schedule produced by the algorithm to the optimal
schedule produced by an algorithm with full knowledge of future incoming packets.
This approach is robust in the sense that it makes no assumptions on the arrival se-
quence of packets. We assume that the algorithm has no knowledge about any packet
until the packet is released at its source, at which point thealgorithm learns its source,
target, and deadline. A deterministic online algorithm fora maximization problem is
said to bec-competitiveif the ratio between its performance and the performance of an
optimal schedule is at least 1/c, for every possible request sequence.

In Section 2 we present anO(min
{

logα,R
}

)-competitive algorithm for the through-
put maximization problem, whereα is the ratio between the length of the longest path
of a packet in the input sequence and the length of the shortest path, andR is the num-
ber of different path lengths appearing in the sequence. This reduces to anO(logn)-
competitive algorithm in the worst setting. Unlike the results of [8] and [9] for task
scheduling on a single machine, our algorithm need not know the value of the param-
eterα beforehand. We give an example exhibiting our analysis to betight up to a
constant factor. We additionally show that no deterministic algorithm for the problem
can achieve a competitive ratio better than 2.

In Section 3 we give a constant competitive algorithm for theproblem of maximiz-
ing network utilization. This algorithm is an adaptation toour model of an algorithm
given in [3]. We further derive anO(β)-competitive algorithm for arbitrary weights
whereβ is the maximum ratio between any two packets’ weight-to-length ratio. Due
to the results of [10], this is the best possible, up to a constant factor.

3

In Section 4 we show how our results can be applied to a ring network topology.

1.2. Previous Work

The offline version of our problem in the linear network topology wasfirst consid-
ered by Adler et al. in [1]. They restricted their attention to the problem of throughput
maximization and showed that it is NP-hard, and further provided a 2-approximation
algorithm for the problem. Another model considered in [1] is thebuffered model,
where packets are allowed to be stored in a buffer of any node along their path. Adler
et al. showed that allowing the packets to be buffered along their paths can increase
the throughput by at most anO(logγ) factor, relative to the throughput obtained by
a bufferless schedule, whereγ is the minimum among the network size, the number
of packets in the instance and the maximum slack a packet has.2 Adler et al. de-
vised a distributed online algorithm for the buffered case, which mimics the approxi-
mation algorithm given for the buffereless case. An extension of these results was later
given by Adler et al. in [5], where they present algorithms for several versions of the
time constrained scheduling problem, all in an offline setting. They first describe a
2-approximation algorithm for the bufferless case in a linear network, where packets
are allowed to have arbitrary weights. They further consider the case where the under-
lying network topology is a tree or a mesh in the bufferless setting. For this problem
they present constant-approximation algorithms for both the throughput maximization
problem as well as for arbitrary weights. For the buffered case in the tree and mesh
topologies, they devise an algorithm based on the algorithmfor the bufferless case,
with a logarithmic approximation guarantee.

The hardness results appearing in [5] motivate the focus on particular network
topologies as they show that for anyε > 0, there is nok1−ε-approximation algorithm
for the problem in general networks, unless NP=ZPP, wherek is the number of packets
in the instance. This hardness result is based on the hardness ofmax-independent-set,
and it holds even if the underlying topology is either a directed acyclic graph or a planar
graph.

The only result regarding the online version of the problem is given in [5], where
they show that no deterministic online algorithm can achieve a competitive ratio better
thanΩ(logn) when the underlying graph is a tree, in both the bufferless and the buffered
settings, wheren denotes the size of the network. One can compare this result with
our upper bound for the linear network topology, which is guaranteed to beO(logn)-
competitive.

Our problem is closely related to interval scheduling problems and other call con-
trol models, e.g., [3], [11], and [12]. In the online interval scheduling problem we
are given a sequence of intervals to schedule on a line segment. In some cases the
problem can be solved in polynomial time, e.g., the case where the intervals are given
in non-decreasing order of their left end-point, all havinguniform weights, and pre-
emption is allowed. In other cases however there are lower bounds on the attainable
competitive ratio of any online algorithm, e.g., the case where the weight of an interval

2For the definition of slack, see Section 1.3.

