
Distributed Online Call Control on General Networks

Harald R�acke
�

Adi Ros�en
y

Abstract

We study the problem of online call admission and rout-
ing (\call control") on general networks. We give new
algorithms that with high probability achieve a poly-
logarithmic fraction (in the size of the network) of the
optimal solution. The decisions of our algorithms do
not depend on the current load of all network links,
as in previous algorithms for general network topolo-
gies [AAP93]. Instead, their admission decisions depend
only on link loads along a single path between the com-
municating parties, and they can thus be performed in
a distributed hop-by-hop manner through the network.
Furthemore, our algorithms can handle concurrent re-
quests in the network.

1 Introduction

One of the most important problems in the area of net-
work algorithms is the problem of the online admission
and routing of virtual circuits. This problem is many
times referred to as the \call control problem". A se-
quence of request for calls is received in an online man-
ner. Each request consists of a pair of nodes that wish
to communicate. For each such request the algorithm
has to immidiately either accept the call or reject it. To
accept the call the algorithm has to immiddiately se-
lect a virtual circuit (path) between the communicating
parties, obeying the network constraints such as link ca-
pacities. The aim of the algorithm is that of maximizing
the number of accepted calls.

Networks with unstructured topology are becoming
increasingly important due to the dramatic growth of
the Internet and the widening popularity of ad-hoc
networks. A call control algorithm for general network
topologies was given in [AAP93]. This algorithm is
many times referred to as the \AAP" algorithm. The
AAP algorithm su�ers however from the drawback
that its admission and routing decisions are based on

�Computer Science Department, Carnegie Mellon Univer-

sity, 5000 Forbes Avenue, Pittsburgh PA 15213, USA. email:

harry@cs.cmu.edu.
yDept. of Computer Science, Technion, Haifa 32000, Israel.

email: adiro@cs.technion.ac.il. Research supported in part by

a grant from the G.I.F., the German-Israeli Foundation for

Scienti�c Research and Development.

knowledge of the current load on all network links.
Therefore, a central node in the network has to be in
charge of taking all admission and routing decisions (or
link loads have to be continuously distributed in the
network). Such procedure will create a \hot spot" in
the network with high volumes of control tra�c, and
the operation of the whole network will depend on the
availability of this central node. Furthermore, once a
call is admitted, the identities of the links along its
chosen path have to be communicated to the nodes
along that path.

In this work we resolve this issue. We give new on-
line call control algorithms for general network topolo-
gies that work distributively. Furthermore, our algo-
rithms can handle concurrent requests in the network.
Our algorithms have a path-establishment and call ad-
mission procedure that can operate in a hop-by-hop
manner through the network. That is, for a given re-
quest for a call, a sequence of request-messages is sent
along some path between the communication parties,
where the speci�c path can be determined in a hop-by-
hop manner. Based on the loads on the edges along
this path the call admission decision is taken. If the
call is admitted, it is routed along the same path. We
give two algorithms. Both guarantee that, for any se-
quence of requests for calls, with high probability, the
number of accepted calls is a polylogarithmic fraction
(more precisely an O(log3 n log logn) fraction, where n
is the number of nodes in the network) of the optimum
number of calls that can be accepted. Our algorithms
require that there is a lower bound on the capacity of
any network link. We note that results in [BFL96] im-
ply that for any online algorithm on general networks
to guarantee (even on expectation) an o(n�) fraction of
the optimum solution, this is necessary. The require-
ment of our �rst algorithm is that link capacities are

(log2 n(log logn + �(G)), where �(G) is a function
of the network. The parameter �(G) is at most n in
general, but for speci�c topologies such as the mesh it
is a constant. Since for some networks this minimum
capacity requirement may be large, we also give an-
other algorithm, where the edge capacity requirement
is
(log3 n log logn). We are able to achieve that at the
cost that the routes of the calls are not always guaran-
teed to be simple paths.

Both our algorithms have the following property
(that we �nd elegant). The admission decision for a
given call is based only on the link loads along a single
path between the communicating parties, where (the
randomized) choice of the speci�c path does not depend
on previous calls in the network. Furthermore, the
admission decision is simple, in that the call is rejected
only if for some link along that path, the number of calls
(of a certain type) already on the link, exceeds some
threshold. The call itself, if admitted, is then routed on
the same path.

Related work The online call control problem has
been extensively studied. We briey review below the
results that are most closely related to the present work.
A deterministic online algorithm for call control on
general networks with an O(logn) competitive ratio is
given in [AAP93]. This algorithm requires that each
link capacity is
(logn). This has later been extended
in [KT95] to be O(logD) competitive with edge capacity
requirement of
(logD), where D is the length of
the longest simple path in the network. The results
in [BFL96] imply that in order to achieve on general
networks an o(n�) competitive ratio by an online (even
randomized) algorithm, some minimumedge capacity is
required. In [AA94] a competitive distributed algorithm
for a class of problems, including call control, is given.
The obtained competitive ratios are polylogarithmic
when the number of possible paths for a given call is
polynomial (which is not the case in general network
topologies).

Our work makes use of the oblivious routing
schemes recently given in [R�ac02] and subsequently im-
proved in [HHR03]. The latter result gives a virtual
circuit routing algorithm that chooses routing paths in-
dependently of the tra�c in the network and obtains a
competitive ratio of O(log2 n log logn) with respect to
edge congestion (i.e., maximum load of a network link,
normalized by link capacity). In Section 2 we give a
brief overview of this routing scheme.

Organization The rest of the paper is organized
as follows. In section 2 we give some preliminary de�-
nitions and notations, and review results from [HHR03]
and [BKR03] that we use for our algorithms. In Sec-
tions 3 and 4 we give our algorithms and analyze their
performance. In Section 5 we show how to make our
algorithms distributed, and how they can be made to
handle concurrent requests in the network.

