
Online Algorithms with Advice for
Bin Packing and Scheduling Problems

Marc P. Renaulta,1,2,∗, Adi Roséna,2, Rob van Steeb

aCNRS and Université Paris Diderot, France
bUniversity of Leicester, Department of Computer Science, University Road, Leicester, LE1

7RH, United Kingdom

Abstract

We consider the setting of online computation with advice and study the bin
packing problem and a number of scheduling problems. We show that it is
possible, for any of these problems, to arbitrarily approach a competitive ratio of
1 with only a constant number of bits of advice per request. For the bin packing
problem, we give an online algorithm with advice that is (1 + ε)-competitive
and uses O

(
1
ε log 1

ε

)
bits of advice per request. For scheduling on m identical

machines, with the objective function of any of makespan, machine covering and
the minimization of the `p norm, p > 1, we give similar results. We give online
algorithms with advice which are (1 + ε)-competitive ((1/(1 − ε))-competitive
for machine covering) and also use O

(
1
ε log 1

ε

)
bits of advice per request. We

complement our results by giving a lower bound that shows that for any online
algorithm with advice to be optimal, for any of the above scheduling problems,
a non-constant number (namely, at least

(
1− 2m

n

)
logm, where n is the number

of jobs and m is the number of machines) of bits of advice per request is needed.

Keywords: online algorithms, online computation with advice, competitive
analysis, bin packing, machine scheduling

1. Introduction

Online algorithms are algorithms that receive their input one piece at a time.
An online algorithm must make an irreversible decision on the processing of the
current piece of the input before it receives the next piece, incurring a cost for
this processing. The method of choice to analyze such algorithms is competitive

∗Corresponding author
Email addresses: marc.renault@lip6.fr (Marc P. Renault),

adiro@liafa.univ-paris-diderot.fr (Adi Rosén), rob.vanstee@leicester.ac.uk (Rob van
Stee)

1Present address: Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005,
Paris, France

2Research supported in part by ANR project NeTOC.

Preprint submitted to Elsevier July 23, 2015

analysis [1]. In this framework, the decisions of the online algorithm must be
taken with no knowledge about future pieces of input. In competitive analysis,
one measures the quality of an online algorithm by analyzing its competitive
ratio, i.e. the worst-case ratio, over all possible finite request sequences, of the
cost of the online algorithm and the cost of an optimal offline algorithm that has
full knowledge of the future. In general, there are no computational assumptions
made about the online algorithm, and thus competitive analysis is concerned
with quantifying the difference between no knowledge of the future and full
knowledge of the future.

In many situations, however, an algorithm with no knowledge of the future
is unreasonably restrictive [1, 2]. Furthermore, “classical” competitive analysis,
as described above, is only concerned with one point on the spectrum of the
amount of information about the future available to the online algorithm (i.e.
no information at all). In order both to address the lack of a general model for
situations of partial information about the future, and to try to quantify the
interplay between the amount of information about the future and the achievable
competitive ratio, a framework for a more refined analysis of online algorithms,
which attempts to analyze online algorithms with partial information about the
future, has been proposed and studied in recent years, e.g. [3, 4, 5, 6, 7, 8, 9, 10].

This framework was dubbed online computation with advice and, roughly
speaking (see Section 2.1 for a formal definition), works as follows. The online
algorithm, when receiving each piece of input ri, can query the adversary about
the future by specifying a function ui going from the universe of all input se-
quences to a universe of all binary strings of length b, for some b ≥ 0. The
adversary must respond with the value of the function on the whole input se-
quence (including the parts not yet revealed to the online algorithm). Thus, the
online algorithm receives, with each piece of input, b bits of information about
the future. We call these bits of advice. The decisions of the online algorithm
can now depend not only on the input seen so far, but also on the advice bits
received so far which reveal some information about the future. The online al-
gorithm can thus improve its competitive ratio. We are typically interested in
the interplay between the amount of information received about the future and
the achievable competitive ratio. This model was introduced by Emek et al. [4].
Another variant of the setting of online algorithms with advice was proposed by
Böckenhauer et al. [3] (see Section 1.1). Recent years have seen an emergence
of works on online computation with advice in both variants of the model, e.g.
studying problems such as the k-server problem [4, 5, 8, 11], metrical task sys-
tems [4], the knapsack problem [7], the bin packing problem [10], 2 value buffer
management [9], reordering buffer management problem [12] and more.

In this paper, we study bin packing, and scheduling on m identical machines
with the objective functions of the makespan, machine covering, and minimiz-
ing the `p norm in the framework of online computation with advice. All of
these problems have been widely studied in the framework of online algorithms
(without advice), and in the framework of offline approximation algorithms,
e.g. [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For all of these problems,
we show that it is possible to arbitrarily approach a competitive ratio of 1 with

2

a constant number of bits of advice per request, i.e. we give (1 + ε)-competitive
deterministic algorithms with advice that use f(1/ε) bits of advice per request
(for some polynomial function f). It is worthwhile noting that this is certainly
not the case for all online problems, as non-constant lower bounds on the amount
of advice required to have a competitive ratio arbitrarily close to 1 are known
for some online problems (e.g. for metrical task systems [4]). Furthermore, for
all the problems we study, lower bounds bounded away from 1 are known for the
competitive ratio achievable by online algorithms without advice. We further
show, for the scheduling problems, that a non-constant number of bits of advice
is needed for an online algorithm with advice to be optimal (a similar result for
bin packing has been given in [10]).

1.1. Related Work.

The model of online computation with advice that we consider in the present
paper was introduced by Emek et al [4]. In the model of [4], the advice is a fixed
amount that is revealed in an online manner with every request. This model is
referred to as the online advice model. Another variant of the model of online
algorithms with advice was proposed by Böckenhauer et al. [3]. In this variant,
the advice is not given to the algorithm piece by piece with each request, but
rather a single tape of advice bits is provided to the algorithm. This model
is termed the semi-online advice model since the algorithm can read from the
advice tape at will and, therefore, could read all the advice at the beginning
prior to receiving any requests. For the semi-online advice model, one then
analyzes the total number of advice bits read from the tape as a function of
the length of the input (and the competitive ratio). A number of works have
analyzed various online problems in the framework of online algorithms with
advice (in both variants). For example: the k-server problem has a competitive

ratio of at most
⌈
dlog ke
b−2

⌉
[8], where b is the number of bits of advice per request;

the metrical task system problem has tight bounds on the competitive ratio
of Θ(logN/b) [4]; the unweighted knapsack problem has a competitive ratio
of 2 with 1 bit of advice in total and Ω(log(n)) bits are required to further
improve the competitive ratio [7], the 2 value buffer management problem has a
competitive ratio of 1 with Θ((n/B) logB) bits of advice (n is the length of the
request sequence and B is the size of the buffer) [9], and the reordering buffer
problem, for any ε > 0, has a (1 + ε)-competitive algorithm which uses only a
constant (depending on ε) number of advice bits per input item [12].

To the best of our knowledge, the only scheduling problems studied to date in
the framework of online computation with advice is a special case of the job shop
scheduling problem [3, 6] , and, makespan scheduling on indentical machines in
[26]. In both cases, the semi-online advice model is used. In [26], an algorithm
that is (1 + ε)-competitive and uses advice of constant size in total is presented.
Boyar et al. [10] studied the bin packing problem with advice, using the semi-
online advice model of [3] and presented a 3/2-competitive algorithm, using
log n + o(log n) bits of advice in total, and a (4/3 + ε)-competitive algorithm,
using 2n + o(n) bits of advice in total, where n is the length of the request

3

sequence. As both algorithms rely on reading O(log(n)) bits of advice prior to
receiving any requests, they would use O(log(n)) bits of advice per request in
the model used in this paper. The 3/2-competitive algorithm can be converted
into an algorithm that uses 1 bit of advice per request. We are not aware of a
similar simple conversion for the (4/3 + ε)-competitive algorithm. It should be
noted that in the online advice model, an algorithm receives at least 1 bit of
advice per request, i.e. at least linear advice in total. Finally, they show that
an online algorithm with advice requires at least (n− 2N) logN bits of advice
in total to be optimal, where N is the optimal number of bins. In [27], an
algorithm is presented that has a competitive ratio that can be arbitrarily close
to 1.47012 and uses constant advice in total. Further, they show that linear
advice in total is required for a competitive ratio better than 7/6.

For online bin packing without advice, the best known lower bound on the
competitive ratio is 1.54037 due to Balogh et al. [25] and the best known de-
terministic upper bound on the competitive ratio is 1.58889 due to Seiden [22].
Chandra [28] showed that all known lower bounds can be shown to apply to
randomized algorithms.