4

is defined to be its length, even in a randomized setting [11],and the case where in-
tervals have uniform weights in a deterministic setting [3]. These lower bounds apply
to non-preemptive scheduling of the intervals. Our model however is not reducible in
the general case to either of these. The main difference between our model and the
ones mentioned above is the concept of time, which introduces further constraints on
the scheduling problem. Further results related to our problem involve multiple bin-
packing, dealt with in the context of call admission controland wavelength division
multiplexing in optical networks [13], which were later adapted to the case where calls
are allowed to be preempted [12].

Some results regarding online task scheduling on a single machine, where each
job must terminate by a certain deadline, are also related toour problem. Baruah et
al. show in [10] that when packets may have arbitrary weights, no deterministic online
algorithm can achieve a competitive ratio better thanΩ(β), whereβ is the ratio between
the largest and the smallest weight-to-length ratio of the packets in the instance. In [8]
Koren and Shasha present an online algorithm for the problem, whose guarantee is
exactly that of the lower bound in [10]. Their algorithm needknow the value ofβ in
advance. A guarantee based on a different parameter is given by Garay et al. in [9] for
the problem of throughput maximization. They present an algorithm that is guaranteed
to be O(1/κ)-competitive, whereκ is the minimum ratio between the slack and the
processing time of all jobs in the request sequence. In this case as well, the algorithm
has to be given the value ofκ in advance.

1.3. The Network Model

Our main results will be described for the linear network. Wemodel our problem
by a digraphG = (V,E), whereV = {1, . . . , n}, and E = {(i, i + 1)|1 ≤ i ≤ n− 1}.
An instance comprises additionally of a set of packets that are to be routed through
the network. Each packetp is specified by a tuple (sp, tp, rp, dp,wp), wheresp andtp

denote the source and target nodes respectively,rp is the packet’s release time, i.e.,
the time at which the packet is available for routing,dp denotes the packet’s deadline,
andwp is the packet’s weight. We denote by|p| = tp − sp the lengthof packetp.
The algorithm learns of packetp in time rp. The above definitions make it natural to
consider theslackeach packet has, also known aslaxity, defined byℓ(p) = dp− rp−|p|.
The slack of packetp captures the notion of the maximum amount of time a packet can
wait at its source node if it is to arrive at its target node by its deadline. We denote by
ℓt(p) = dp − t − |p| theresidual slackof packetp in time t. A packet can be scheduled
to leave its source at any timet for whichℓt(p) ≥ 0. We consider asynchronousmodel,
where at each time step at most one packet can be transmitted on any edge, and we
focus our attention on thebufferlesscase. We make no restriction on the amount of
storage available at any node. We further assume packets canbepreemptedbut cannot
be rescheduled. Preemption means that a packet on route to its destination can be
stopped, in which case it is dropped and cannot be rescheduled, even if its residual
slack allows it. Every packet arriving at its destination byits deadline contributes its
weight to the overall weight obtained, and is considered successfully scheduled. Every
other packet contributes 0 to the overall obtained weight. The goal is to maximize the
weight obtained.

5

1.4. Terminology

We follow the geometric representation introduced in [1]. We define the concept
of wavesupon which we ”mount” the packets to be scheduled. Consider atwo dimen-
sional array whoseX-axis represents the linear network, numbered 1, . . . , n to designate
the network nodes, and itsY-axis represents time, numbered 1, 2, . . . to designate dis-
crete time steps. Given a packetp that was presented at timerp with slackℓ(p), in
order for it to arrive at its destination by its deadline, it must be sent from its source
at some timet ∈