2 Preliminaries

We model the network as an undirected graph G(V;E),
jV j = n, jEj = m. Each edge e 2 E has a capacity
cap(e). That is, the number of calls that can be routed
on edge e is at most cap(e). A request for a call consist

of a pair of nodes (s; t), s 2 V , t 2 V , and the requests
arrive in an online manner. That is, a request (s; t)
is generated at the node s, and the call has either to
be rejected or accepted. If the call is accepted a path
between s and t has to be assigned to it, obeying the
capacities of the edges. For a call control algorithm
A and a request sequence � we denote by A(�) the
number of calls accepted by A. OPT will usually denote
the optimal algorithm, that accepts the optimum (i.e.,
maximum cardinality) set of calls.

Oblivious routing Most of this section is devoted
to a short description of the oblivious routing schemes as
given in [HHR03] and [BKR03], and to point out some
key properties of these schemes that are useful for our
purposes (the only di�erence between the two schemes
that is relevant for our application is that [HHR03]
guarantees a much better bound on the congesiton).
The various properties that we state below are proved
in [HHR03].

The scheme uses a decomposition tree TG for the
network G, which is a rooted tree whose leaf nodes
correspond to vertices of G, i.e., there is a 1-1 relation
between nodes of G and leaf nodes of TG. Each inner
node vt 2 TG corresponds to a subset of nodes of G,
namely the set of graph nodes that correspond to a
leaf node in the subtree rooted at vt. We call this set
the cluster corresponding to vt and denote it by Svt .
The subclusters or child-clusters of a cluster Svt are the
clusters that correspond to a child of vt in the tree.

For every cluster S there are two weight functions
on the set of nodes of S. The �rst function wS : S ! R

+

counts for each node v 2 S the capacity of edges that
are adjacent to v and leave a subcluster of S (i.e., edges
(u; v) for which u is not in the same subcluster as v).
The second weight function wb

S : S ! R
+ counts for a

node v the capacity of adjacent edges that leave S, i.e.,
it counts the capacities of all edges of the form (u; v),
where u =2 S. For convenience we introduce the notation
wS(X) :=

P
x2X wS(x) (resp. w

b
S(X) :=

P
x2X wb

S(x))
for subsets X � S.

The height of TG is denoted h(TG). We denote by
�(TG) the maximum degree of a tree node plus 1 (i.e.,
the maximum number of edges adjacent to a tree node,
including the edge leading to its parent). Every edge in
the tree is also assigned a capacity in the following way.
The capacity of a tree edge et = (vt; pt) connecting a
child vt to its parent pt is de�ned as wb

Svt
(Svt), i.e., the

total capacity of edges leaving Svt .
Since the leaves of the decomposition tree represent

the nodes of G there is for every call request (s; t),
s; t 2 V a natural, unique path in TG between the leaves
of s and t that passes through a sequence of clusters. In
the sequel we will consider the imaginary admission of

the call requests on the decomposition tree as well.
Given a sequence of requests of calls, we consider

the optimum (i.e., maximum cardinality) set of calls
that can be routed on G without violating edge capaci-
ties, and also the optimal set of calls that can be routed
(imaginarily) on TG (as de�ned above) without violat-
ing the capacities of the edges of TG. A key property of
the construction of the decomposition, and of the de�ni-
tion of TG and the capacities of its edges, is that any set
of calls that can be routed in G without violating any
link capacity, can also be routed on TG without violat-
ing the edge capacities in TG. Therefore, we can state
the following lemma.

Lemma 2.1. Let Opt(G) and Opt(TG) denote the opti-

mum number of calls accepted in the graph G and the

decomposition tree TG, respectively. Then

Opt(TG) � Opt(G) :

In our proofs we will compare the performance of
our algorithms to the performance of an adversary on
TG rather than on G. The same results will then apply
against the adversary that routes on G itself.

The second main feature of the oblivious routing
scheme is a simulation of the routing of any set of calls
on TG, on the graph G itself, while preserving \low"
edge congestion on G. To this end, for every leaf-to-
leaf path on TG the oblivious routing scheme de�nes
a randomized process to select a path on G between
the two corresponding nodes in G. Observe that this
in fact de�nes a randomized process to select a path
between any two nodes in the graph G. We now de�ne
this process. Let the two leaf nodes be ut and vt
(corresponding to clusters fug and fvg, respectively).
Let ut = w1

t ; w
2
t : : : ; w

`
t = vt denote the sequence of

tree nodes on the path from ut to vt in TG. For
every such tree node wi

t the routing process chooses a
random graph node wi, from within the set of nodes
of the cluster, according to the weight function wSvt

,
i.e., the probability that a particular node x is chosen
is wSvt

(x)=wSvt
(Svt). The chosen path on G will

go through the sequence of these intermediate nodes.
(Note that this means that the endpoints of the path in
G will be the nodes that correspond to the leaves in TG,
i.e., u and v).

For choosing the routing paths between these ran-
domly chosen intermediate nodes, each cluster S in the
decomposition tree has the solution to a certain concur-
rent multicommodity ow problem (CMCF-problem)
de�ned on the subgraph induced by S. The de�nition
of the CMCF-problem for cluster S is as follows. There
is one commodity guv for every node-pair (u; v) 2 S�S.
The demand for commodity guv is wS(u)�wS(v)=wS (S).