For online scheduling on m identical machines without advice, Rudin and
Chandrasekaran [24] presented the best known deterministic lower bound of 1.88
on the competitive ratio for minimizing the makespan. The best known deter-
ministic upper bound on the competitive ratio for minimizing the makespan,
due to Fleischer et al. [21], is 1.9201 as m → ∞. The best known random-
ized lower bound on the competitive ratio for minimizing the makespan is
1/(1−(1−1/m)m), which tends to e/(e−1) ≈ 1.58 as m→∞, and it was proved
independently by Chen et al. [15] and Sgall [17]. The best known randomized
algorithm, due to Albers [23], has a competitive ratio of 1.916.

For machine covering, Woeginger [18] proved tight Θ(m) bounds on the com-
petitive ratio for deterministic algorithms, and Azar and Epstein [20] showed a
randomized lower bound of Ω(

√
m) and a randomized upper bound ofO(

√
m logm).

Also, Azar and Epstein considered the case where the optimal value is known
to the algorithm and showed that, for m ≥ 4, no deterministic algorithm can
achieve a competitive ratio better than 1.75.

In the offline case, Fernandez de la Vega and Lueker [13] presented an asymp-
totic polynomial time approximation scheme (APTAS) for the bin packing prob-
lem. Hochbaum and Shmoys [14] developed a polynomial time approximation
scheme (PTAS) for the makespan minimization problem on m identical ma-
chines. Subsequently, Woeginger [18] presented a PTAS for the machine cover-
ing problem on m identical machines and Alon et al. [16] presented a PTAS for
the `p norm minimization problem on m identical machines.

1.2. Our Results.

We give a deterministic online algorithm with advice for bin packing that,
for 0 < ε ≤ 1/2, achieves a competitive ratio of 1 + ε, and uses O

(
1
ε log 1

ε

)
bits of advice per request. For scheduling on m identical machines, we consider
the objective functions of makespan, machine covering and minimizing the `p
norm for p > 1. For any of these, we give online algorithms with advice that,

4

for 0 < ε < 1/2, are (1 + ε)-competitive ((1/(1 − ε))-competitive for machine
covering) and use O

(
1
ε log 1

ε

)
bits of advice per request.

We complement our results by showing that, for any of the scheduling prob-
lems we consider, an online algorithm with advice needs at least

(
1− 2m

n

)
logm

bits of advice per request to be optimal, where n is the number of jobs and m is
the number of machines. This lower bound uses techniques similar to those used
by the analogous lower bound for bin packing found in [10]. We note that with
dlogme bits a trivial algorithm that indicates for each job on which machine it
has to be scheduled is optimal.

1.3. Our Techniques.

Common to all our algorithms for the packing and scheduling problems is the
technique of classifying the input items, according to their size, into a constant
number of classes, depending on ε. For the bin packing problem, there are a
constant number of groups of a constant number of items with both of these
constants depending on ε. For the scheduling problems, the sizes of the items
in one class differ only by a multiplicative constant factor, depending on ε. We
classify all the items except the smallest ones in this way, where the bound on
the size of the items not classified again depends on ε. This classification is
done explicitly in the scheduling algorithms, and implicitly in the bin packing
algorithms. We then consider an optimal packing (resp. schedule) for the input
sequence and define patterns for the bins (the machines) that describe how the
critically sized items (jobs) are packed (scheduled) into the bins (machines).
The advice bits indicate with each input item into which bin (machine) pattern
it should be packed (scheduled). For the bin packing problem, all but the largest
classified items can be packed into the optimal number of bins, according to the
assigned pattern. The remaining items cause an ε multiplicative increase in the
number of bins used. For the scheduling problems, since items in the same class
are “similar” in size, we can schedule the items such that the class of the items
of each machine matches the class of those in the optimal schedule while being
within an ε factor of the optimal. For both the bin packing problem and the
scheduling problems, the very small items (jobs) have to be treated separately;
in both cases, the items (jobs) are packed (scheduled) while remaining within
an ε multiplicative factor of the optimal.

Our techniques for these algorithms are similar to those of [13, 14, 18, 16]. In
particular, we use the technique of rounding and grouping the items. The main
difficulty in getting our algorithms to work stems from the fact that we must
encode the necessary information using only a constant number of advice bits
per request. In particular, the number of advice bits per request cannot depend
on the size of the input or the size of the instance (number of bins/machines).
Further, for the online advice mode, the advice is received per request and this
presents additional challenges as the advice has to be presented sequentially per
request such that the algorithm will be able to schedule the items in an online
manner.

The scheduling objective functions that we consider are all a function of the
loads of the machines. This relates closely to the bin packing problem. The

5

main differences are that the bins in the bin packing problem have a maximum
capacity and the goal is to minimize the number of bins used. For scheduling
on m identical machines, we have no such capacity constraint (i.e. there is no
maximum load per machine) but can use at most m machines. This changes
the nature of the problem and requires similar but different ideas for the ap-
proximation schemes for scheduling as compared to the approximation schemes
for bin packing. This is also the case for the online algorithms with advice
presented in this paper. The difference is most noticeable in the nature of the
grouping of the items that are done implicitly in the case of bin packing based
on a ranking of the size of the items and explicitly in the case of scheduling
based on a threshold value.

2. Preliminaries

Throughout this paper, we denote by log the logarithm of base 2. For
simplicity of presentation, we assume that 1/ε is a natural number.

2.1. Online Advice Model.

We use the model of online computation with advice introduced in [4]. A
deterministic online algorithm with advice is defined by the sequence of pairs
(gi, ui), i ≥ 1. The functions ui : R∗ → U are the query functions where R∗

is the set of all finite request sequences, and U is an advice space of all binary
strings of length b, for some b ≥ 0. For a given request sequence σ ∈ R∗, the
advice received with each request ri ∈ σ is the value of the function ui(σ). The
functions gi : Ri × U i → Ai are the action functions, where Ai is the action
space of the algorithm at step i. That is, for request rj , the action of the online
algorithm with advice is aj = gj(r1, . . . , rj , u1, . . . , uj), i.e. a function of the
requests and advice received to date.

2.2. Competitive Analysis.

Let alg(σ) be the cost for an online algorithm alg to process σ and let
opt(σ) be the optimal cost. For a minimization problem, an online algorithm
is c-competitive if, for all finite request sequences σ, alg(σ) ≤ c · opt(σ) + ζ,
where ζ is a constant that does not depend on σ. For a maximization problem,
an algorithm alg is c-competitive if alg(σ) ≥ 1

copt(σ)− ζ.

2.3. Bin Packing.

An instance of the online bin packing problem consists of a request sequence
σ, and an initially empty set B of bins of capacity 1. Each ri ∈ σ is an item
with size 0 < s(ri) ≤ 1. The goal is to assign all the items of σ to bins such
that, for each bin bj ∈ B,

∑
ri∈bj s(ri) ≤ 1 and |B| is minimized. The optimal

number of bins (|BOPT |) is denoted by N . An item fits into a bin if its size plus
the size of previously packed items in that bin is at most 1. For an item ri ∈ bj ,
where bj is a bin in the packing B, we will write ri ∈ B. In order to define
part of the advice used by our algorithms, we use a common heuristic for bin

6

packing, next fit [29]. For completeness, we indicate here that the heuristic
next fit packs the item into the current bin if it fits. Else, it closes the current
bin, opens a new bin and packs the item in it.

2.4. Scheduling on m Identical Machines.

An instance of the online scheduling problem on m identical machines con-
sists of m identical machines and a request sequence σ. Each ri ∈ σ is a job
with a processing time v(ri) > 0. An assignment of the jobs to the m machines
is called a schedule. For a schedule S, Li(S) =

∑
rj∈Mi

v(rj) denotes the load
of machine i in S, where Mi is the set of jobs assigned to machine i in S. In
this paper, we focus on the following objective functions:

• Minimizing the makespan: minimizing the maximum load over all the
machines;

• Machine cover: maximizing the minimum load;

• `p norm: minimizing the `p norm, 1 < p ≤ ∞, of the load of all the
machines. For a schedule S, the `p norm is defined to be ‖L(S)‖p =

(
∑m
i=1(Li(S))p)

1/p
. Note that minimizing the `∞ norm is equivalent to

minimizing the makespan.