{

rp, . . . , rp + ℓ(p)
}

. Every such scheduling ofp starting att can be
geometrically viewed as packing an interval of length|p| on a SW-NE line starting at
point (sp, t) and ending in (tp, t + |p|). We call each such SW-NE line awave. Every
such wave represents the network resources used over time. Each packet has a set of
eligible waves, defined according to the packet’s parameters, where apacket can be
mounted on any of its eligible waves. Figure 1 shows an example of the waves eligible
for a packetp for whichℓ(p) = 4, and the location in which it can be mounted in every
one of them. For each packetp, we consider the waves eligible for packetp as ordered
from earliest (crossing point (sp, rp)) to latest (crossing point (sp, rp+ℓ(p))). A feasible
schedule solution is a packing of the packets upon the waves,such that on any wave no
two packets intersect, and every packet is scheduled on at most one wave. Consider for
example an instance where all packets have zero slack. In this case, every packet has
only one eligible wave. We therefore seek to compute a maximum-independent set,
in an online fashion, for each wave independently. Since preemption is allowed, for
such instances this can be done optimally (in the case of uniform weights). To see this
notice that when focusing on a single wave, the packets corresponding to this wave are
given in increasing order of their left end-point. This is due to the fact that packetp is
introduced in timerp. We can therefore preempt a currently scheduled packetq on the
wave in favor of a packetp for which tp < tq. This mimics exactly the behavior of an
offline algorithm for finding a maximum independent set in an interval graph in these
settings, which finds an optimal solution. If we allow packets to have positive slack,
the plot thickens, as demonstrated in Section 2.1.

In what follows we will use the following notation. LetM = maxp |p| and let
m = minp |p|. We letα denote the ratioM/m andR is the number of different packet
lengths appearing in the input. Define thedensityof packetp to beρ(p) = wp/|p|.
Denote byρmin = minp ρ(p), ρmax = maxp ρ(p) and letβ = ρmax/ρmin.

2. Throughput Maximization

We first consider the case where for every packetp, wp = w for some constant
w. Without loss of generality we assumew = 1, and thus our goal is to maximize the
number of packets scheduled.

2.1. Online Bufferless Lower Bound

Theorem 1. No deterministic online algorithm can achieve a competitive-ratio better
than2. This holds even if rescheduling is allowed.

6

1

2

3

rp

rp + ℓ(p)

dp

time

1 2 3 sp tp n−1 n

Figure 1: Geometric representation of waves

Proof. Consider a linear network with 4 nodes{v1, . . . , v4}. We now describe an adver-
sary. The adversary releases at time 0 a packetp with slack= 1, going fromv1 to v4.
If the algorithm schedules it on its first wave (i.e., it starts moving att = 0), then the
adversary releases at timet = 2 a packetq with zero slack, going fromv3 to v4. If, on
the other hand, the algorithm schedulesp on its second wave (i.e., it starts moving at
t = 1), then the adversary releases at timet = 2 a packetq with zero slack, going from
v2 to v3. In either case, the algorithm can deliver at most one of the two packets, while
an optimal solution delivers both. Notice that in both cases, if the algorithm preempts
p in favor of q, then it cannot reschedulep on any other wave, because at the time of
preemptionp has a negative residual slack, i.e., it can no longer reach its target node by
its deadline. We can repeat this procedure an arbitrary number of times, thus ensuring
no deterministic online algorithm can achieve a competitive ratio better than 2.

2.2. Online Bufferless Upper Bound

2.2.1. A Simple Randomized Strategy
A simple greedy strategy can be used to devise a randomizedO(logn)-competitive

non-preemptive algorithm for the problem. Consider a new packet just arrived. If it
can be scheduled (considering the previously scheduled packets) on any wave, then
schedule it. Otherwise, discard it. Since this algorithm is(α + 1)-competitive when
considered on any single wave, using the multiple-bin packing methodology appearing
in [13], it follows that the above algorithm is (α + 2)-competitive for our problem. We
now introduce randomization: Consider a partition of the packets intoO(logn) classes

7

according to their length, where classi consists of all packets whose length falls in the
interval (2i, 2i+1], and we havei = 0, . . . , logn − 1. Pick uniformly at random a class
i, and use the greedy strategy described above to schedule only packets from classi.
Denote byαi the ratio between the maximum length to the minimum length ofpackets
in classi. Since for everyi we haveαi ≤ 2, using linearity of expectation, we conclude
that the above randomized non-preemptive algorithm isO(logn)-competitive.