The solution of the CMCF problem is used as
follows. Suppose there are two consecutive tree nodes
wi
t and wi+1

t , where w.l.o.g. wi
t is the child and wi+1

t

is its parent. The routing algorithm chooses a random
\border node" b of Swit , i.e., a node chosen according to
\border weight" of Swit (i.e., the probability that a node

v is chosen is wb
S
wi
t

(v)=wb
S
wi
t

(Swit)). Then it chooses the

path from wi to wi+1 as a concatenation of a path from
wi to b and a path from b to wi+1. The �rst path (from
wi to b) is chosen according to the ow for commodity
gwib in the CMCF-solution for Swit . The second path
is chosen according to the ow of commodity gbwi+1

t
in

the CMCF-problem for Swi+1
t

. (A CMCF-solution that

contains commodity gxy for some x; y 2 V provides a
ow between x and y for this commodity. Choosing
a path according to this ow means to decompose the
ow into a convex combination over x-y paths, and to
choose one of these paths at random). In the following
we call the �rst type of paths a child path for tree edge
(wi

t; w
i+1
t) and the second type a parent path for this

tree edge.
Let et = (vt; pt) denote a tree edge that connects vt

to its parent pt. We give the following notations for the
probabilities implied by the above process.

Definition 2.1. Let P c
et
(e) denotes the probability that

a child-path for a tree edge et contains the edge e. Let

P p
et
(e) denote the probability that a parent-path for a tree

edge et contains the edge e.

In the following we relate the probabilities P c
et
(e) and

P p
et
(e) to the ow that traverses e in the CMCF-

solutions for cluster Svt and Spt . We can write P c
et
(e)

as

P
c

et
(e) =
X

v2Svt

X

b2Svt

wSvt
(v)

wSvt
(Svt)

�

wb

Svt
(b)

wb

Svt
(Svt)

� Pr[gvb-path cont. e]:

This holds because wSvt
(v)=wSvt

(Svt) is the proba-

bility that the path starts at v and wb
Svt

(b)=wb
Svt

(Svt) is

the probability that it ends at b. Let f
Svt
vb (e) denote the

amount of ow that traverses e for commodity gvb in the
CMCF-solution for Svt . The probability that e is cho-

sen as a path for commodity gvb is f
Svt
vb (e)=demvb(Svt),

where demvb(Svt) = wSvt
(v)wSvt

(b)=wSvt
(Svt) is the to-

tal ow between v and b in the CMCF-solution for Svt .

Plugging in the values gives

P c
et
(e) =

X
v2Svt

X
b2Svt

wSvt
(v)

wSvt
(Svt)

�
wb
Svt

(b)

wb
Svt

(Svt)
�

f
Svt
vb (e)

demvb(Svt)

�
1

cap(et)

X
v2Svt

X
b2Svt

f
Svt
vb (e) ;

(2.1)

where the inequality follows from wb
Svt

(b) � wSvt
(b),

and cap(et) = wb
Svt

(Svt).

An analogous calculation for P p
et
(e) gives

P p
et
(e) =

1

cap(et)

X
b2Svt

X
p2Spt

f
Spt
bp (e) :(2.2)

The results in [HHR03] give a decomposition tree
TG, such that (1) h(TG) = O(logn) and (2) the CMCF-
problem for each cluster can be solved with small
congestion internally in that cluster. More precisely, the
load on a graph edge due to the solution of all CMCF-
problems together is at mostO(log2 n � log logn) �cap(e),
i.e., the congestion of e is small. In the following we
denote this factor, i.e., the maximum ratio between the
CMCF-induced load of an edge and the capacity of the
edge, with Lmax.

3 Algorithm Admit on Edge-Channels

Given a graph G, we use the decomposition tree TG
and its properties as given in [HHR03] and [BKR03]
and briey described in the previous section. In order
to de�ne our call control algorithm we split the capacity
of any graph edge e into a number of distinct channels.
We say that an edge e is contained in a cluster Svt of the
decomposition tree if both its endpoints are in Svt. For
every cluster Svt in which e is contained, and for any
edge et adjacent to vt in TG, there will be 2 channels.
One channel Cc

et
(e) will be used for child-paths of et and

one channel Cp
et
(e) for parent paths of et. Note that an

edge e is used in a (child or parent) path for a tree edge
et = (ut; vt) only if either Sut or Svt contain e. We
assign a capacity to a channel in the following way. For
child-path channels we de�ne

cap(Cc
et
(e)) = 2� � P c

et
(e) � cap(et) + k � lnn :

and for parent path channels

cap(Cp
et
(e)) = 2� � P p

et
(e) � cap(et) + k � lnn :

The factor � is chosen such that the total capacity
of the channels on any given edge does not exceed
the capacity of that edge. Lemma 3.1 shows that it

is possible to choose � =
(1=log2 n log logn). The
constant k is an appropriately chosen constant to satisfy
the requirements of Lemma 3.2 below. Before we give
the proof of Lemma 3.1 we provide a bound on the
number of channels on a graph edge e.

Claim 1. The number of channels on a given graph

edge e is at most 2h(TG)�(TG).

Proof. Edge e has 2 channels for every tree edge et
which is adjacent to a tree node vt, such that e is
in the cluster Svt . Therefore it remains to give an
upper bound on the number of such edges. Consider
the decomposition tree. Edge e is contained in a set of
clusters whose corresponding tree nodes appear along a
path from the root of TG towards its leaves. The length
of this path is at most h(TG), and each node along this
path has at most �(TG) edges adjacent to it. The claim
follows. �

Lemma 3.1. Suppose that for all edges e 2 E, cap(e) �
4k logn��(TG)h(TG). Then there exists a scaling factor

� =
(1=log2 n log logn) such that for any edge eX
et

(Cc
et
(e) +Cp

et
(e)) � cap(e) ;

i.e., the total capacity of edge channels does not exceed

the capacity of the edge.

Proof. Due to inequalities 2.1 and 2.2 we haveX
et

P c
et
(e) � cap(et) �

X
et=(vt;pt)

X
v2Svt

X
b2Svt

f
Svt
vb (e)

and

X
et

P p
et
(e) � cap(et) =

X
et=(vt;pt)

X
b2Svt

X
p2Spt

f
Spt
bp (e) :

Observe that no commodity appears twice in the right-
hand side of one of the above equations. Therefore
each right-hand side is bounded by the total ow that
traverses e due to the solutions of all CMCF-problems.
This is at most Lmax � cap(e) due to [HHR03].