3. Online Algorithms with Advice for Bin Packing

Presented in this section is an algorithm for the online bin packing problem
called bpa. The algorithm bpa is inspired by the APTAS algorithms for offline
bin packing problem and is (1 + ε)-competitive, using O

(
1
ε log 1

ε

)
bits of advice

per request.
The advice for the algorithm bpa is based on a (1 + 2ε)-competitive packing

of the request sequence, denoted by S. The packing of S is based on the APTAS
of Fernandez de la Vega and Lueker [13] but S is created in an online manner
so that bpa can produce the same schedule. All the items with size at least ε
are grouped, based on their size, into 1/ε2 groups. The groups are numbered
sequentially and each item is assigned an item type that corresponds to its group
number. The packing of the these items uses (1 + ε)N bins and items smaller
than ε can be packed using no more than an additional εN bins. The advice
indicates the item type and the packing of the bin in which the item is packed.
The packing of the bin is described by the types of the items in the bin of S.
This allows bpa to reproduce the packing of S.

For the (1 + ε)-competitive algorithm, the advice is defined based on an op-
timal packing of the request sequence. That is, the offline oracle must solve an
NP-hard problem. This is possible in this model as no computational restric-
tions are placed on the oracle. However, it should be noted that the algorithm
presented here creates a packing that is (1 + ε)-competitive with respect to
some packing S∗ which does not necessarily have to be an optimal packing. If
the computational power of the oracle were restricted, a (1 + ε)-competitive

7

(asymptotic) algorithm could be achieved by defining the advice based on the
(1 + ε′)-approximate packing S∗ created via a bin packing APTAS, e.g. the
scheme of Fernandez de la Vega and Lueker [13], (albeit requiring slightly more
bits of advice as ε would have to be adjusted according to ε′).

The main result of this section is the following.

Theorem 1. Given ε, 0 < ε ≤ 1/2, the competitive ratio for bpa is at most
1 + 3ε, and bpa uses at most 1

ε log
(

2
ε2

)
+ log

(
2
ε2

)
+ 3 bits of advice per request.

Initially, we will present an algorithm, abpa, that uses less than 1
ε log

(
2
ε2

)
+

log
(

2
ε2

)
+ 3 bits of advice per request and is asymptotically (in the number of

optimal bins) (1 + 2ε)-competitive. Then, with a small modification to abpa,
we will present bpa, an algorithm that is (1 + 3ε)-competitive for any number
of optimal bins and uses 1 more bit per request than abpa. That is, regardless
of the optimal cost, bpa always has a cost that is at most (1 + 3ε) times the
number of optimal bins.

3.1. Asymptotic (1 + 2ε)-Competitive Algorithm.

We begin by creating a rounded input σ′ based on σ using the scheme of
Fernandez de la Vega and Lueker [13]. That is, we will group items based on
their size into a finite number of groups and round the size of all the items of
each group up to the size of the largest item in the group (see Figure 1).

An item is called large if it has size larger than ε. Items with size at most ε
are called small items. Let the number of large items in σ be L. Sort the large
items of σ in order of nonincreasing size. Let h = dε2Le. For i = 0, . . . , 1/ε2−1,
assign the large items ih+ 1, . . . , ih+ dε2Le to group i+ 1. A large item of type
i denotes a large item assigned to group i. The last group may contain less than
dε2Le items. For each item in group i, i = 1, . . . , 1/ε2, round up its size to the
size of the largest element in the group.

Let σ′ be the subsequence of σ restricted to the large items with their sizes
rounded up as per the scheme of Fernandez de la Vega and Lueker. We now
build a packing S′. The type 1 items will be packed one item per bin. Let B1

denote this set of bins. By definition, |B1| = dε2Le. Since large items have size
at least ε, N ≥ εL. This implies the following fact.

Fact 1. |B1| ≤ dεNe

For the remaining large items, i.e. types 2 to 1/ε2, in σ′, a packing, B′2
that uses at most N bins can be found efficiently [13]. The packing of each bin
bi ∈ B′2 can be described by a vector of length at most 1/ε, denoted pi, where
each value in the vector ranges from 1 to 1/ε2 representing the type of each of
the at most 1/ε large items in bi. This vector will be called a bin pattern. Let
B2 be a set of bins such that |B2| = |B′2| and each bi ∈ B2 is assigned the bin
pattern bi ∈ B′2. The items of σ′ can be assigned sequentially to the bins of B2,
using the following procedure. Initially, the bins of B2 are all closed. For each
ri ∈ σ′, assign ri with type ti to the oldest open bin, bj , such that there are
less items of type ti packed in the bin than are described in pj. If no such bin

8

Type: 5 4 3 2 1

σ:

Size: ε 1

σ′:

Figure 1: An example of grouping and rounding of large items for ε =
√

1/5. The top
illustration shows the size of 24 large items, denoted by the black dots, from σ grouped into 5
groups of 5 items (except for the last group that contains 4 items), according to a sorting of
the items by size. The bottom illustration denotes the same items in the same grouping with
their sizes rounded up as in σ′. Note that in the illustration the dots are placed at different
heights to be able to clearly distinguish each point and has no other significance.

exists, open a closed bin with a pattern that contains the type ti and pack ri in
this bin. Note that such a bin must exist by the definition of B2.

The packing S′ is defined to be B1 ∪B2 with the original (non-rounded up)
sizes of the packed large items. The bins of S′ are numbered from 1 to |S′| based
on the order that the bins would be opened when σ′ is processed sequentially.
That is, for i < j and every bi, bj ∈ S′, there exists an rp ∈ bi such that, for all
rq ∈ bj , p < q. From Fact 1 and |B2| ≤ N , we have the following fact.

Fact 2. |S′| ≤ (1 + ε)N + 1

We now extend S′ to include the small items and define S. Sequentially, by
the order that the small items arrive, for each small item ri ∈ σ, pack ri into
S′, using next fit. Additional bins are opened as necessary. The following
lemma shows that S is a near-optimal packing. Note the this bound implies
that S may pack one more bin than (1 + 2ε) times the optimal, making it an
asymptotically (1 + 2ε)-competitive packing.

Lemma 1. |S| ≤ (1 + 2ε)N + 1

Proof. After packing the small items, if no new bins are opened then the claim
follows from Fact 2. If there are additional bins opened, all the bins of S, except
possibly the last one, are filled to at least (1 − ε). Since the total size of the
items is at most N , we have (|S|−1)(1−ε) ≤ N and, therefore, |S| ≤ N

1−ε +1 ≤
(1 + 2ε)N + 1.

We now define abpa. It is defined given a σ, and an ε, 0 < ε ≤ 1/2. abpa
uses two (initially empty) sets of bins L1 and L2. L1 is the set of bins that
pack small items and 0 or more large items. L2 is the set of bins that pack only

9

large items. abpa and the advice will be defined such that the items are packed
exactly as S.

With the first N items, the advice bits indicate a bin pattern. These N bin
patterns will be the patterns of the bins in order from S. As the bin patterns
are received, they will be queued. Also, with each item, the advice bits indicate
the type of the item. Small items will be of type −1. If the item is large, the
bits of advice will also indicate if it is packed in S in a bin that also includes
small items or not.

During the run of abpa, bins will be opened and assigned bin patterns. The
bins in each of the sets of bins are ordered according to the order in which they
are opened. When a new bin is opened, it is assigned an empty bin pattern if
the current item is small. If the current item is of type 1, the bin is assigned a
type 1 bin pattern. Otherwise, the current item is of type 2 to 1/ε2, and the
next pattern from the queue of bin patterns is assigned to the bin. Note that,
by the definition of S, this pattern must contain an entry for an item of the
current type.

For each ri ∈ σ, the items are packed and bins are opened as follows:

Small Items. For packing the small items, bpa maintains a pointer into the set
L1 indicating the bin into which it is currently packing small items. Additionally,
the advice for the small items includes a bit (the details of this bit will be
explained subsequently) to indicate if this pointer should be moved to the next
bin in L1. If this is the case, the pointer is moved prior to packing the small
item and, if there is no next bin in L1, a new bin with an empty pattern is
opened and added to L1. Then, the small item is packed into the bin referenced
by the pointer.

Large Items. bpa receives an additional bit y as advice that indicates if ri is
packed in a bin in S that also includes small items.

Type 1 items: If the item ri is packed into a bin with small items (y = 1), ri
is packed in the oldest bin with an empty pattern. If no such bin exists, then ri
is packed into a new bin that is added to L1. If ri is packed into a bin without
small items (y = 0), then ri is packed into a new bin that is added to L2. In all
the cases, the bin into which ri is packed is assigned a type 1 bin pattern.

Type i > 1 items: Let ti be the type of ri. If ri is packed with small items
(y = 1), then ri is packed into the oldest bin of L1 such that the bin pattern
specifies more items of type ti than are currently packed. If no such bin exists,
then ri is packed in the first bin with an empty bin pattern and the next bin
pattern from the queue is assigned to this bin. If there are no empty bins, a
new bin is added to pack ri. If ri is not packed with small items (y = 0), ri is
packed analogously but into the bins of L2.

The advice bit used to move the pointer for packing small items (see Sec-
tion 3.1.1 for a formal definition) is defined so that bpa will schedule the same
number of small items on each bin as S. Further, bpa schedules both the small
and large jobs in the order the arrive on the least recently opened bin just as S
(see Figure 2) which implies the following fact.

10

B2+ B1 Bsmall

L1 ∪ L2 ≡ S

Figure 2: An illustration of the packing produced by abpa, L1 ∪L2, that is equivalent to the
packing S. B2+ packs items of type 2 to 1/ε2 into N bins. B1 represents the set of εN bins
dedicated to packing type 1 items and Bsmall represents the (possibly empty) set of at most
εN + 1 bins dedicated to packing the overflow of small items from the next fit packing of
the small items into the bins of B1 ∪B2+.

Fact 3. L1 ∪ L2 is the same packing as S.

Therefore, |L1 ∪ L2| ≤ (1 + 2ε)N + 1 by Lemma 1.

3.1.1. Formal Advice Definition.

Bin Patterns. Instead of sending the entire vector representing a bin pattern,
we enumerate all the possible vectors and the advice will be the index of the
vector from the enumeration encoded in binary. The bin pattern vectors have
a length of at most 1/ε and there are at most 1/ε2 different possible values. To
ensure that the all vectors have the same length, a new value ⊥ is used to pad
vectors to a length of 1/ε. The increase the number of possible values per entry
to 1/ε2 + 1.

The algorithm requires less than
⌈
1
ε log

(
1
ε2 + 1

)⌉
< 1

ε log
(

2
ε2

)
+ 1 bits of

advice per request to encode the index of the bin pattern from an enumeration
of all possible bin patterns in binary.

Advice per Request. In order to define the advice, for each bin bi ∈ S, we define
a value κi that is the number of small items packed in bi.

Per request, the advice string will be xyz, where x is
⌈
log
(
1/ε2 + 1

)⌉
<

log
(
2/ε2

)
+ 1 bits in length to indicate the type of the item; y is 1 bit in length

to indicate whether the large items are packed with small items, or to indicate
to small items whether or not to move to a new bin; z has a length less than
1
ε log

(
2
ε2

)
+ 1 to indicate a bin pattern. xyz is defined as follows for request ri:

11

x: The type of ri encoded in binary.
y: ri is a small item: Let s be the number of small jobs in

〈r1, . . . , ri−1〉. If there exists an integer 1 ≤ j ≤
N such that

∑j
k=1 κk = s, then the first bit is

a 1. Otherwise, the first bit is a 0.
ri is a large item: 1, if κi > 0, where bi is the bin in which ri is

packed in S, i.e. bi packs small items. Other-
wise, 0.

z: i ≤ N The bits of z encode a number in binary indi-
cating the vector representing the bin pattern of
the i-th bin opened by S′.

i > N Not used. All zeros.

3.2. Strict (1 + 3ε)-Competitive Algorithm.

bpa is defined such that it will behave in two different manners, depending
on N (i.e. the number of bins in an optimal packing) and ε. One bit of advice
per request, denoted by w, is used to distinguish between the two cases. The
two cases are as follows.

Case 1: N > 1/ε (w = 0). bpa will run abpa as described previously. The
only difference is that the advice per request for abpa is prepended with an
additional bit for w. Since N > 1/ε, a single bin is at most εN bins. Therefore,
we get the following corollary to Lemma 1.

Corollary 1. |S| ≤ (1 + 3ε)N

Case 2: N ≤ 1/ε (w = 1). In this case, for each ri ∈ σ, after w, the next
dlog(1/ε)e bits of advice per request define the bin number in which ri is packed
in an optimal packing. bpa will pack ri into the bin as specified by the advice.
This case requires less than log(1/ε) + 2 < 1

ε log
(

2
ε2

)
+ log

(
2
ε2

)
+ 3 (the upper

bound on the amount of advice used per request in case 1) bits of advice per
request and the packing produced is optimal.

The definition of the algorithm and the advice, Fact 3 and Corollary 1 prove
Theorem 1.

4. Online Algorithms with Advice for Scheduling

In this section, we present a general framework for the online scheduling
problem on m identical machines. This framework depends on a positive ε <
1/2, U > 0, and the existence of an optimal schedule S∗, where all jobs with a
processing time greater than U are scheduled on a machine without any other
jobs. The framework will produce a schedule S such that, up to a permutation
of the machines of S, the load of machine i in S is within εLi(S

∗) of the load
of machine i in S∗, where Li(S) denotes the load of machine i in the schedule
S. This is done using O

(
1
ε log 1

ε

)
bits of advice per request. We show that this

nearly optimal schedule is sufficient for (1 + ε)-competitive algorithms for the

12

makespan and minimizing the `p norm objectives, and a (1/(1− ε))-competitive
algorithm for the machine cover objective.

As is the case with the (1+ε)-competitive algorithm for bin packing problem
presented in Section 3, the algorithms with a competitive ratio of (1 + ε) (resp.
(1/(1 − ε))) presented in this section could use advice that was based on a
schedule produced by a PTAS for the desired objective function as opposed to
an optimal schedule.

If logm is less than the number of bits of advice per request to be given to the
algorithm, then the trivial algorithm with advice that encodes, for each job, the
machine number to schedule that job could be used to obtain a 1-competitive
algorithm instead of the framework presented in this section.

4.1. General Framework

The machines are numbered from 1 to m. Given an ε, 0 < ε < 1/2, and
U > 0, the requested jobs will be classified into a constant number of types,
using a geometric classification. U is a bound which depends on the objective
function of the schedule. Formally, a job is of type i if its processing time is in
the interval (ε(1 + ε)iU, ε(1 + ε)i+1U] for i ∈ [0, dlog1+ε

1
εe). These jobs will be

called large jobs (see Figure 3). Jobs with processing times at most εU will be
considered small jobs and have a type of −1. Jobs with processing times greater
than U will be considered huge jobs and have a type of

⌈
log1+ε

1
ε

⌉
. The online

algorithm does not need to know the actual value of the threshold U .

Type: 0 1 2 3 4 5 6

σ:

Time: εU U

Figure 3: An example of the geometric grouping of large jobs, jobs with a processing time
in the range (εU, U], for ε = 1/4. The illustration shows the processing time of the 25 large
jobs, denoted by the black dots, from σ grouped into 7 groups, according to a sorting of the
jobs by processing time. The i-th group consists of jobs with a processing time in the interval
(ε(1 + ε)iU, ε(1 + ε)i+1U]. Even though the range for type 6 is greater than U , only jobs with
a processing time at most U will be assigned type 6.

Let S∗ be an optimal schedule for the input at hand. In what follows,
we will define a schedule S′ from S∗ such that, for all i, Li(S

′) ∈ [Li(S
∗) −

εU, Li(S
∗) + εU]. Then, based on S′, we will define a schedule S such that

Li(S) ∈ [(1− ε)Li(S∗)− εU, (1 + ε)Li(S
∗) + εU]. The advice will be defined so

that the online algorithm will produce the schedule S.

The framework makes the following assumption. For each of the objective
functions that we consider, we will show that there always exists an optimal
schedule for which this assumption holds.

13

Assumption 1. S∗, the optimal schedule on which the framework is based, is a
schedule such that each huge job is scheduled on a machine that does not contain
any other job.

The general framework is defined given a σ, an ε, a U , and an S∗ under
Assumption 1. For the schedule S∗, we assume without loss of generality that
machines are numbered from 1 to m, according to the following order. Assign
to each machine the request index of the first large job scheduled on it. Order
the machines by increasing order of this number. Machines on which no large
job is scheduled are placed at the end in an arbitrary order.

We define S′ by removing the small jobs from S∗. S′ can be described by
m patterns, one for each machine. Each such pattern will be called a machine
pattern. For machine i, 1 ≤ i ≤ m, the machine pattern indicates that (1) the
machine schedules large or huge jobs, or (2) an empty machine (such a machine
may schedule only small jobs). In the first case, the machine pattern is a vector
with one entry per large or huge job scheduled on machine i in S′. These entries
will be the job types of these jobs on machine i ordered from smallest to largest.
Let v denote the maximum length of the machine pattern vectors for S′. The
value of v will be dependent on the objective function and U . We later show
that for all the objective functions we consider, v ≤ 1/ε+ 1.

We now extend S′ to also include the small jobs. Figure 4 depicts the proof
of the following lemma.

Machine k − 1

i(k − 1)

γk−1

Machine k

i(k)

γk

Machine k + 1

i(k + 1)

γk+1

Figure 4: An illustration of the proof of Lemma 2. In the illustration, the rectangles represent
the processing time of the small jobs as they are ordered in σ. The value γi indicates the total
processing time of the small jobs scheduled on the first i machines in an optimal schedule.
The difference between γi and γi−1 (γ0 = 0) being the processing time of the smalls jobs
on machine i which is denoted by yi in Lemma 2. The small jobs are assigned in a next fit
manner to the machines of S′ such that the small jobs scheduled on machine k include all the
small jobs from the first small job immediately after the last small job scheduled on machine
k − 1 (i(k − 1)) to the small job (i(k)) such that the total processing time of all the small
jobs prior to and including i(k) is at least γk. This ensures that the total processing time of
the small jobs assigned to machine k is within εU of the processing time of the small jobs on
machine k in the optimal schedule.

Lemma 2. The small jobs of σ can be scheduled on the machines of S′ sequen-
tially in a next fit manner from machine 1 to machine m, such that the load for
each machine i will be in [Li(S

∗)− εU, Li(S∗) + εU].

Proof. Consider the small jobs in the order in which they arrive. Denote the
processing time of the jth small job in this order by xj for j = 1, For

14

i = 1, . . . ,m, let yi be the total processing time of small jobs assigned to machine
i in S∗. Let i(0) = 0, and for k = 1, . . . ,m, let i(k) be the minimum index

such that
∑i(k)
j=1 xj ≥

∑k
i=1 yi. Finally, for k = 1, . . . ,m, assign the small jobs

i(k − 1) + 1, . . . , i(k) to machine k. (If i(k) = i(k − 1), machine k receives no
small jobs.)

By the definition of i(k) and the fact that all small jobs have a processing
time at most εU , the total processing time of small jobs assigned to machines
1, . . . , k is in [

∑k
i=1 yi,

∑k
i=1 yi + εU] for k = 1, . . . ,m. By taking the difference

between the total assigned processing time for the first k − 1 and for the first
k machines, it immediately follows that the total processing time of small jobs
assigned to machine k is in [yk − εU, yk + εU].

Note that some machines may not receive any small jobs in this process. We
will use the advice bits to separate the machines that receive small jobs from the
ones that do not, so that we can assign the small jobs to consecutive machines.

We now define the schedule S, using the following procedure. Assign the
machine patterns of S′ in the same order to the machines of S. For each large
or huge job ri ∈ σ, in the order they appear in σ, assign ri with type ti to the
first machine in S such that the number of jobs with type ti currently scheduled
is less than the number of jobs of type ti indicated by the machine pattern.
After all the large and huge jobs have been processed, assign the small jobs to
the machines of S exactly as they are assigned in S′ in Lemma 2.

Lemma 3. For 1 ≤ i ≤ m, Li(S) ∈ [(1− ε)Li(S∗)− εU, (1 + ε)Li(S
∗) + εU].

Proof. By Lemma 2 and the fact that jobs of the same type differ by a factor

of at most 1 + ε, we have Li(S) ∈
[

1
1+εLi(S

∗)− εU, (1 + ε)Li(S
∗) + εU

]
. The

claim follows since 1/(1 + ε) > 1− ε for ε > 0.

We have thus shown that in S the load on every machine is very close to
the optimal load (for an appropriate choice of U). Note that this statement is
independent of the objective function. This means if we can find such a schedule
S online with a good value of U , we can achieve our goal for every function of
the form

∑m
i=1 f(Li), where f satisfies the property that if x ≤ (1 + ε)y then

f(x) ≤ (1 +O(1)ε)f(y).
We now define the online algorithm with advice for the general framework,

which produces a schedule equivalent to S up to a permutation of the machines.
For simplicity of presentation, we assume that this permutation is the identity
permutation.

For the first m requests, the general framework receives as advice a machine
pattern and a bit y, which indicates whether this machine contains small jobs
or not (see Figure 5). For rj , 1 ≤ j ≤ m, if y = 0, the framework assigns the
machine pattern to the highest machine number without an assigned pattern.
Otherwise, the framework will assign the machine pattern to the lowest machine
number without an assigned pattern. For each request ri in σ, the type of ri,
denoted by ti, is received as advice. The framework schedules ri, according to
ti, as follows:

15

S:

i, κi : 1, 0 2, 4 3, 1 4, 0 m− 1, 0 m, 2

Z:

11 22 33 44 m− 1 mi :

κi = 0 κi > 0

Figure 5: In order to produce the exact same schedule as S, the online algorithm must permute
the machines of S based on the number of small jobs scheduled per machine (denoted by κi
for machine i). This figure illustrates such a permutation. Z denotes the schedule produced
by the online algorithm. Note that, in Z, machines with no small jobs, single line (κi = 0),
are in the same relative order as S and machines with small jobs, double line (κi > 0), are in
reverse relative order. This allows the jobs for machines without small jobs to be scheduled
from left to right and jobs for machines with small jobs to be scheduled from right to left.

Small Jobs (ti = −1). For scheduling the small jobs, the algorithm maintains
a pointer to a machine (initially machine m) indicating the machine that is
currently scheduling small jobs. With each small job, the algorithm gets a bit
of advice x that indicates if this pointer should be moved to the machine with
the preceding serial number. If so, the pointer is moved prior to scheduling the
small job. Then, ri is scheduled on the machine referenced by the pointer.

Large and Huge Jobs (0 ≤ ti ≤ dlog1+ε
1
εe). The algorithm schedules ri on a

machine where the number of jobs of type ti is less than the number indicated
by its pattern.

4.1.1. Formal advice definition.

Machine Patterns. For the first m requests, a machine pattern is received as
advice. Specifically, all possible machine patterns will be enumerated and the id
of the pattern, encoded in binary, will be sent as advice for each machine. For
large jobs, there are at most v jobs in a machine pattern vector, and each job
has one of

⌈
log1+ε

1
ε

⌉
possible types. The machine patterns can be described

with the jobs ordered from smallest to largest since the order of the jobs on
the machine is not important. This is equivalent to pulling v names out of⌈
log1+ε

1
ε

⌉
+1 names (one name to denote an empty entry and

⌈
log1+ε

1
ε

⌉
names

for each of the large job types), where repetitions are allowed and order is not

16

significant. Therefore, there are(
v +

⌈
log1+ε

1
ε

⌉⌈
log1+ε

1
ε

⌉)
≤
⌈

log1+ε

1

ε

⌉v
different possible machine patterns for the machines scheduling large jobs. Ad-
ditionally, there is a machine pattern for machines with only small jobs and a
machine pattern for machines with only a huge job. Hence, at most β(v) ≤⌈
log(2 +

⌈
log1+ε

1
ε

⌉v
)
⌉
< v log

(
3 log(1/ε)
log(1+ε)

)
+ 1 bits are required to encode the

index of a machine pattern in an enumeration of all possible machine patterns
in binary. As we show in the following, for the cases of makespan, machine cover

and `p norm, v ≤ 1/ε+ 1 and β(v) < 1+ε
ε log

(
3 log(1/ε)
log(1+ε)

)
+ 1.

Advice per Request. In order to define the advice, for each machine mi ∈ S, we
define a value κi that is the number of small jobs scheduled on mi.

Per request, the advice string will be wxyz, where w has a length of⌈
log(2 +

⌈
log1+ε

1
ε

⌉
)
⌉
< log

(
3 log(1/ε)
log(1+ε)

)
+ 1 bits to indicate the job type, x and

y are 1 bit in length (as described above), and z has a length of β(v) bits to
indicate a machine pattern. wxyz is defined as follows for request ri:

w: A number in binary representing the type of ri.
x: ri is a small job: x = 1 if the small job should be scheduled on

the next machine. Otherwise, x = 0. More
formally, let s be the number of small jobs in
〈r1, . . . , ri−1〉. If there exists and an integer 1 ≤
j ≤ m such that

∑j
k=1 κk = s, then x = 1.

Otherwise, x = 0.
otherwise: x is unused and the bit is set to 0.

y: i ≤ m: If κi > 0, y = 0. Otherwise, y = 1.
i > m: This bit is unused and set to 0.

z: i ≤ m: z is a number in binary indicating the machine
pattern of machine i in S′.

i > m: z is unused and all the bits are set to 0.

Fact 4. This framework uses less than log
(

3 log(1/ε)
log(1+ε)

)
+ β(v) + 3 bits of advice

per request.

The following theorem, which follows immediately from the definition of the
general framework and Lemma 3, summarizes the main result of this section.

Theorem 2. For any σ, an ε, 0 < ε < 1/2, and a U > 0 such that there exists
an S∗ under Assumption 1, the general framework schedules σ such that for all
machines, 1 ≤ i ≤ m, Li(S) ∈ [(1− ε)Li(S∗)− εU, (1 + ε)Li(S

∗) + εU].

17

4.2. Minimum Makespan

For minimizing the makespan on m identical machines, we will define U =
opt, where opt is the minimum makespan for σ.

Fact 5. If U = opt, there are no huge jobs as the makespan is at least as large
as the largest processing time of all the jobs.

By the above fact, we know that Assumption 1 holds.

Lemma 4. The length of the machine pattern vector is at most 1
ε .

Proof. This lemma follows from the fact that all large jobs have a processing
time greater than εU = εopt and that a machine in S∗ with more than 1

ε jobs
with processing times greater than εopt is more than the maximum makespan,
a contradiction.

From Lemma 4, v = 1
ε . Using this value with Fact 4 of the general frame-

work, gives the following.

Fact 6. The online algorithm with advice, based on the general framework, uses

at most 2
ε

(
log
(

3 log(1/ε)
log(1+ε)

))
+ 4 bits of advice per request.

Theorem 3. Given a request sequence σ, U = opt and an ε, 0 < ε < 1/2, the
online algorithm with advice, based on the general framework schedules the jobs
of σ such that the online schedule has a makespan of at most (1 + 2ε)opt.

Proof. By Fact 5, Assumption 1 holds and Theorem 2 applies.
Let j be a machine with the maximum load in S∗. By Theorem 2, Li(S) ≤

(1 + ε)Li(S
∗) + εU ≤ (1 + 2ε)opt as U = opt = Lj(S

∗) ≥ Li(S
∗) for all

1 ≤ i ≤ m.

4.3. Machine Covering

For maximizing the minimum load, i.e. machine covering, on m identical
machines, we will define U = opt, where opt is the load of the machine with
the minimum load in S∗.

Lemma 5. There exists an optimal schedule S such that any job with processing
time more than that of the minimum load, i.e. a huge job, will be scheduled on
a machine without any other jobs.

Proof. In S, let machine i be the machine with the minimum load. Note that
by definition a huge job has a processing time that is more than the minimum
load. Therefore, machine i cannot contain a huge job. Assume that scheduled
on some machine j 6= i is a huge job and one or more large or small jobs. We
will denote the set of non-huge jobs scheduled on machine j by J . We will define
another schedule S∗ to be the same schedule as S for all the machines but i and
j. In S∗, machine i will schedule the same jobs as in S plus all the jobs in J and
machine j will only schedule the huge job scheduled on machine j in S. The
load on machine j in S∗ is greater than opt as it contains a huge job and the

18

load on machine i in S∗ is greater than opt given that it was opt in S and jobs
were added to it in S∗. If the load of machine i in S is a unique minimum, then
S∗ contradicts the optimality of S. Otherwise, there exists another machine,
k 6= i and k 6= j, with the same load as i in S. Machine k has the same load in
S∗ as it does in S. Therefore, S∗ is an optimal schedule. This process can be
repeated until a contradiction is found or an optimal schedule is created such
that no huge job is scheduled on a machine with any other jobs.

Lemma 6. There exists an optimal schedule S such that there are at most
1 + 1

ε non-small jobs scheduled on each machine and huge jobs are scheduled on
a machine without any other jobs.

Proof. By Lemma 5, we can transform any optimal schedule S to an optimal
schedule S′, where all the huge jobs are scheduled on machines without any
other jobs.

In S′, let machine i be the machine with the minimum load and assume that
some machine j 6= i has more than 1 + 1

ε large jobs. We will define another
schedule S∗ to be the same schedule as S′ for all the machines but i and j. Note
that machine i has at most 1

ε large jobs scheduled and, since its load is U , it
cannot contain a huge job because huge jobs have processing times more than
U . In S∗, machine i will schedule the same jobs as S′ plus all the small jobs and
the largest job scheduled on machine j in S′. The load on machine j in S∗ is
greater than opt as it still has at least 1 + 1

ε large jobs scheduled on it and the
load on machine i in S∗ is greater than opt given that it was opt in S′ and jobs
were added to it in S∗. If the load of machine i in S′ is a unique minimum, then
S∗ contradicts the optimality of S′. Otherwise, there exists another machine,
k 6= i and k 6= j, with the same load as i in S′. Machine k has the same load in
S∗ as it does in S′. Therefore, S∗ is an optimal schedule. This process can be
repeated until a contradiction is found or an optimal schedule is created such
that no machine has more than 1 + 1

ε non-small jobs scheduled.

From Lemma 6, v = 1 + 1
ε . Using this value with Fact 4 of the general

framework gives the following.

Fact 7. The online algorithm with advice, based on the general framework, uses

at most 3
ε

(
log
(

3 log(1/ε)
log(1+ε)

))
+ 4 bits of advice per request.

Theorem 4. Given a request sequence σ, U = opt and an ε, 0 < ε < 1, the
online algorithm with advice, based on the general framework, schedules the jobs
of σ such that the online schedule has a machine cover at least (1− 2ε)opt.

Proof. By Lemma 6, Assumption 1 holds and Theorem 2 applies.
Let j be a machine with the minimum load in S∗. By Theorem 2, Li(S) >

(1 − ε)Li(S∗) − εU ≥ (1 − 2ε)opt as opt = Lj(S
∗) ≤ Li(S

∗) for all 1 ≤ i ≤
m.

19

4.4. The `p Norm

For minimizing the `p norm on m identical machines, we will define U = W
m ,

where W is the total processing time of all the jobs.
For completeness, we first prove the following technical lemma about convex

functions.

Lemma 7. Let f be a convex function, and let x0 > y0 ≥ 0. Let v < x0 − y0.
Then f(x0 − v) + f(y0 + v) < f(x0) + f(y0).

Proof. We need to show that f(x0)− f(x0 − v) > f(y0 + v)− f(y0) for y0 < x0
and 0 < v < x0 − y0.

Suppose first that v < (x0 − y0)/2. Due to the mean value theorem, there
exist values θ1 ∈ [y0, y0 + v], θ2 ∈ [x0 − v, x0], such that f ′(θ1) = (f(y0 + v) −
f(y0))/v and f ′(θ2) = (f(x0)− f(x0 − v))/v. Since f is convex (so f ′′(x) ≥ 0)
and θ1 ≤ y0 + v < x0 − v ≤ θ2, we have f ′(θ1) < f ′(θ2), proving the claim.

If on the other hand v ≥ (x0 − y0)/2, then define w = x0 − (y0 + v) <
(x0 − y0)/2 and note that x0 − w = y0 + v and y0 + w = x0 − v. The claim
f(x0)− f(y0 + v) > f(x0 − v)− f(y0) can now be shown exactly as above.

Lemma 8. For any schedule S, moving a job from a machine where it is as-
signed together with a set of jobs of total size at least W/m to a machine with
minimum load strictly improves the `p norm.

Proof. Denote the schedule after the move by S′. We show that
∑m
i=1 f(Li(S

′)) <∑m
i=1 f(Li(S)), where f(x) = xp (for some p > 1). Denote the size of the job to

be moved by v > 0, the current load of its machine by x0, where x0− v ≥W/m
by assumption, and the current minimum load by y0 < W/m. Now we can
apply Lemma 7.

The following corollary follows from Lemma 8.

Corollary 2. For any schedule S, ||S||p ≥ (
∑m
i=1(W/m)p)1/p.

Proof. We apply Lemma 8 repeatedly (if possible, i.e. if the load is not already
exactly W/m on every machine) and also allow parts of jobs to be moved (ev-
erything that is above a load of W/m on some machine). Eventually we reach
a flat schedule with a load of W/m everywhere, and the `p norm is improved in
every step.

Lemma 9. In any optimal schedule S, any job with processing time greater
than W

m , i.e. a huge job, will be scheduled on a machine without any other jobs.

Proof. There can be at most m− 1 huge jobs, else the total processing time of
the jobs would be more than W . In a schedule with a huge job, the machine
with the minimum load must have a load less than W

m (and cannot contain a
huge job), else the total processing time of the jobs would be more than W .

If, in the optimal schedule, there is a huge job scheduled with other jobs,
we can move these jobs, one by one, to the machine with minimum load. By
Lemma 8, this process decreases the `p norm, contradicting that we started with
an optimal schedule.

20

Lemma 10. In any optimal schedule S, there are at most 1
ε non-small jobs

scheduled on each machine.

Proof. By Lemma 9, in an optimal schedule, any machine with a huge job will
have only one job.

In S, let machine i be the machine with the minimum load and assume
that some machine j 6= i has more than 1

ε large jobs. The load of j is at least

(1 + ε)Wm and, hence, the load of i is strictly less than W
m . This implies that i

has less than 1
ε large jobs. By Lemma 8, moving a large job from j to i will

decrease the `p norm, contradicting that S is an optimal schedule.

From Lemma 10, v = 1
ε . Using this value with Fact 4 of the general frame-

work, gives the following.

Fact 8. The online algorithm with advice, based on the general framework, uses

at most 2
ε

(
log
(

3 log(1/ε)
log(1+ε)

))
+ 4 bits of advice per request.

Theorem 5. Given a request sequence σ, U = W
m and an ε, 0 < ε < 1/2, the

general framework schedules the jobs of σ such that the resulting schedule has
an `p norm of at most (1 + 2ε)opt.

Proof. By Lemma 9, Assumption 1 holds and Theorem 2 applies.
The algorithm schedules the jobs such that

‖L(S)‖p =

(
m∑
i=1

(Li(S))
p

)1/p

≤

(
m∑
i=1

(
(1 + ε)Li(S

∗) + ε
W

m

)p)1/p

by Theorem 2

≤

(
m∑
i=1

((1 + ε)Li(S
∗))

p

)1/p

+

(
m∑
i=1

(
ε
W

m

)p)1/p

≤ (1 + ε)opt + εopt by Corollary 2

= (1 + 2ε)opt ,

where we have used the Minkowski inequality in the third line.

5. Lower Bound for Scheduling

Boyar et al. [10] showed that at least (n− 2N) logN bits of advice in total
(i.e. at least

(
1− 2N

n

)
logN bits per request) are needed for any online bin

packing algorithm with advice to be optimal. Using a similar technique, we
show that (n− 2m) logm bits of advice in total (at least

(
1− 2m

n

)
logm bits of

advice per request) are required for any online scheduling algorithm with advice
on m identical machines to be optimal for makespan, machine cover or the `p
norm.

21

Let

k = n− 2m,

σ1 =

〈
1

2k+2
,

1

2k+3
, . . . ,

1

2k+m+1
,

1

22
, . . . ,

1

2k+1

〉
and

σ2 = 〈x1, x2, . . . , xm〉 ,

where xi will be defined later in an adversarial manner. The entire adversarial
request sequence will be σ = 〈σ1, σ2〉. This sequence will be chosen such that
the adversary will have a balanced schedule (a load of 1 on each machine) while
any algorithm using less than k logm bits of advice will not. That is, such an
algorithm will have at least one machine with load greater than 1, and, hence,
at least one machine with load less than 1. Such an algorithm will, therefore,
not be optimal for makespan, machine cover or the `p norm.

Fact 9. Every subset of the requests of σ1 has a unique sum that is less than
1/2.

Let T be the set of all possible schedules on m identical machines for the
requests of σ1. The adversary will schedule each of the first m requests of σ1 on
a distinct machine. This distinguishes the m machines from one another. Let
V be the set of all possible schedules of the last k requests of σ1 onto the m
machines, given that the first m requests of σ1 were each scheduled on a distinct
machine. Note that V ⊂ T and that |V | = mk. Let Sadv

σ1
∈ V be the adversarial

schedule of the jobs of σ1. Define xi = 1−Li(Sadv
σ1

). Note that using Fact 9 we
have that the m values xi, 1 ≤ i ≤ m, are distinct. Further, note that σ allows
for a balanced schedule, where all machines have load 1.

Observation 1. For every Sσ1 ∈ T \Sadv
σ1

, every possible scheduling of the jobs
of σ2 into Sσ1 results in a schedule Sσ such that there are at least 2 machines i
and j, where Li(Sσ) < 1 and Lj(Sσ) > 1.

Proof. The sum of the processing times of all jobs of σ1 is less than 1/2 which
implies that the processing time for each xi is greater than 1/2. Therefore, any
machine that schedules more than one job from σ2 will have a load greater than
1. It follows that such a schedule also has a machine that does not have any job
from σ2, and, hence, has a load less than 1. We therefore consider a schedule
Sσ that schedules a single job from σ2 on each machine.

Since the sum of the processing times of all the jobs of σ is m, note that if
we have a machine with a load greater than 1 then there must be a machine
with load less than 1. We can therefore assume by contradiction that in Sσ all
machines have a load exactly 1. As each job xi of σ2 is scheduled on a distinct
machine, we have that in Sσ the total processing time of the jobs from σ1 on
the machine that has job xi is exactly 1 − xi. Fact 9 implies that Sσ1

equals
Sadv
σ1

, a contradiction.

We are now ready to prove the main theorem of the section.

22

Theorem 6. Any online algorithm with advice needs at least (n − 2m) logm
bits of advice in order to be optimal for the makespan problem, machine cover
problem and the `p norm problem, where m is the number of machines and n is
the length of the request sequence.

Proof. Let ALG be an arbitrary (deterministic) online algorithm with advice
for the given scheduling problem. Let Sσ1 be the schedule produced by ALG for
σ1. If Sσ1 ∈ T \V , i.e. Sσ1 is such that the first m requests are not scheduled on
distinct machines, then Sσ1

6= Sadv
σ1

, and, by Observation 1, Sσ is not balanced.
Therefore, we will assume that the algorithm will schedule the first m requests
on m distinct machines, i.e. Sσ1

∈ V .
Assume that the online algorithm with advice receives all the advice bits in

advance. This only strengthens the algorithm and, thus, strengthens our lower
bound. Let alg(s, u) be the schedule produced by ALG for request sequence s
when receiving advice bits u. Since ALG gets less than k logm bits of advice,
it gets as advice some u ∈ U for some advice space U , |U | < mk. It follows that
|{alg(σ1, u)|u ∈ U}| < mk = |V |. Therefore, given ALG, Sadv

σ1
is chosen by

the adversary such that Sadv
σ1
∈ T \ {alg(σ1, u)|u ∈ U}. Note that this choice

defines σ2.
We now have, by Observation 1, that Sσ has at least 2 machines i and j

such that Li(Sσ) < 1 and Lj(Sσ) > 1. Given that there is a balanced schedule
with all machines having load 1 for σ, Sσ is not optimal for makespan due to
machine j, Sσ is not optimal for machine cover due to machine i, and Sσ is not
optimal for the `p norm by Corollary 2.

6. Comparison to the Semi-Online Advice Model

For a request sequence of length n, the näıve conversion of the algorithms
described previously from the online advice model to the semi-online advice
model uses less than a total of n

(
1
ε log

(
2
ε2

)
+ log

(
2
ε2

)
+ 3
)

bits of advice for

bin packing and n
(
log
(
3 log1+ε 1/ε

)
+ β(v) + 3

)
for scheduling. It is possible,

as we describe below, to do better in the more powerful semi-online model, but
the amount of advice is still linear in n. This follows from the observation that
only for the first N (m) request does the advice include an actual bin (machine)
pattern.

6.1. bpa in the semi-online advice model

Initially, a single bit w (as described above) is written to the advice tape
to indicate if N ≤ 1/ε or not. If so, n log(1/ε) bits are written to the tape to
indicate the bin index in which to pack each item.

If N > 1/ε, the optimal number of bins N is encoded, using a self-delimiting
encoding scheme [7], and written to the advice tape, using dlogNe+2dlogdlogNee
bits. Then, for each of the N optimal bins, the bin pattern is written, using
p < (1/ε) log(2/ε2) + 1 bits, followed by a bit to indicate if small items are
packed in the bin.

23

For each request, a bit is written to the advice tape to indicate if the item
is small or large. If the requested item is small, an additional bit is written
to indicate if the small item should be packed in the current bin packing small
items or the next. If the requested item is large, the item type is written, using
t < log(2/ε2) + 1 bits, and an additional bit is written to indicate if the large
item is packed in a bin with or without small items.

The total amount of advice used is less than

1 + dlogNe+ 2dlogdlogNee+N

(
1

ε
log

(
2

ε2

)
+ 1

)
+N + n

(
log

(
2

ε2

)
+ 2

)
.

In [27], it is shown that a linear amount of advice in total is required for
an algorithm with advice for the bin packing problem to achieve a competitive
ratio of 7/6. Therefore, the algorithms described here uses an optimal amount
of advice (up to constant factors) for competitive ratios at most 7/6.

6.2. Scheduling framework in the semi-online advice model
As with bpa, the machine pattern of each machine and the machines that

have small items scheduled can be written to the front of the advice tape. In
this case, m unlike N is known to algorithm and does not need to be written to
the advice tape.

Initially, the m machine patterns, ordered according to the permutation
of the machines as described previously, are written on the advice tape using
p < mβ(v) bits. Then, for each request, the type of each job is written to the
advice tape, using t < log (3 log(1/ε)/ log(1 + ε)) + 1 bits. If the job is small,
then an additional bit is written to indicate if the small job should be scheduled
on the previous machine or the current machine.

The total amount of advice used is less than

mβ(v) + n

(
log

(
3 log(1/ε)

log(1 + ε)

)
+ 2

)
.

The framework that we presented here works for any objective function of
the form

∑m
i=1 f(Li) such that if x ≤ (1+ε)y then f(x) ≤ (1+O(1)ε)f(y) (which

includes makespan, machine cover and the `p norm). In [26], an algorithm that
uses constant advice in total and achieves a competitive ratio of 1+ε is presented
for the makespan objective on m identical machines. It remains open whether or
not it is possible to improve on the framework here for other objective functions
such as machine cover and the `p norm.

7. Conclusions

We gave online algorithms with advice for bin packing and scheduling prob-
lems that, with a constant number of bits per request, achieve competitive ratios
arbitrarily close to 1. Since this is not possible for all online problems, it would
be interesting to prove similar results for additional online problems. Further-
more, an interesting question is to find the right trade-off between the (constant)
number of bits of advice and the achievable competitive ratios for the problems
we study and other problems.

24

Acknowledgements. We would like to thank Shahin Kamali and Alejandro López-
Ortiz for useful discussions about the bin packing problem.

References

[1] A. Borodin, R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, New York, NY, USA, 1998.

[2] R. Dorrigiv, A. López-Ortiz, A survey of performance measures for on-line
algorithms, SIGACT News 36 (3) (2005) 67–81.

[3] H.-J. Böckenhauer, D. Komm, R. Královic, R. Královic, T. Mömke, On the
advice complexity of online problems, in: ISAAC, 2009, pp. 331–340.

[4] Y. Emek, P. Fraigniaud, A. Korman, A. Rosén, Online computation with
advice, Theor. Comput. Sci. 412 (24) (2011) 2642–2656.

[5] H.-J. Böckenhauer, D. Komm, R. Královic, R. Královic, On the advice
complexity of the k-server problem, in: ICALP, 2011, pp. 207–218.

[6] D. Komm, R. Královic, Advice complexity and barely random algorithms,
RAIRO - Theor. Inf. and Applic. 45 (2) (2011) 249–267.

[7] H. Böckenhauer, D. Komm, R. Královic, P. Rossmanith, The online knap-
sack problem: Advice and randomization, Theor. Comput. Sci. 527 (2014)
61–72. doi:10.1016/j.tcs.2014.01.027.
URL http://dx.doi.org/10.1016/j.tcs.2014.01.027

[8] M. P. Renault, A. Rosén, On online algorithms with advice for the k-server
problem, Theory Comput. Syst. 56 (1) (2015) 3–21. doi:10.1007/s00224-
012-9434-z.
URL http://dx.doi.org/10.1007/s00224-012-9434-z

[9] R. Dorrigiv, M. He, N. Zeh, On the advice complexity of buffer manage-
ment, in: ISAAC, 2012, pp. 136–145.

[10] J. Boyar, S. Kamali, K. S. Larsen, A. López-Ortiz, Online bin pack-
ing with advice, in: E. W. Mayr, N. Portier (Eds.), 31st Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, March 5-8, 2014, Lyon, France, Vol. 25 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014, pp. 174–186.
doi:10.4230/LIPIcs.STACS.2014.174.
URL http://dx.doi.org/10.4230/LIPIcs.STACS.2014.174

[11] S. Gupta, S. Kamali, A. López-Ortiz, On advice complexity of the k-server
problem under sparse metrics, in: T. Moscibroda, A. A. Rescigno (Eds.),
SIROCCO, Vol. 8179 of Lecture Notes in Computer Science, Springer, 2013,
pp. 55–67.

25

[12] A. Adamaszek, M. P. Renault, A. Rosén, R. van Stee, Reordering buffer
management with advice, in: C. Kaklamanis, K. Pruhs (Eds.), Approxima-
tion and Online Algorithms - 11th International Workshop, WAOA 2013,
Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers,
Vol. 8447 of Lecture Notes in Computer Science, Springer, 2013, pp. 132–
143. doi:10.1007/978-3-319-08001-7.
URL http://dx.doi.org/10.1007/978-3-319-08001-7

[13] W. Fernandez de la Vega, G. S. Lueker, Bin packing can be solved within
1+epsilon in linear time, Combinatorica 1 (4) (1981) 349–355.

[14] D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for
scheduling problems theoretical and practical results, J. ACM 34 (1) (1987)
144–162. doi:10.1145/7531.7535.

[15] B. Chen, A. van Vliet, G. J. Woeginger, A lower bound for randomized on-
line scheduling algorithms, Information Processing Letters 51 (5) (1994)
219 – 222. doi:10.1016/0020-0190(94)00110-3.

[16] N. Alon, Y. Azar, G. Woeginger, T. Yadid, Approximation schemes for
scheduling, in: SODA, 1997, pp. 493–500.

[17] J. Sgall, A lower bound for randomized on-line multiprocessor scheduling,
Inf. Process. Lett. 63 (1) (1997) 51 – 55. doi:10.1016/S0020-0190(97)00093-
8.

[18] G. J. Woeginger, A polynomial-time approximation scheme for maximizing
the minimum machine completion time, Oper. Res. Lett. 20 (4) (1997) 149
– 154. doi:10.1016/S0167-6377(96)00055-7.

[19] A. Avidor, Y. Azar, J. Sgall, Ancient and new algorithms for load balancing
in the lp norm, in: SODA, 1998, pp. 426–435.

[20] Y. Azar, L. Epstein, On-line machine covering, J Scheduling 1 (2) (1998)
67–77.

[21] R. Fleischer, M. Wahl, Online scheduling revisited, in: ESA, 2000, pp.
202–210.

[22] S. S. Seiden, On the online bin packing problem, J. ACM 49 (2001) 2002.

[23] S. Albers, On randomized online scheduling, in: STOC, ACM, 2002, pp.
134–143.

[24] J. F. Rudin, III, R. Chandrasekaran, Improved bounds for the on-
line scheduling problem, SIAM J. Comput. 32 (3) (2003) 717–735.
doi:10.1137/S0097539702403438.

[25] J. Balogh, J. Békési, G. Galambos, New lower bounds for certain classes of
bin packing algorithms, TCS 440-441 (0) (2012) 1–13.

26

[26] J. Dohrau, Online makespan scheduling with sublinear advice, in: G. F.
Italiano, T. Margaria-Steffen, J. Pokorný, J. Quisquater, R. Wattenhofer
(Eds.), SOFSEM 2015: Theory and Practice of Computer Science - 41st In-
ternational Conference on Current Trends in Theory and Practice of Com-
puter Science, Pec pod Sněžkou, Czech Republic, January 24-29, 2015.
Proceedings, Vol. 8939 of Lecture Notes in Computer Science, Springer,
2015, pp. 177–188. doi:10.1007/978-3-662-46078-8 15.
URL http://dx.doi.org/10.1007/978-3-662-46078-8

[27] S. Angelopoulos, C. Dürr, S. Kamali, M. Renault, A. Rosén, Online bin
packing with advice of small size, in: Algorithms and Data Structures -
14th International Symposium, WADS 2015, Victoria, BC, Canada, August
5-7, 2015. Proceedings, to appear, pp. 1–12.

[28] B. Chandra, Does randomization help in on-line bin packing?, Inf. Process.
Lett. 43 (1) (1992) 15–19. doi:10.1016/0020-0190(92)90023-O.

[29] D. Johnson, Near-optimal bin packing algorithms, Ph.D. thesis, MIT
(1973).

27