2.2.2. The Deterministic Case
The non-preemptive simple strategy applied above will not do in the deterministic

setting. To see this, consider an input sequence consistingof all zero slack packets. One
packet which needs to traverse the entire network, followedby a sequence of (n − 2)
unit-path-length non-intersecting packets, each intersecting the path of the first packet
on a different link. It follows that any non-preemptive deterministic algorithm can be
Ω(n)-competitive at best. We apply a different method for the deterministic case to
balance between ”long” and ”short” packets. We analyze in Theorem 2 the competitive
ratio guarantee of our algorithm, which we call MT (See Algorithm 1 below).

Algorithm 1 Algorithm MT
Given a new packetp just arrived,

1: if there exists a wavec eligible for p such thatp doesn’t intersect any currently
scheduled packet onc then

2: schedulep onc
3: else
4: let c be the earliest eligible wave forp
5: while c is still eligible for p andp is not yet scheduleddo
6: let q be the first (i.e., leftmost) packet scheduled onc which intersectsp
7: if |p| ≤ |q|/2 andtp ≤ tq then
8: replaceq by p ⊲ p evictsq
9: end if

10: c← c+ 1
11: end while
12: end if

We say that packetp evictspacketq if the condition in line 7 holds andq is replaced
by p. Let us first make sure that the algorithm is well defined, and indeed produces a
feasible schedule.

Lemma 1. For any sequence of h packets, MT produces a feasible schedule.

Proof. Proof by induction onh. Forh = 0, the claim clearly holds. Assume the claim
is true for any sequence ofh − 1 packets. Letp be theh’th packet introduced. Ifp
is scheduled on a wavec such thatp doesn’t intersect any currently scheduled packet
on c, then the schedule remains feasible. Otherwise, assume forevery wavec eligible
for p, there are scheduled packets intersectingp on c. If p is not scheduled by MT,
then clearly the schedule remains feasible. Otherwise, letc be the wave on which MT
schedulesp. Let Sp be the set of packets intersectingp on c, and letq ∈ Sp be the

8

first packet (i.e., leftmost packet) which intersectsp on c. Sincep is scheduled onc,
by the condition in line 7 it follows thattp ≤ tq, henceSp = {q}, and therefore sinceq
is evicted in favor ofp, all the packets intersectingp onc are evicted, which results in
a feasible schedule.

We now turn to show the competitive ratio guarantee of MT.

Theorem 2. Algorithm MT is an O(min
{

logα,R
}

)-competitive algorithm, whereα is
the ratio between the longest and shortest packets, and R is the number of different
packet lengths.

Proof. Let A be the set of packets scheduled by MT andO be the set of packets sched-
uled by some optimal schedule. Denote byN the set of packets never scheduled on any
wave by MT. We distinguish between two types of packets inO \ A.

Packets scheduled.Consider a packetp ∈ (O \ A) ∩ N. Let c be the wave on which
p was scheduled. Packetp was not successfully sent byA, and therefore was evicted
from c by some packetq. Note that this can only happen if the condition of line 7 is
met. Note thatq is not necessarily inA either, sinceq might have been later evicted
by a packetq′. However, notice that continuing this scenario eventuallyresults in a
packet that is successfully sent byA, since the line is of finite length, and in every time
step we have a finite number of packets’ arrivals. Denote any such maximal sequence
by q1, . . . , qk, whereq1 is a packet scheduled onc without evicting any other packet,
andqk is a packet eventually sent byA. We therefore have, by the condition of line 7,
|qi+1| ≤ |qi |/2 for all i = 1, . . . , k− 1.

Let us map each suchp to its correspondingqk. Eachp that maps to a specificqk,
is mapped via one of the packetsqi that evicts it. Notice that the proof of Lemma 1
implies that any suchqi is responsible for evicting at most one packet from (O \ A) ∩ N.
We therefore have a one-to-one correspondence between packets in (O \ A) ∩ N and
packets in any such maximal sequence. Let us turn to bound thesize of each sequence:

m≤ |qk| ≤ 2−(k−1)|q1| ≤ 2−(k−1)M

which in turn yields
k ≤ logα + 1. (1)

It follows that |(O \ A) ∩ N| ≤ (k − 1)|A| since for each sequence we have one packet
that is eventually sent byA.