Therefore, we can choose � = �(1=Lmax) =

(1= log2 n log logn) such that

2� �
X

et
(P c

et
(e) + P p

et
(e)) � cap(et) �

cap(e)

2
:

This gives

X
et(C

c
et
(e) + Cp

et
(e))

= 2�
X

et
(P c

et
(e) + P p

et
(e)) � cap(et) +

X
et
2k logn

� cap(e)=2 + �(TG) � h(TG) � 2k logn

� cap(e) ;

as desired. �

The algorithm We are now ready to formally
de�ne our �rst algorithm, that we denote AEC, for
Admit on Edge-Channels. Given a request for a call
(s; t) the algorithm chooses a random path in G, and for
each edge along that path it speci�es the channel of that
edge to be used. That is, the algorithm in fact speci�es
a path of channels that connect between s and t. The
random path is chosen by the same process described
in Section 2. The channel to be used on each edge is
selected as follows. When edge e 2 E is used in the child
path for tree edge et, then channel Cc

et
(e) is used, and

when e 2 E is used in the parent path for tree edge et,
then channel Cp

et
(e) is used. The call is accepted on the

selected path if and only if the remaining bandwidth on
all the selected channels along its path is su�cient to
add the call.

For a given (s; t) pair, the above randomized process
de�nes a distribution over paths of channels between
s and t. These paths of channels are however not
necessarily simple paths in the graph. For any given
path of channels we can eliminate cycles (if any) in
that path, so as to transform it into a path of channels
between s and t which is also a simple path in the graph.
In the following we analyze the algorithm that uses the
original (possibly non-simple) paths. Our proof will go
through with the same results also for the algorithm
that uses the simple paths.

In Section 5 we show how to make the algorithm
distributed. We show how the above path selection
and call admission procedure can be performed in a
distributed hop-by-hop manner through the network,
and how this procedure can be further modi�ed so as
to guarantee that the selected routes are simple paths.
Furthermore, we show how to modify the algorithm so
that it can handle concurrent requests in the network.

3.1 Analysis We now give the analysis of our algo-
rithm. We assume for the analysis that the capacity of
each edge e is
(log2 n log logn+logn�h(TG)�(TG)). In
the analysis of our algorithmwe make use of the decom-
position tree, while shrinking the capacities of all edges
by the factor � as de�ned above. We denote this tree
by T�

G. For the sake of the analysis, when a call is ac-
cepted by AEC we will also consider its acceptance and
natural routing on T�

G (as explained in Section 2) and
the bandwidth it consumes on the edges of that tree.
A key point in the analysis is the relation between the
actual load on a given tree edge et in T�

G and the load
on any of the channels (in the graph G) that correspond
to et. We give the following de�nition.

Definition 3.1. A channel Cp
et
(e) (resp. Cc

et
(e)), for

some et 2 T�
G and e 2 G is said to be overused if,

when the algorithm terminates, the available bandwidth

on Cp
et
(e) (resp. Cc

et
(e)) is less than 1 (i.e., the channel

is saturated), and the number of accepted calls that use

et on T
�
G is less than b��cap(et)c (i.e., et is not saturated

on T�
G).

Lemma 3.2. For a given channel Cp
et
(e) (resp. Cc

et
(e)),

the probability that it is overused is at most n�k=3

(where k is the constant used in the de�nition of channel

capacities).

Proof. We prove the lemma for Cp
et
(e). The proof for

Cc
et
(e) is analogous. The channel is overused only if

the corresponding tree edge et on T�
G is not saturated.

That is, the number of accepted calls that use it is
less than b� � cap(et)c. Since only calls that use et
on T�

G may use channel Cp
et
(e), the expected number

of calls that use Cp
et
(e) is bounded from above by

� := P p
et
(e)�b��cap(et)c. On the other hand, the channel

is overused only if the number of calls that use it is more
than 2� � P p

et
(e) � cap(et) + k lnn � 2� + k lnn. Using

Cherno� bounds (See Corollary A.1 in the appendix),
the probability of this event is at most n�k=3. �

Corollary 3.1. The probability that at least one

channel is overused is at most O(1
n
).

Proof. The total number of channels on any given edge
is at most 4n since there are at most 2n tree edges
and each tree edge may induce at most 2 channels on
an edge. It follows that the total number of channels
in the graph is O(n3). The corollary then follows by
using Lemma 3.2 and a simple union bound (for an
appropriately chosen constant k in the de�nition of the
channel capacities). �

We now consider the performance of the algorithm
when no channel is overused. The above implies that
this happens with probability at least 1 � O(1

n
). We

now show that in this case the number of calls AEC
accepts is at least a \good" fraction of the number of
calls accepted by the optimal algorithm.

Lemma 3.3. Consider a request sequence � and a run

of AEC on � such that no channel is overused. If 8e 2

E, cap(e) � 1

�
then OPT(�) � (1 +

4�h(TG)

�
)AEC(�).

(Where AEC(�) and OPT(�) are the number of calls

accepted by AEC, and by OPT, respectively, out of

request sequence �).

Proof. Let Ca be the set of calls accepted by AEC,
and Copt the set of calls accepted by OPT. Consider
a call c 2 Copt n Ca. Since AEC did not accept
c, the path that was randomly chosen by AEC for c

contained a channel to which c could not be added.
In other words, when c was presented to AEC the
available bandwidth on that channel was less than
1, and therefore when AEC terminates the available
bandwidth on this channel is less than 1. Let this
channel be a channel that corresponds to tree edge et.
Since we assume that no channel is overused, it follows
that when AEC terminates et on T�

G is saturated (by
calls accepted by AEC, and imaginarily routed also on
T�
G).