Packets never scheduled.Consider a packetp ∈ (O \ A) ∩ N. Packetp was never
scheduled because on each wavec eligible for p the condition of line 7 was not met.
This specifically holds for the wavec on whichO schedulesp. Let q be the packet
scheduled by A onc specified by the algorithm in line 6, preventingp from being
scheduled onc. We show that any suchq may prevent the schedule of at most 3 packets
in (O \ A) ∩ N. There might be at most one packet in (O \ A) ∩ N that is rejected byA
due to its end point being later than that of the conflicting packetq scheduled byA. This
is becauseO produces a valid schedule, so there is at most one packet using c on any
edge, specifically at most one using the edge leaving the endpoint of q. Furthermore,
notice that such a packetq can be responsible for the rejection of at most 2 packets in
(O \ A) ∩ N that suffer from excess length. This is because all packets in (O \ A) ∩ N

9

are successfully scheduled onc in the optimal schedule, and therefore do not intersect
on c. Since every such packet has length greater than|q|/2, there can be at most two
such packets. It therefore follows that any suchq may prevent the schedule of at most
3 packets in (O \ A) ∩ N. The same maximal sequences identified in the analysis of
the packets in (O \ A) ∩ N occur here. There are at mostk such packets in any such
sequence, where each one is ”responsible” for the non-scheduling of at most 3 packets.
It follows that |(O \ A) ∩ N| ≤ 3k|A|.

We can now conclude the proof of the theorem. The above analysis yields

|O| ≤ |(O \ A) ∩ N| + |(O \ A) ∩ N| + |A|
≤ (k− 1+ 3k+ 1)|A|
= 4k|A|.

Note that by the condition of line 7, any maximal sequenceq1, . . . , qk satisfies|q1| >
|q2| > . . . > |qk|, hencek ≤ R. Combining this with Eq. (1) gives a competitive ratio of
O(min

{

logα,R
}

), which completes the proof.

MT has running time ofO(δn) per packet, whereδ is the maximal slack of any
packet in the sequence, andn is the network size. Note that MT need not know the
values ofα or R in advance.

2.3. A Tight Example for MT

We now give an example showing that the above analysis is tight, up to a constant
factor. I.e., the above algorithm cannot achieve a performance superior toΩ(logn).
Assume thatn = 2k and letr = k/2− 1. Definexi =

1
2i . We therefore havexi+1 = xi/2.

We consider two series of packets:P = {p1, p2, . . . , pr} andP′ =
{

p′1, p
′
2, . . . , p

′
r

}

,
all with zero slack, where each packet is defined by its release time and its path:

• Packetpi : release timesi = n(1− xi) and path [si , n].

• Packetp′i : release times′i = n(1− xi) + 1+ i and path [s′i , s
′
i + nxi+1 + 1].

Figure 2 shows an outline of the above sequence.

p1

p′1

p2

p′2

p3

p′3

p4

Figure 2: Outline of the sequence showing MT isΩ(logn)-competitive. The order induced by the release
times is (p1, p′1, p2, p′2, . . . , pr , p′r).

10

Observation.For all i, si < s′i < si+1. The first inequality follows from the defini-
tion, whereas the second follows from the fact that

si+1 − s′i = −nxi+1 + nxi − 1− i

= nxi+1 − 1− i

= 2k−(i+1) − (i + 1) > 0

for all i ≤ k/2− 1 = r.

Lemma 2. For every i, if pi is scheduled by MT at the end of time si , then p′i is rejected
by MT.

Proof. Assumepi is currently scheduled by MT. By the previous observation, the next
packet in the sequence isp′i . Since

|pi | = nxi = 2nxi+1 < 2(nxi+1 + 1) = 2|p′i |,

then by the condition in line 7,p′i is rejected by MT.

Lemma 3. For every i, if pi is scheduled by MT at the end of time si , then upon the
arrival of pi+1, MT preempts pi and schedules pi+1 instead.

Proof. Assumepi is scheduled by MT at the end of timesi . By Lemma 2,p′i , which is
the next packet in the sequence, is rejected. The following packet ispi+1, for which we
have|pi | = xi ≥ 2xi+1 = 2|pi+1|, and in additionpi+1 doesn’t terminate afterpi . By the
condition in line 7,pi is preempted by MT andpi+1 is scheduled in its place.

Lemma 4. MT finishes scheduling only one packet from P, while there exists a schedul-
ing that schedules all the packets in P′.

Proof. Since MT starts by schedulingp1, then by Lemmas 2 and 3 it finishes schedul-
ing only pr . On the other hand notice that we can schedule all the packetsin P′. Since
the end point ofp′i is

s′i + nxi+1 + 1 = n(1− xi) + 1+ i + nxi+1 + 1

= n(1− xi+1) + 1+ (i + 1)

= s′i+1,

its path does not intersect with that ofp′i+1’s.

Since |P′| = Ω(logn), this example shows our analysis is tight up to a constant
factor.

3. Non-Uniform Weights

3.1. Maximum Network Utilization

Assume that every packetp has weightwp = |p|, and recall that our goal is to
maximize the sum of the weights of delivered packets. This setting corresponds to

11

optimizing network utilization. Unlike the case of uniformweights, the idea here is to
prefer longer packets, which give a better utilization of the network. Letφ denote the
golden ratio3. Consider the following algorithm for the problem, which wecall MNU
(see Algorithm 2 below).

Algorithm 2 Algorithm MNU
Given a new packetp just arrived,

1: if there exists a wavec eligible for p such thatp doesn’t intersect any currently
scheduled packet onc then

2: schedulep onc
3: else
4: let c be the earliest eligible wave forp
5: while c is still eligible for p andp is not yet scheduleddo
6: let Sp be the set of packets scheduled onc which intersectsp.
7: if |p| ≥ φ ·maxq∈Sp |q| then
8: replaceSp by p ⊲ p evictsSp

9: end if
10: c← c+ 1
11: end while
12: end if

MNU is an adaptation to our model of the algorithm given by Garay et al. in [3],
for the problem of call admission, where a call’s value is itsroute length.

We say packetp wasrejected by packet qif q is the packet with maximal length in
Sp, andp is rejected by the algorithm. In case more than one such packet exists, we
choose one of them arbitrarily. We will sometimes abuse notation, referring to a packet
as the set of its edges and to a set of edges as the set of intervals defined by them.
Assume the packets arrived in the orderp1, . . . , pk. We first introduce some notation.
For every 1≤ i ≤ k, and every wavec, let Ac(i) be the set of packets scheduled on
c after the arrival of thei’th packet. For every packetp ∈ Ac(i), let us denote the
following:

• Sc
p - the set of packets preempted by MNU in order to schedulep (might be

empty).

• Tc
p - the transitive closure ofSc

p, i.e.,Tc
p =
⋃

q∈Sc
p
Tc

q. This set is defined immedi-
ately afterp arrives and remains unchanged thereafter, since it only depends on
packets scheduled onc which arrived prior to the arrival ofp.

• Rc
p(i) - the set of packets up to thei’th packet, rejected by packets inTc

p ∪ {p}.

• I c
p(i) - the collection of all edges in the paths of packets inTc

p ∪ Rc
p(i) ∪ {p}.

3φ = 1+
√

5
2

12

Lemma 5. For every wave c, every i, and every p∈ Ac(i),

I c
p(i) ⊆ [sp − φ|p|, tp + φ|p|].

Proof. Clearly, the scheduling and preemption of packets on any wave c is of no con-
sequence to packets scheduled on waves other thanc. We may therefore deal with each
wave independently. Letc be any wave. We prove the claim by induction oni. The
claim trivially holds for i = 0. Assume the claim holds fori − 1. Let p be thei’th
packet that arrived. Ifc is not eligible forp then the claim clearly holds, so assumec is
eligible for p.