Let Esat denote the set of edges of T�
G that are

saturated when AEC terminates. We have shown above
that any call c 2 Copt n Ca must contain an edge in
Esat on T�

G . On the other hand every call in Copt

uses bandwidth 1 on each edge that it contains on
T�
G . Therefore, jCopt n Caj �

P
et2Esat

cap(et). At the

same time, jCaj �
1

2�h(TG)
�
P

et2Esat
b� � cap(et)c �

�
4�h(TG)

�
P

e2Esat
cap(et), because each accepted call

only uses capacity on at most 2 � h(TG) edges and
the total used capacity by accepted calls is at leastP

et2Esat
b� � cap(et)c (using � � cap(et) � 1 for any

et, which follows from the fact that the capacity of et
is lower bounded by the minimum capacity of an edge
e 2 E). This gives

jCoptj � jCopt nCaj+ jCaj � (1 +
4 � h(TG)

�
) � jCaj

�

Using the upper bound on h(TG) from [HHR03], the
chosen value of �, and the requirement we stated above
for the minimum capacity of an edge we can conclude
with the following theorem.

Theorem 3.1. For any graph G with edge ca-

pacities at least max(1
�
; 4k logn � �(TG)h(TG)) =

O(log2 n(log logn+�(TG))) and for any sequence of re-

quests �, with probability at least 1� O(1
n
), OPT(�) �

(1 +
4�h(TG)

�
)AEC(�) = O(log3 n log logn) �AEC(�).

The parameter �(TG) in the above theorem is the
maximumdegree of the decomposition tree. For meshes,
e.g., �(TG) is constant. However, we do not have a
general non-trivial upper bound on �(TG) in terms
of network parameters, other than n. Therefore, for
some network topologies AEC may require large edge
capacities to perform well. In the following section we
introduce another algorithm that addresses this issue.

4 Improved edge-capacity requirement

The algorithm from the previous section uses channels
at the graph edges in order to decide whether to accept

or reject calls in the network. One drawback of this
approach is that it may require large edge-capacities
(i.e.,
(logn � �(TG) � h(TG))) because the capacity of
all edge-channels must not exceed the capacity of the
edge, and each channel should have a capacity of at
least
(logn) (in order to allow for a \high probability
argument").

In this section we present a second algorithm that
has a substantially lower edge-capacity requirement.
This is obtained however at the cost that the algorithm
may use non-simple routing paths.

The idea of the algorithm is to set up (virtual) node
channels instead of edge channels. A graph node v is
assigned one channel CS(v) for every cluster S such that
S contains v, and wb

S(v) > 0. We de�ne the capacity of
the channel CS(v) as

cap(CS(v)) = 2� �wb
S(v) + k � lnn :

Here we choose � such that 8v; S, cap(CS(v)) �
1

4Lmax
wb
S(v). (Recall that Lmax is the maximumconges-

tion of a graph edge due to the solution of all CMCF-
problems.) The constant k is an appropriately chosen
constant to satisfy the requirements of Lemma 4.2 be-
low.

Lemma 4.1. Suppose that for all edges e 2 E, cap(e) �
8k lnn � Lmax. Then there exists a scaling factor � =

(1= log2 n log logn) such that for any channel CS(v)

cap(CS(v)) �
1

4Lmax
�wb

S(v) :

Proof. Note that wb
S(v) is either 0 or at least the

smallest edge capacity, because the function wb
S counts

the edge capacities of edges which are adjacent to v and
cross the boundaries of cluster S. Therefore, k � lnn �
1=(8Lmax) �w

b
S(v). Now, choosing � = 1=(8Lmax) gives

the result. �

The algorithm. Given a request for a call (s; t)
the algorithm chooses a random path according to
the scheme described in Section 2. This path con-
sists of subpaths between randomly chosen nodes s =
w1; w2; : : : ; w` = t. For routing between two consecu-
tive nodes wi and wi+1 (which correspond to tree edge
(wi

t; w
i+1
t)) a random intermediate node b at the border

of Swit is chosen (cf. Section 2). Then a child path from

wi to b and a parent path from b to wi+1 are selected.
The call admission decision is done at the border nodes
b as follows. If a call is routed such that node b is the
border node for some tree edge et = (vt; pt), we say
that this call uses channel CSvt

(b) at node b. The node
b rejects the call if the channel to be used by the call is
already saturated. A call is accepted by the algorithm

if and only if it is accepted by all intermediate border
nodes along its path and all graph edges along its path
have enough available capacity to add the call (i.e., all
edges along the path are not saturated). We denote this
algorithm with ANC (for Admit on Node-Channels) in
the following.

In Section 5 we show how to make the algorithm
distributed. We show how the above path selection
and call admission procedure can be performed in a
distributed hop-by-hop manner through the network,
and how to further adapt this procedure to handle
concurrent requests in the network.

4.1 Analysis As in the previous section we relate the
saturation of channels to the load on the corresponding
tree edges.

Definition 4.1. Let et = (vt; pt) denote a tree edge

with child vt and parent pt. The channel CSvt
(v) of a

node v is said to be overused if, when the algorithm ter-

minates, bcap(CSvt
(v))c calls are routed on this channel

(i.e., the channel is saturated), and the number of ac-

cepted calls that use et on T�
G is less than b� � cap(et)c

(i.e., et is not saturated on T�
G).

Lemma 4.2. The probability that a given channel CS(v)
is overused is at most n�k=3, where k is the constant

used in the de�nition of the channel capacity.

Proof. Fix a tree edge et = (vt; pt) and a graph node
v 2 Svt . We consider the channel CSvt

(v). The channel
is only overused if the corresponding tree edge et on
T�
G is not saturated. This means that the number of

calls on et is less than b� � cap(et)c. Therefore the
expected number of calls that use channel CSvt

(v) is less

than � := wbSvt(v)=w
b
Svt

(Svt) �� � cap(et) = � �wb
Svt

(v)

(Recall that wbSvt(v)=w
b
Svt

(Svt) is the probability that

v is chosen as an intermediate border node for the
edge et). On the other hand, the channel is only
overused if the number of calls that use it is at most
2� � wb

Svt
(Svt) + k lnn. Using a Cherno� bound gives

the result. �

Corollary 4.1. The probability that at least one

channels is overused is at most O(1
n
).