Assume first thatp is scheduled onc, and does not intersect any currently scheduled
packet onc. In this case, for every packetq ∈ Ac(i) other thanp, I c

q(i) = I c
q(i−1) and the

induction hypothesis ensures the required result. Forp we haveSc
p = Tc

p = Rc
p(i) = ∅,

henceI c
p(i) =

{

e|e is in p’s path
}

, and the claim trivially holds.
Assume next thatp is not scheduled onc. Let q be the packet responsible for

rejectingp. Henceq = arg maxw∈Sc
p
|w|. We need to show thatp ⊆ [sq − φ|q|, tq + φ|q|].

Assume the contrary. Thereforep’s path contains a point to the left ofsq − φ|q|, or it
contains a point to the right oftq + φ|q|. Sincep was rejected because ofq, clearly p
andq intersect. Hence,|p| > φ|q|, contradicting the fact thatp was rejected because of
q, and should therefore satisfy|p| ≤ φ ·maxw∈Sc

p
|w| = φ|q|.

The last case to consider is the case wherep is scheduled onc, and preempts the
packets inSc

p. We only need concern ourselves withp, as for every packetq ∈ Ac(i)
other thanp, I c

q(i) = I c
q(i − 1). We will show that for every packetq ∈ Sc

p preempted by
p, I c

q(i − 1) ⊆ [sp − φ|p|, tp + φ|p|], which will complete our proof. Sinceq ∈ Sc
p, p and

q intersect. Furthermore, sinceq was preempted byp we have that|q| ≤ |p|. One of the
following must therefore be true: eithersp ≤ sq < tp, or sp < tq ≤ tp. In both cases we
have [sq − φ|q|, tq + φ|q|] ⊆ [sp − (|q| + φ|q|), tp + (|q| + φ|q|)]. Since|p| ≥ φ|q|, we have
|q| + φ|q| ≤ |p|/φ + |p| = φ|p|, where the last equality follows from the defintion ofφ.
This concludes the proof of the lemma.

We will use the above lemma, to analyze the performance of algorithm MNU.

Theorem 3. MNU is a (2φ + 1)-competitive4 algorithm for the problem of maximum
network utilization, whereφ denotes the golden ratio.

Proof. An immediate consequence of Lemma 5 is the fact that for everywavec, every
i, and everyp ∈ Ac(i), |I c

p(i)| ≤ (1 + 2φ)|p|. Intuitively, this means that by scheduling
p we have lost at most a factor of (1+ 2φ) in the objective function due to packets
previously rejected or preempted to accommodate for the scheduling ofp. Given a set
of packetsX, let U(X) =

∑

p∈X |p|. Consider the set of packetsO scheduled in some
optimal solution. Denote byM the set of packets that MNU schedules. Every packet in
the sequence contributes its edges to at least one setI c

p(n), for some wavec, and some
p ∈ Ac(n) (since every packet is either scheduled, or was rejected orpreempted). In
particular every packet inO contributes its edges to at least one such set. We therefore

42φ + 1 ∼ 4.236

13

have
U(O) ≤ ∑

wavec
∑

p∈Ac(n)|I c
p(n)|

≤ ∑

wavec
∑

p∈Ac(n)(1+ 2φ)|p|
= (1+ 2φ)U(M)

which completes the proof of the theorem.

Baruah et al. ([10]) present a lower bound of 4 for a problem ofonline task schedul-
ing on a single machine, which applies to our model as well. Itfollows that any deter-
ministic algorithm for our problem cannot have a competitive factor better than 4.

3.2. Arbitrary Weights

Clearly algorithm MNU appearing in Section 3.1 is guaranteed to produce a sched-
ule which is within a factor of (2φ + 1)β = O(β) from an optimal schedule. A lower
bound ofΩ(β) for arbitrary weights follows from a lower bound for the problem of
online task scheduling on a single machine, appearing in [10]. It follows that algorithm
MNU has the best competitive ratio one could hope for, up to a constant factor.

4. The Ring Topology

Our results readily extend to a ring network topology. To seethis, notice that our
algorithms for a linear network compute a packing of the packets on the waves. We
therefore need only present an appropriate notion of waves for a ring topology, which
we callring-waves. Given these waves, our algorithms can be adapted in a straightfor-
ward manner to the ring topology.