Proof. Follows from the above lemma, an appropriately
chosen constant k in the de�nition of the channel
capacities, and the fact that there are at most n�h(TG) =
O(n logn) channels. �

The key to the analysis in the previous section
was that only saturated channels may reject a call.
Then, assuming that a channel is only saturated if the

corresponding tree edge is saturated (i.e., no channel
is overused, an event that we show to occur with high
probability) one can use Lemma3.3 to show that a large
fraction of calls is accepted. In the present algorithm
calls may also be rejected because the capacity of a
graph edge is exceeded. The following lemma shows
that with high probability this does not happen.

Lemma 4.3. The probability that during the run of

ANC an edge rejects a call that is accepted by the

admission process on the node channels, is at most

O(1
n
), provided that the capacity of an edge is at least

18 � lnn.

Proof. Let loadpS(e) denote a random variable that
describes the load of an edge e due to parent-paths that
are chosen according to some commodity in the CMCF-
solution for cluster S. The probability that a parent
path starting at border node b uses edge e is

X
v2S

wS(v)

wS(S)
� fSbv(e)

�
wS(v)wS (b)

wS(S)
=
X
v2S

fSbv(e)

wS(b)
;

since wS(v)=wS(S) is the probability that the parent-

path ends at v and fSbv(e)=
wS(v)wS(b)

wS(S)
is the probabil-

ity that in this case it contains edge e. Multiplying
this with the maximum number of child paths that can
start at b (at most cap(Cb

S0(v)) � wb
S0(b)=(4Lmax) =

wS(b)=(4Lmax), where S0 denotes the child cluster
of S that contains b) gives that the expected load
on e for parent-paths starting at b is smaller than

1

4Lmax

P
v2S f

S
vb(e). Summing this over all b we get

E[loadpS(e)] �
1

4Lmax

X
b2S

X
v2S

fSvb(e) :(4.3)

For child-paths we get that the expected load loadcS(e)
of an edge e is at most

E[loadcS(e)] =
X
b2S

X
v2S

wS(v)

wS(S)
�

fSvb(e)

demvb(S)
�
wb
S(b)

4Lmax

�
1

4Lmax

X
b2S

X
v2S

fSvb(e) ;

(4.4)

where demvb(S) = wS(v)wS (b)=wS(S) denotes the de-
mand between v and b in the CMCF problem for cluster
S. Note that the summations in the above inequali-
ties contain each commodity at most once. Therefore
the total expected load due to child and parent paths
summed over all clusters is at most 1

4Lmax
CMCF(e),

where CMCF(e) denotes the load of e due to the solution

of all CMCF-problems. This is at most � := cap(e)=4
due to the de�nition of Lmax. An edge has to reject a
call if the load is larger than cap(e) � 2�+9 lnn. Using
a Cherno� bound this happens with probability smaller
than n�3. Now, applying a union bound for the at most
n2 edges gives the lemma. �

Assume now that no (node) channel is overused,
and no call is rejected on an edge. Using arguments
similar to those in the proof of Lemma 3.3 we have the
following.

Lemma 4.4. Consider a request sequence � and a run

of ANC on � such that no node channel is overused, and

no call is rejected on an edge. If 8e 2 E, cap(e) � 1

�

then OPT(�) � (1 + 4�h(TG)

�
)ANC(�). (Where ANC(�)

and OPT(�) are the number of calls accepted by ANC,
and by OPT, respectively, out of request sequence �).

We conslude with the following theorem which
follows from Corollary 4.1 and Lemmas 4.3 and 4.4.

Theorem 4.1. For any graph G with edge capacities

at least max(1
�
; 8k lnn � Lmax) = O(log3 n log logn),

and for any sequence of requests �, with probability at

least 1 � O(1
n
), OPT(�) � (1 + 4�h(TG)

�
)ANC(�) =

O(log3 n log logn) �ANC(�).

5 Making the algorithms distributed

The description of our algorithms in Sections 3 and
4 did not specify how to perform the algorithms in a
distributed hop-by-hop manner through the network. In
this section we describe how to transform our algorithms
into distributed ones. We further describe how to
handle concurrent requests in the network.

5.1 Hop-by-hop procedures In this section we de-
scribe how the path-establishment and call admission
procedures of our algorithms can be performed in a hop-
by-hop manner through the network. Recall that in
both algorithms, given an (s; t) request, a path between
s and t is selected according to the process described in
Section 2. For algorithmAEC a channel on each edge is
also selected, and for algorithmANC a (virtual) channel
on some nodes is also selected.

The path between s and t is selected as a concate-
nation of paths between intermediate nodes, where each
intermediate node corresponds to a tree node in TG
along the natural path in TG between s and t. The �rst
and last (\intermediate") nodes along this path are s
and t (cf. Section 2). Therefore, the selection of these
intermediate nodes can be done in a hop-by-hop man-
ner, where each intermediate node selects the next inter-
mediate node according to the appropriate distribution.

The path between two consecutive intermediate nodes,
say v1 and v2, is associated with some tree edge et in TG.
To select the path between v1 and v2 a \cluster border
node" b is selected (cf. Section 2). This node can be
selected by the �rst intermediate node (v1), according
to the appropriate distribution. The path between v1
and v2 is selected as a concatenation of a path between
v1 and b and a path between b and v2. Each of these
paths is selected according to a ow between v1 and b

(resp. b and v2) (cf. Section 2). Therefore, the actual
path can also be selected in a hop-by-hop manner where
each node along the path selects the next edge according
to the v1-to-b (resp. b-to-v2) ow that passes through
it. The channel to be used on each edge (in algorithm
AEC) is de�ned by the tree edge et that corresponds to
the respective portion of the path between s and t. The
(virtual) channel on the border nodes b (in algorithm
ANC) is also de�ned by the tree edge et.