A ring is characterized by an underlying digraphG = (V,E), whereV = {0, . . . , n− 1}
andE = {(i, i + 1 modn)|1 ≤ i ≤ n− 1}. In the linear topology, we have an unbounded
number of waves, each of finite length defined by the size of thenetwork. In a ring
topology, however, we have a finite number ring-waves, defined by the size of the
network, where each ring-wave is of infinite length. Every ring-wave is specified by
sequence of pairs (t, j), wheret represents a time step, andj represents a node in the
network. Ring-wavei corresponds to the set{(t, j)|t − j + i = 0 modn}. See Figure 3
for an illustration of the ring waves for a ring of size 6.

5. Discussion

We have presented the first online algorithms for the problemof bufferless time-
constrained scheduling of packets in a linear network. These results extend to the
ring topology as well. For the problem of maximum throughput, i.e., when packets
have uniform weights, our algorithm achieves a competitiveratio ofO(min

{

logα,R
}

),
whereα is the ratio between the longest and shortest path lengths a packet has, and
R is the number of different lengths of packet paths appearing in the input sequence.
We additionally show that no online deterministic algorithm can achieve a competitive
ratio better than 2 for this setting. We present a constant competitive algorithm for
the problem of maximizing network utilization, where the weight of each packet is its
length. For the case of arbitrary packet weights we give an algorithm with competitive

14

0

12

3

4 5

t=0

t=1

t=2

t=3
t=4

ring-wave 1

Figure 3: Geometric interpretation of ring-waves for a network of size 6. The hexagon represents the ring,
and the solid lines represent time. Each wave is representedby a dotted line.

ratio O(β), whereβ is the ratio between the maximum and minimum weight-to-length
ratios. Our algorithms for these cases are optimal up to a constant factor.

It would be interesting to try and close the gap between the upper and lower bounds
for the problem of throughput maximization, as well as to seehow rescheduling can
effect the performance of such algorithms.

6. Acknowledgements

We thank Danny Raz for useful discussions.

References

[1] M. Adler, A. L. Rosenberg, R. K. Sitaraman, W. Unger, Scheduling time-
constrained communication in linear networks, Theoretical Computer Science
35 (6) (2002) 599–623.

[2] J. Liebeherr, Multimedia networks: Issues and challanges, IEEE Computer 28 (4)
(1995) 68–69.

[3] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, M. Yung, Efficient on-line call
control algorithms, Journal of Algorithms 23 (1) (1997) 180–194.

15

[4] J. Rexford, J. Hall, K. G. Shin, A router architecture forreal-time communica-
tion in multicomputer networks, IEEE Transactions on Computers 47 (10) (1998)
1088–1101.

[5] M. Adler, S. Khanna, R. Rajaraman, A. Rosén, Time-constrained scheduling of
weighted packets on trees and meshes, Algorithmica 36 (2) (2003) 123–152.

[6] D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging rules,
Communications of the ACM 28 (2) (1985) 202–208.

[7] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998.

[8] G. Koren, D. Shasha, Dover: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems, SIAM Journal on Computing 24 (2)
(1995) 318–339.

[9] J. A. Garay, J. Naor, B. Yener, P. Zhao, On-line admissioncontrol and packet
scheduling with interleaving, in: Proceedings of the IEEE INFOCOM’02, New
York, NY, 2002, pp. 94–103.

[10] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier,
D. Shasha, F. Wang, On the competitiveness of on-line real-time task schedul-
ing, Real Time Systems 4 (2) (1992) 125–144.

[11] R. J. Lipton, A. Tomkins, Online interval scheduling, in: Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 302–311.

[12] R. Adler, Y. Azar, Beating the logarithmic lower bound:Randomized preemptive
disjoint paths and call control algorithms, Journal of Scheduling 6 (2) (2003)
113–129.

[13] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, A. Rosén, On-line competitive algo-
rithms for call admission in optical networks, Algorithmica 31 (1) (2001) 29–43.

16