The path-selection (and channel selection) proce-
dure can therefore be performed in a hop-by-hop man-
ner by carrying along the two communicating parties (s
and t), the tree edge currently being \simulated" (et),
the next intermediate nodes (v2) and the current border
node (b). The call will be admitted on the selected path
after the hop-by-hop procedure reaches the other com-
municating party, and the admittance conditions have
been met all along the path.

5.2 Simple paths For algorithm AEC we can mod-
ify the above procedure so as to guarantee that the se-
lected routes for the calls are simple paths. Observe that
for an (s; t) pair, the distribution over paths of channels
is in fact a ow between s and t that uses the channels.
At the same time this is also an s-t-ow on the edges of
the graph, where the ow on an edge is the sum of ows
on the channels of that edge. Thus, we can remove all
the cycles from this ow. This does not increase the to-
tal ow on any edge. It remains however to de�ne how
to select a channel to be used on each edge, such that
the new path (and channel) selection does not increase
the load on any channel. For a given graph edge we dis-
tribute the (new) ow on that edge between the various
channels, in the same proportions that the original ow
on that edge was distributed between the channels. It
follows that the ow on any channel is not larger than
the ow on that channel in the original ow. We now
have in each node, and for each (s; t) pair, a distribution
over outgoing channels, which is de�ned by the ow on
the edges leaving this node. The path-selection proce-
dure can now be performed in a hop-by-hop manner by
selecting the next channel in each node. The resulting
path will be a simple path in the network. Since for a
given (s; t) pair, the probability that a given channel is

used does not increase (compared to the original algo-
rithm), our analysis for the algorithm will go through
with the same results.

5.3 Concurrent requests So far we have assumed
that the routing requests do not appear concurrently
but are serialized. For the case of concurrent requests we
have to specify what to do if two hop-by-hop processes,
of two call requests, \meet" in the network. We modify
the hop-by-hop procedure such that when a request that
wants to use some channel (an edge channel Cc

et
/Cp

et
or a

node channel CS(v), respectively) reaches this channel,
it �rst makes a preliminary bandwidth reservation at
this channel. After the call is accepted this bandwidth
is allocated for the call. If the call is rejected the
bandwidth reservation is discarded, and the bandwidth
can therefore be used by other calls. If a request arrives
at a channel for which the allocated bandwidth plus the
reserved bandwidth saturates the channel, the request
waits in a queue until either all bandwidth reservations
have been actually allocated (in which case the call is
rejected), or a call with an active bandwidth reservation
is rejected (in this case the �rst call in the waiting queue
resumes its hop-by-hop procedure). Now observe that
if every call is eventually accepted or rejected, then the
algorithms will accept a large fraction of the optimum
solution (as guaranteed by Theorems 3.1 and 4.1).
To see that, observe that if we consider the requests
for the calls in the order of their acceptance/rejection
times in the above process, and apply the serialized
algorithm (where for a call the same random choices
are used), then the same calls will be accepted. It
remains therefore to guarantee that indeed every call
is eventually accepted or rejected, i.e., that no deadlock
occurs. For this AEC and ANC have to be adapted in
the following way.

Deadlock avoidance for ANC. In algorithm
ANC deadlock avoidance is done as follows. We dupli-
cate all node channels CS(v) into C

1

S(v) and C
2

S(v). All
calls that enter a cluster from the parent cluster will use
channel C1

S(v), and all calls that leave the cluster will
use channel C2

S(v) at the respective node v. Then, be-
cause of the tree structure, no deadlocks can occur while
waiting for node channels. To see that, observe that a
request r, that is waiting at a node channel C2

S(v) of
some node v, cannot block the request it is waiting for,
because that request has left the cluster to some higher
level of the decomposition tree. An analogous argument
holds for requests waiting at a channel C1

S(v).
In order to avoid that edges create deadlocks we

do the acceptance/rejection decisions of the calls in a
two-phase process. In the �rst phase a call selects (in
a distributed hop-by-hop manner) a route according to

the random process described in Section 2, and checks
whether it is accepted at all the node channels on
this route (possibly waiting for preliminary bandwidth
reservations to be released). If not, the call is rejected.
If the call is accepted at all the node channels on its
route, then in a second phase the algorithm checks
whether all the edges on the selected route have enough
capacity left to accommodate the call. If all edges
have enough capacity, the call is accepted, otherwise
it is rejected. During this second phase no preliminary
bandwidth reservation is used. Every call that tries to
use an edge e and is not rejected by a node is counted
for the load of e (even if the call is rejected by an edge).

Lemma 4.3 guarantees that the probability that
there is a call that is accepted on node channels but
cannot be supported by the edges on its route is at most
O(1=n). Hence, the algorithm achieves the performance
guarantee of Theorem 4.1.

Deadlock avoidance for AEC. For the algorithm
AEC deadlock avoidance is more involved. We give a
short sketch. First we duplicate the channels in the
same way as done for the algorithm ANC, i.e., we create
channels Cc1

et
; Cc2

et
; Cp1

et
; Cp2

et
, for using et in the down-

ward direction and the upward direction, respectively.
Channels are considered to be of the same \type", if
they are on di�erent graph edges, but correspond to the
same other parameters (i.e., tree edge et, parent/child
path, and upward/downward direction).

Using the above de�ned channels, it is impossible
that a request that waits for some channel correspond-
ing to a tree edge et (in e.g. the upward direction) blocks
in some way (i.e., via a circular wait condition) the
call it is waiting for, provided that this call has already
switched the type of channel it is currently waiting for.
Therefore a circular wait condition (which may lead to a
deadlock) may only occur on call requests concurrently
waiting for the same channel type (i.e., tree edge et, par-
ent/child path, and upward/downward direction) but
on di�erent graph edges.

In order to avoid such a circular wait situation we
introduce a new CMCF-problem for a cluster S which
is de�ned as follows. We add a super-source srci and
super-sink sinki for each sub-cluser Si. The source srci
is connected by directed edges to each node of Si where
the capacity of edge (srci; v) is wS(v)=Lmax. Every node
of S is connect to sinki with a directed edge of capacity
wS(v)

wS(S)
�wS(Si)=Lmax. We consider the ow problem that

has one commodity with demand wS(Si) for each sub-
cluster Si between srci and sinki. This new ow problem
can be solved as least as good as the original CMCF-
problem w.r.t. congestion. To see this observe that �rst
sending a demand of wS(v) from each srci to v 2 Si;
then distributing this demand according to the original

CMCF-solution; and �nally sending for all i a demand

of wS(v)

wS(S)
� wS(Si) from v to sinki, solves the problem

with congestion Lmax.
The parent paths for the routing scheme are chosen

according to the new ow in the following way. Observe
that each node v 2 Si is traversed by a ow of wS(v)
for commodity i. This corresponds to the probability
that a parent path starts at v. From the starting node
each node on the path chooses an outgoing edge with
probability according to the ow along this edge. If
at some node v0 2 S an edge to the super-sink sinki
is chosen, then v0 becomes the "intermediate node" for
cluster S, and the parent path ends (this means that
intermediate nodes are chosen "on-the-y").

For the child paths we proceed similarly. We
introduce a CMCF-problem with one commodity in
which a super-source src is connected to all nodes of a
cluster via directed edges. The capacity of edge (src; v)

for v 2 S is de�ned as
wS(v)

wS(S)
�wb

S(S)=Lmax . Furthermore,

a node is connected to a super-sink via an edge with
capacity wb

S(v)=Lmax. Again, this ow problem can be
solved with congestion at most Lmax. The child paths
can be chosen according to this ow such that the actual
path chosen determines the boundary node b.

The idea behind choosing the child and parent
paths according to the new CMCF-ow problem is as
follows. Both ow problems can be solved such that the
ow for any commodity does not contain any cycles.
By choosing e.g. the parent paths according to such
a ow it is guaranteed that the union of all parent-
paths originating from the same sub-cluster does not
contain cycles. Therefore there will not be a circular
wait condition for calls waiting on parent paths of the
same sub-cluster. An analogous argument holds for
child paths. Thus, the new mechanism for selecting
child and parent paths avoids deadlocks.

The analysis of the algorithm has to be somewhat
changed in the following way. Intermediate nodes are
not independent any more. For routing along a tree edge
et the algorithm uses the respective commodity with
the respective CMCF-solution, and starts at the current
node in the graph until it reaches the intermediate node
or the border node, respectively (which are determined
on-the-y). This means that the next intermediate node
(border node) that ends the current path may depend
on the border node (intermediate node) at which the
previous path ended. However, the overall probability
that an (s; t)-call will use a speci�c channel Cp

et
(e)

(resp. Cc
et
(e)) only depends on the solution of the

(new) CMCF-problems (more precisely it is equal to the
fraction of the ow for the corresponding commodity
that goes through e). This is all what is needed for
proving Lemma 3.2.

We can further transform this concurrent version of
AEC into a version that routes along simple paths by
using ideas similar to Section 5.2.

Acknowledgments We thank Stefano Leonardi for
useful discussions.

References

[AA94] B. Awerbuch and Y. Azar. Local optimization
of global objectives: competitive distributed deadlock

resolution and resource allocation. In Proceedings of

the 35th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 240{249, 1994.

[AAP93] B. Awerbuch, Y. Azar, and S.A. Plotkin.

Throughput-competitive on-line routing. In Proceed-
ings of the 34th IEEE Symposium on Foundations of

Computer Science (FOCS), pages 32{40, 1993.

[BFL96] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds
for on-line graph problems with application to on-line

circuit and optical routing. In Proceedings of the 28th

ACM Symposium on Theory of Computing (STOC),
pages 531{540, 1996.

[BKR03] M. Bienkowski, M. Korzeniowski, and H. R�acke. A

practical algorithm for constructing oblivious routing
schemes. In Proceedings of the 15th ACM Symposium

on Parallel Algorithms and Architectures (SPAA),
pages 24{33, 2003.

[HHR03] C. Harrelson, K. Hildrum, and S. Rao. A

polynomial-time tree decomposition to minimize con-
gestion. In Proceedings of the 15th ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages

34{43, 2003.
[Hoe63] W. Hoe�ding. Probability inequalities for sums

of bounded random variables. American Statistical

Association Journal, 58(301):13{30, 1963.
[KT95] J. M. Kleinberg and E. Tardos. Disjoint paths in

densely embedded graphs. In Proceedings of the 36th

IEEE Symposium on Foundations of Computer Science
(FOCS), pages 52{61, 1995.

[R�ac02] H. R�acke. Minimizing congestion in general net-

works. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science (FOCS), pages

43{52, 2002.

Appendix

A Cherno� bounds

We use the following form of the Cherno�-Hoe�ding
bounds, due to Hoe�ding [Hoe63].

Lemma A.1. ([Hoe63]) Let X1; : : : ; Xn be indepen-

dent random variables that take values in the range

[0;W] for some W > 0. Let X =
Pn

i=1Xi, � � E[X].
Then for � � 1,

Pr[X � (1 + �)�] �

�
e�

(1 + �)1+�

��=W
� e�

��

3W :

Corollary A.1. Pr[X � 2�+ kW] � e�k=3.

Proof. We choose � = 1+W
�
k in the above lemma. This

gives Pr[X � 2� + kW] � e�(1+Wk=�)�=(3W) � e�k=3,
as desired. �

