On Delivery Times in Packet Networks
under Adversarial Traffi¢

Adi Rosn Michael S. Tsirkif

Abstract

We consider packet networks and make use of the “adversarial queuing
theory” model [10]. We are interested in the question of guaranteeing that all
packets are actually delivered to destination, and of having an upper bound
on the delivery times of all packets. Whether this is possible against all ad-
versarial queuing theory rateadversaries was previously posed as an open
guestion [13, 10].

Among other things, we give a queuing policy that guarantees bounded
delivery time whenever the ratieadversary injects a sequence of packets
for which there exists a schedule with a finite upper bound on the delivery
times of all packets, and adheres to certain additional conditions. On the
negative side we show that there exist ratgequences of packets for which
there is no schedule with a finite upper bound on the delivery times of all
packets. We thus answer an open question posed by Gamarnik [13]. We
further show that deliveringll packets while maintaining stability (we coin
the term “reliability” for this property) can be done by an offline scheduler
whenever the injection of packets is done at rate of at mo®ut, on the
other hand, we also show that there is no online protocol (even centralized)
that can achieve that property against all radversaries. We thus answer
an open question of Borodin et al. [10].

*An early version of this paper appeared in the proceedings of the 16th SPAA, 2004.
TDept. of Computer Science, Technion, Haifa 32000, Israel. e-mail: adiro@cs.technion.ac.il.
iDept. of Computer Science, Technion, Haifa 32000, Israel. e-mail: misha@cpan.org.

0

1 Introduction

The analysis of packet networks under adversarial injection of traffic received in-
creasing attention in recent years (see e.g., [10, 5, 15, 3, 13, 14, 4, 12, 17, 9, 11]).
Much of this work makes use of the model of “adversarial queuing theory”, in-
troduced by Borodin et al. [10]. This model can be briefly described as follows.
Time proceeds in discrete steps. In each step, packets are injected into the net-
work with their routes. Each packet traverses its respective route hop by hop in
a store-and-forward manner. In each time step, one packet may cross each link,
and all other packets waiting for that link are stored in a queue at the tail of that
link. The behavior of the system is determined by the emplayesliing policy

which chooses, at each time step, for each link, which of the competing packets
is forwarded over that link. In the framework of adversarial queuing theory, the
injection of packets into the network is modeled as being done gdaarsary

The adversary is characterized byase at which packets are injected. Intuitively,

the rate of injection is said to beif for every link e in the network, the average
number of packets requiringinjected by the adversary per time step, is at most

(a formal definition of the model is given in Section 2).

When analyzing the system one is interested in two main questions. Whether
upper bounds on the queue sizes can be given, and whether upper bounds on the
delivery times (a.k.a. delays) of the packets can be given. In particular, the ques-
tion of stability received considerable attention in the literature. The system is said
to be stable when there is a finite upper bound on the size of the queues, as opposed
to their sizes growing to infinity as time proceeds. A considerable number of im-
portant results have been obtained in analyzing under what conditions stability can
be achieved (see e.g., [10, 5, 15, 13, 12, 9]). The question of upper bounds on
packet delays received less of direct attention, and results pertaining to this quan-
tity were usually given in conjunction with results on queue sizes. In fact, when
the injection rate into the network is strictly less thBrand a greedy (i.e., work
conserving) queuing policy is used, stability implies certain bounds on the delay of
the packets [10, 5]. Greedy protocols that achieve stability on any network topol-
ogy when the injection rate is bounded away frorfi.e.,» < 1) are known (e.g.,
Longest-In-System) [5], and thus upper bounds on packet delays can be given in
this case. However, the resulting bounds depend on the injection rate, and grow as
ﬁ grows. Gamarnik showed that there are greedy protocols that achieve stability
as long as the injection rate does not exceed the link capacity (i.e., for any injection
rater < 1) [13], with bounds on queue size that do not depend on the injection rate
r. However, all protocols that are presently known to preserve stability against any
rater < 1 adversary suffer from the drawback that they cannot guarantee that all
packets eventually arrive to their destinations (i.e., some packets may be left unde-

livered forever). In fact, Gamarnik [13] gave a scenario with injection fagich
that when applying the Nearest-To-Origin protocol some packets never reach their
destinations (This scenario can be modified to suit the similar Furthest-To-Go pro-
tocol). Clearly, guaranteeing that all packets are delivered, and preferably with an
upper bound on the delivery times of all packets, is a desirable property. Gamarnik
thus posed the open problémhether there exists a policy with bounded delivery
time for every packet when = 1” [13]. Borodin et al. slightly rephrased the
qguestion and askeff there is a scheduling rule ... that can guarantee bounded or
at least finite delivery time with respect to deterministic rate 1 adversaf&s].
This is the starting point of our work.

We show that there are sequences of packets injected at raté such that
there is no finiteM such that all packets can be delivered (even by a centralized,
clairvoyant scheduler) withid/ time steps from their injection time. Therefore,
a protocol as suggested in the open question of Gamarnik does not exist, and we
answer in the negative his question. We then turn to the question whether there
is a protocol that can delivaall packets to their destinations (not leaving in the
network any packet undelivered forever) whenever 1. To treat this question we
coin, in parallel to the term stability, the temaliability. Reliability is a stronger
notion than stability, guaranteeing that all packets are actually delivered, while
stability is maintained. We first show that for any sequence of packets injected at
rater < 1, an offline scheduler can maintain reliability. It follows that a sequence
of packets has a schedule that maintains reliability if and only if it has a schedule
that maintains stability (those sequences characterized by [13, 18]). But we also
show that, as opposed to stability, there are network topologies on which there
is no online protocol (even centralized) that achieves reliability against alll rate-
adversaries. Thus we answer in the negative the open question posed by Borodin et
al. [10], whether stability and finite delivery times for all packets can be achieved
against all adversaries of rate= 1.1

As discussed above, we show that for some sequences of packets injected at
rater = 1, it is impossible (even by an offline scheduler) to have a finite upper
bound on the delivery times of all packets. That is, an adversary that is committed
to have itself a schedule for the packets such that there is some finite bound on the
delivery times of all packets, is a weaker adversary than thelratbrersary. We
call this adversary dounded delivery time adversarifhe aim is thus to design
protocols that will have a finite upper bound on the delivery times of all packets
against such adversaries. We show a class of network topologies, and a protocol
that on this class of topologies achieves bounded delivery time against any bounded

We note that it is easy to guarantee that all packets are delivered if stability is not in question,
e.g., by using FIFO or LIS.

delivery time adversary. We then design a new protocol, cdligiimated-Rare

First (ERF), thaton any network topologgchieves bounded delivery time against
any adversary in a class that is somewhat weaker than the class of all bounded
delivery time adversaries.

Summary of results First, we coin the termeliability to be the property that all
packets are delivered to their destinations while stability is maintained (Definition
3). We give the following results concerning reliability.

1. We characterize the sequences of packets that allow reliability (i.e., sequences
for which there exists a schedule that maintains reliability). Specifically, we
show that the set of sequences that allow reliability is equal to the set of
sequences that can be injected by daselversaries (Theorem 5).

2. We characterize the set of network topologies on which there is any online
protocol (centralized or not) which achieves reliability whenever reliability
can be maintained by an offline scheduler (i.e., whenever the adversary in-
jects a sequence of packets for which reliability can be maintained). We
show that on networks that contain simple cycles of length- 2 there is
no online protocol (even centralized) that achieves reliability against all rate
r < 1 adversaries (Theorem 12). And for networks not containing simple
cycles of lengthV > 2 we demonstrate a protocol that achieves reliability
against all rater < 1 adversaries (Theorem 20).

Forbounded delivery timere give the following results.

1. We show that (on certain networks) the set of sequences of packets for which
there exists a schedule with a finite upper bound on the delivery times of all
packets, is groper subsebf the set of sequences given by rateC 1 ad-
versaries (Theorem 22 and Observation 21). We thus coin thebeumded
delivery time adversarfor the adversary which is committed to have itself
such a schedule for the injected packets (Definition 24).

2. We give a set of network topologies (networks that do not contain simple
cycles of length\V > 2) for which there is a protocol that achieves bounded
delivery time against any bounded delivery time adversary, and demonstrate
such a protocol. We design a new protocol, callestimated-Rare First
(ERF), which achieves bounded delivery tiney any network topology
whenever the sequence of packets is given by a bounded delivery time ad-
versary, which is also a “frequent adversary”, a term that we define in the
sequel (Theorem 36).

Organization The rest of the paper is organized as follows. In Section 2 we
formally define the model and give several other preliminary definitions. In Section
3 we give our results for reliability, and in Section 4 we give our results for bounded
delivery time. We close the paper in Section 5 with a discussion and open problems.

2 Model and Preliminaries

We model the network as a directed gragh= (V, E'), where the nodes repre-
sent switches, and the edges represent communication links. We dendtady
length of the longest simple path@ At the tail of each edge there idaffer(we
sometimes use the terqueueinstead). Packets of uniform size angectedinto
the network over time with a prescribsonple patho follow from their respective
source to their respective destination. The system is synchronous, and time pro-
ceeds indiscrete time stepse {0,1,2,3,...}. Each time step is divided into two
sub-steps. In the first sub-step, for each edge, at most one packet is extracted from
the buffer associated with the edge and is sent across that edge. In the second sub-
step each packet sent in the first sub-step arrives to the node on the other end of the
edge; the packet is absorbed (i.e., eliminated from the network) if this node is its
destination; otherwise, the packet is placed in the buffer at the tail of the next edge
on its path. In addition, new packets are injected into the network in the second
sub-step, and are then placed in the buffer at the tail of the first edge on their path.
We assume that at timte= 0 the buffers of all edges are empty; then the adversary
injects packets into the network starting at titme 1. Our proofs will go through
with minor changes for the case that the system may start with non-empty buffers.

A protocolis an online, and typically local control, algorithm which, at each
time stept, and for each edge, selects a packet to cross edgfrom among the
packets in the buffer of (or decides to leave the link idle). A protocol is said to be
greedyif it does not leave an edgeidle unless the buffer of is empty.

The injection of packets into the network is modeled as being done lyl-an
versary Following [10, 5], we use the following parameterized definition for the
adversary.

Definition 1: Let A be an adversar is called an(r, b) adversary, for > 0 and
b > 0, if for each edge € E and for each time intervdl = (¢, t2], the number of
packets injected byl during I with paths that include is at most-(to — t1) + b.

For a given sequence of packetsaschedulas a specification for the movement

of all the packets ir. A schedule isvalid if (1) at most one packet is sent across
each edge in each time step; (2) a packet is sent across any given edge on its path
only once, and only after it arrives to the tail of that edge, according to the same

schedule. We note that a protocol generates, in an online and typically local control
manner, a schedule for the injected packets.
We define anetwork systeras the tupldG, o, S) whereG is a directed graph,
o a sequence of packets, afda valid schedule fos. Following [10] we define
the notion ofstability as follows.

Definition 2: A network systemG, o, S) is stableif there existsB < oo such
that the number of packets in the network at any given time is at Bost

As noted by Gamarnik [13] even when a system is stable some packets may stay
in the network indefinitely, and never reach their destinations. We therefore define
the notions of eternal packets and of reliability, as follows.

Definition 3: Let (G, o, S) be a network system. A packets eternalin (G, o, 5)
if it never arrives to its destination ifG, o, .S). The system{G, 0, .5) is said to be
reliableif it is stable and there are no eternal packet&ino, S).

We further give the following definition for bounded delivery time, which is a
stronger notion than reliability.

Definition 4: A network systen{G, o, S) hasbounded delivery timiéthere exists
M < oo such that each packet arrive§(id, o, .S) to its destination withinl/ time
steps from its injection time. We calll themaximum delivery time

In the sequel we sometimes say thatemjuencer allows reliability (resp. allows
bounded delivery time). By this we mean that there exists a schédsileh that
the network systentG, o, .S) is reliable (resp. has bounded delivery time). We
also sometimes abuse notation and for a protdeatrite (G, o, P), instead of
(G, 0,8 (0)), whereS” (o) is the schedule generated Byfor . We further say
that a graph is universally stable against all rate= 1 adversaries, if for any
given by a(1, b) adversary, and any greedy proto@gl(G, o, P) is stable.

3 Reliability

We now study reliability. We start with the following question: for which se-
quences of packets is there a schedule that actually de&illepackets, while us-

ing buffers of bounded size, i.e., while maintaining stability. We then study the
question of the existence of a protocol that can generate such a schedule, whenever
such a schedule exists.

3.1 Sequences that allow reliability

In this section we show that the set of sequences that allow reliability is equal to the
set of sequences that allow stability. This set, in turn, is known to be equal to the
set of sequences that can be injected by) adversaries [13, 18]. More formally,

we show the following theorem.

Theorem 5: A sequencer has a reliable schedule if and only if it has a stable
schedule.

One direction of the proof s trivial. To prove the second direction we start with the
following.

Observation 6: Let (G, 0, .S) be a stable system. The number of eternal packets
in (G, 0,S) is at mostB, whereB is the maximum number of packets present at
any given time inG, o, S).

Proof: ~ Assume towards a contradiction that there are more thaternal pack-
ets in(G,0,5). Lett be the time step whe® + 1 eternal packets have been
injected. Since an eternal packet never arrives to its destinatioRB,-alll eternal
packets are in the network at timeA contradiction. Ll

We now build forc a scheduleS’ that maintains reliability, based on (any)
scheduleS such that(G, o, S) is stable. Informally,S’” will mimic S until all
eternal packets ofG, o, S) stop moving in(G, 0, .5); then it will deliver all the
eternal packets while blocking all other packets in the network; and then resume
the behavior of5, delayed by a certain number of time steps. To defirfermally,
let £ be the set of eternal packets(ifi, o, S). Observe that for every eternal packet
p € & there is atime step),, < oo such that aftef,, — 1 p does not cross any edge
in (G, 0,5). If pdoes not cross any edge at all(ii, o, S) we definel}, such that
T, — 1 is the injection time ofp. LetT = max,c¢ T}, SO that atl" all eternal
packets are already injected, and startin@ ao eternal packet crosses an edge in
(G,0,5). Note thatl’ < oo. Let D = |£] - d.

The schedul&’ is defined as follows. IfG, 0, S) is reliable itself, thert’ is
equal toS. In what follows we assume thét:, o, S) is notreliable, and we build
a schedules” which is different froms.

1. For0 <t < T, S isidentical toS. Thatis, atany) < ¢t < T, S’ sends
across each edgec F the same packet that crosses the edgetimet in
(G,0,S) .

2. ForT <t < T+ D, S schedules the packetsdhaccording to an arbitrary
greedy schedule. No other packets are sent across any edge in the network.

6

3. ForT + D < t, for each edge and timet, S’ sends a packetacross att
if and only if S sends the packetacross att — D.

We now give the following theorem.
Theorem 7: 5" is a valid schedule fos. (G, o, S’) is reliable.

The theorem follows from Lemmas 9 and 11 that we prove below. Informally,
the validity and stability ofS” follow from the fact that it mimicsS (although
sometimes at a finite dela®). The reliability follows from the fact that all the
eternal packets ofG, o, S) are delivered during the second phaseSof(using
Observation 6), and that all non-eternal packets are delivered at a delay of at most
D time steps relative t6'. We note that schedul¢ is not necessarily greedy.

We now give a formal proof of the above theorem. We first claim the following.

Lemma 8: For anyt > T'+ D — 1, any packep ¢ £ that is at node att — D
in (G,o,9), is in the same node att in (G,o,5’). In particular, forv being the
destination node af, if p leaves the systerf, o, S) by timet — D, it leaves the
system(G, o, S’) by timet.

Proof: We prove the lemma by induction an The base of the induction for
t = T+ D —1 follows from the fact that before tinig all packets move identically

according toS andS’. For the induction step, let> T'+ D. There are three cases,
according to the location gfatt — D in (G, 0, S):

1. pisinjected in node attimet — D.
Since S does not seng by timet — D, S’ does not seng by time ¢, and
thereforep is stillin v in (G, 0, S") att.

2. pisinnodevin (G,o,S) attimet — D — 1.
By the induction hypothesig,is inv att — 1in (G, 0, S’). Clearly S does
not sendp at timet¢ — D, and therefores’ does not seng at timet¢. We
conclude thap is still in v in (G, 0, 5") att.

3. pisinanodeu # vin (G, o, S) attimet — D — 1.
By the induction hypothesig, is inu att — 1in (G,0,5’). So thatp is in
vatt —Din (G,o,S5), S must seng acrosqv, u) at timet. Therefore, by
the definition ofS’, p arrives aw in (G, 0, 5") att.

U
We now claim the following.

Lemma9: S’ is a valid schedule.

Proof: First, we note thab < 7' < oo, by Observation 6. Now observe that
until time 7' — 1, S and.S’ behave identically. Fdf <t < T + D, S’ is valid by
construction.

ForT + D < t, we note thatS’ sends at most one packet across each edge at
any time. By Lemma 8, we have that each packetfi&as to send across an edge
e at some timé is indeed at the tail of at the beginning of that time step. [l

In the following we prove the desired propertiesHf
Lemma 10: (G, 0, 5") is stable.

Proof: Since(G, 0, S) is stable, there exists soni¢ < oo such that there are
at mostB packets in(G, o, S) at any given time. By Lemma 8, each non-eternal
packet leave&’, o, S’) with a delay of at mosb time steps compared {6, o, S).
Sinceo can inject at mosB + D|E| packets duringD time steps, we conclude
that the number of packets {i@7, o, S’) at any timet may exceed the number of
packets iNG, o, S) at timet — D by at mostB + D|E|. Since(G, o, S) is stable
the lemma follows. Ll

Lemma 11: (G, 5, S) is reliable.

Proof: First note thatG, o, S") is stable by Lemma 10. We now claim that there
are no eternal packets &, o, S’).

Consider an arbitrary packgin o. If p € £, pisinjected in(G, o, S’) by time
T — 1. During the time intervalT', T + D), only packets irf are sent across edges
by a greedy schedule. Sinée= |£|d, all these packets arrive to their destinations
by T + D.

If p ¢ &£, there are two cases:

1. p leaves the systerf7, 0, S) at some timg < 7'. SinceS andS’ behave
identically fort < T, p is not eternal iG, o, 5").

2. p leaves the systerfz, 0, S) by timet, for¢t > T. By Lemma 8,p leaves
the system(G, 0, 5") by timet + D.

U

3.2 Achieving reliability by protocols

We now consider the question of the existence of an online protocol that achieves
reliability whenever the sequence of packets allows reliability. As we show in the
previous section, the set of sequences that allow reliability is equal to the set of

sequences that can be injected(byb) adversaries. We now show that on certain
networks (namely, cycles of length greater tRathere is no online protocol (even
centralized) that achieves reliability against @ll b) adversaries. On the other
hand, we show that for any network that does not contain simple cycles of length
greater thar2, there are protocols (online and local control) that achieve reliability
whenever the sequence of packets allows reliability. Thus we characterize the net-
work topologies on which reliability is achievable by an online protocol, and give

a protocol that achieves reliability on these networks. We start with the negative
result.

Theorem 12: For any unidirectional cycle of lengtV > 2, there is no online
protocol (even centralized) that achieves reliability againgtiali) adversaries.

To prove the theorem, given a unidirectional cycle of lendjth> 2, Cx;, and
an arbitrary online protocaP, we build the following adversaryl of rater < 1.
Denote the nodes of the cyclg to vy _1, and denote the edge emanating from
v; by e;. In each time step the adversary injects one packet of lehgttiges.
ThereforeA is an(r, b) adversary forr < 1 andb = 0. A packet that is injected
at nodev; (and has patltv;, v;11,v;+2)) is calleda types packet The adversary
proceeds in phases, starting with phase nuritibat starts at time step= 1. In
phasel the adversary injects one packet of typehe phase immediately ends and
phase2 starts at time step= 2. In phase: > 1, the adversary injects in each time
step one packet of typg: mod N). The phase ends at the end of the first time
step in whichP does not hold in its buffers packets of any type other than type
(k mod N). (Note that this rule applies also for phase numberPhase: + 1
starts at the time step immediately after the end of phadéote that the actions of
the adversary, in particular the length of each phase, are determined as a function
of the actions of the online protocél.

Let T}, be the first time step of phage If the adversary does not reach phase
k we setl}, = oo.

Lemma 13: If P is reliable then forany > 1, T}, < cc.

Proof: The proof is by induction ort. Fork = 1, by definition, the adversary
starts in phaseé, and thereford; = 1. Fork = 2, by definition, phasé ends at
time 1, and thereford, = 2.

For k > 2, by the induction hypothesis we have that ; < co. Consider the
set of packets;,_; that are present in the network at tifhg ; — 1, i.e. at the end
of the last time step of phage- 2. SinceP is reliable, there are no eternal packets
and therefore each of the packetsAip ; eventually arrives to its destination. Let

T be thelasttime step when a packet froff,_; arrives at its destination. Since
Fr_1isfiniteT < oc.

If phasek — 1 ends before tim&’, we are done sincg, < T < co. Otherwise,
all the packets present in the network at tifnéif any) were injected during phase
k — 1, and therefore they are all of tygék — 1) mod N). Therefore phask — 1
ends attimé’ and7, =T + 1 < oo. L]

Lemma 14: Phaseé: lasts at leask time steps. If the phase ends, then at the end
of phasek there are at leagt packets of typék mod N) present at their injection
point.

Proof: The proof is by induction on the phase numlier The base of the
induction is fork = 1. By definition, one type- packet is injected in node,,
and the adversary immediately switches to plzaseherefore this packet is still in
nodev; at the end of phask This phase lasts exactly one time step.

We now prove the claim fat > 1. Assume w.l.0.g. thgt(/k—1) mod N) = 0,
so by the induction hypothesis, at the end of phase1 there are at least — 1
type0 packets in nodey. To ease the presentation of the proof, we call these
packetged packets

We note that when phageends, at tim&},,; — 1, there are no typ@-packets
in the network. This means that at ledst- 1 red packets which were present
in the network at the end of time std — 1, must traverse edgg during time
interval [T, Ty+1 — 1]. Further, we note that at the end of time sfigp— 1, all
red packets are at nodg. Therefore, no red packet traverses edgeat time
stepT}, since red packets cannot reach this edge at this time. We conclude that
(Tk:—H — 1) — Tk >k —1, i.e.,

Thos1 —Tpp > ke - (1)

Therefore, the length of phagds at least.

We now argue that at the end of phasthere are at least type-1 packets at
vy. Observe that during phade the adversary inject$y ., — T} type-1 packets
at nodev;. We note that at the beginning of the first time step of the pHage,
there are no typé-packets in the network, therefore no typgpacket traverses
e; at Ty, 2. Therefore, all type- packets that leave nodg by the end of phase
k, must traverse edgg at a time step which is on the one hand in time interval
[Ty + 1, Tx+1 — 1], and on the other hand a time step not used by a red packet to
crosse;. As noted above no red packet can traversat 1, and when phasgé

2Recall that packets traverse edges in the first sub-step, while new packets are injected in the
second sub-step of a time step.

10

ends (attimé}; — 1) there are no red packets in the network (since the phase can
end only when there are no typgackets in the network). This means that at least
k — 1 red packets must traverse edgeduring time intervalTy + 1, Tj+1 — 1].
Thus, the number of typépackets that do not leave their injection node by time
Ty — 1is atleast

N > (Tk+1 — Tk) — maX{O, (Tk+1 —1- (Tk + 1) + 1) — (k — 1)} .
Using (1) we have,
N> (Toyr = Ti)) = (Topr — T — 1) = (K= 1)) = k.

U

We can now conclude the proof of Theorem 12.
Proof of Theorem 12: Assume towards a contradiction thats reliable. Then
it is stable and there exist8 < oo such that there are at moBt packets in the
network at any time. By Lemma 135,25 < oo. In particular, the number of
packets in the network at tinigs , 5 is at mostB. But, by Lemma 14, at the end of
phaseB + 1 there are at leadB + 1 packets of typé(B + 1) mod N) stored at
their injection point. A contradiction. Ll

We note that the adversary used in the proof of Theorem 12 ig-,@) ad-
versary withr = 1, b = 0. Therefore, for any integar and during any interval
of w time steps, the adversary injects at maspackets that require any given
edge. Thus, our negative results hold also agdinst) adversaries as considered
sometimes in the literature (e.g. [10]).

We now proceed to show that on any network that does not contain any simple
cycle of length greater tha?, there is a local control protocol that achieves reli-
ability whenever traffic allows reliability (i.e., for any sequence given byrah)
adversary for < 1).

Definition 15: We call a directed graph directed almost-acyclic grapii it has
no directed simple cycles of lengff > 2.

In particular, any directed acyclic graph (DAG) is a directed almost-acyclic graph
(hence the name). We show that all directed almost-acyclic graphs are universally
stable against all rate = 1 adversaries. We use in our proof the fact that all
packet paths are simple (and therefore no packet path uses both edges of a cycle).
Our proof is an extension of the proof of [10] that any directed acyclic graph is
universally stable against all rate= 1 adversaries.

Theorem 16: Let G be an arbitrary directed almost-acyclic graphan arbitrary
greedy protocol, and a sequence of packets given by(arb) adversary for < 1.
Then(G, o, P) is stable.

11

Proof: For the purpose of the proof we define the dual grépbf G.

Definition 17: Given a directed almost-acyclic gragh = (V, E), its dual di-
rected grapl&z’ = (V’, E') is defined as followsV’ = E, and for eacle;, ez € E
there is an edgée;,e;) € E' if and only if there is a simple path i which
includes the sequence;, e2) (i.e., if and only if(e1, e2) is a simple path irt7). If
there is an edgéey, e2) in G’ we say that; is a parentof es.

Observation 18: The dualG’ of a directed almost-acyclic graghis a DAG.

Proof: Let G = (V,FE) be a directed almost-acyclic graph, and (&t =
(V', E') be its dual graph.

First note that by constructio’ does not contain any self-loops.

Now, assume towards a contradiction that there is a cydl€,in
7l = (61762, ey €y ity e ,€N,€1), forN > 1,e; € V.

Recall that a node ifr’ corresponds to an edge il We can therefore denote
an edge onr’ as(ei = (Ui,ui), €11 = (Ui+1,ui+1)), for 1 <i< N -1, Vg, Uk €
V (and similarly(exy = (vn,un),e1 = (v1,u1))). By construction ofG" we
have thatu; = v;;1 foranyl < ¢ < N — 1 (and similarlyuy = v1). Therefore
the existence of the cycle’ in G’ implies the existence of a cyctein G where
™ = ('Ul,'U2, ce s Uiy Vigly .- - s UN-1, ’UN,’Ul).

Now consider any two consecutive nodes alangnd denote them andv’.
We claim thatv andv’ must be distinct nodes ilr. This is becausév,v’) is a
node onr’, and by construction o’ a self-loop inG is an isolated node 6.

Now consider any consecutive nodes along and denote them,v’, andv” .
We claim thaty andv” must be distinct nodes ivi. To see this observe that, v')
and(v’,v") are two consecutive nodes @h But, by construction ofs’ this means
that the path (denoted by its edges)v’), (v/,v") is asimplepath inG. Therefore,
v andv” cannot be the same node.

It follows that cycler in G does not contain simple cycles of lengtlor 2 as
a sub-path. Since is a cycle, it must contain a simple cycle of length at ISast
contradiction to the assumption tha@ltis a directed almost-acyclic graph. [

We now define a function on the edges‘fmaking use of the grap&’ in the
definition.

Definition 19: Given an(r, b) adversary, a directed almost-acyclic gragh= (V, E),
and its dual’ = (E’, V'), we define a function)(e), for anye € E. Fore € E
which is a source (i.e., has in-degr@ein the DAG G’ we definey(e) = b + 1.
Fore € E which is not a source i’ we definey(e) =b+ 1+ > (feyer V()

12

Note that since the dual graph is a DAGjs well defined.

We now show that any directed almost-acyclic graph is universally stable against
all rater = 1 adversaries.

For an edge of7, e € E, let Q;(e) denote the number of packets in the queue
at the tail of edge: at the end of time stefy and letR;(e) denote the number of
packets present in the network at the end of time staml have: on the remainder
of their path. We claim that, for all > 0 and alle € E,

Ri(e) <¢fe) .)

The theorem will then follow, sinc® ", ¥(e) gives an upper bound on the number
of packets in the network.

For an arbitrarye € E = V' andt > 0, lett’ < t be the last time step
beforet such that), (e) = 0 (note that such time exists since the system starts
with empty buffers at time = 0). SinceQy(e) = 0, it follows that Ry (e) <
> (t.e)err Bv(f). Sinceo is given by an(r, b) adversary for < 1, the number of
packets injected ifi¢’, t| and requires is at mostt — ¢’ + b. On the other hand?
is greedy, and since the queueecdf not empty at the end of each time step in the
interval (¢, t) at leastt — ¢’ — 1 packets cross during (¢’ + 1, ¢]. Thus at the end
of time step,

Rt(e)

IN

Ry(e) +t—t'+b—(t—t' —1)
< b+14+ > Ru(f). ®)

(fre)eE’

Denote byi, thelevelof e € V’, that we define to be the length of the longest path
leading toe in G’. The proof of Inequality (2) now proceeds by inductionlgn
The base of the induction féf = 0 is for a source: € V. Since it has no parents,
we havey(e) = b+ 1 and by (3)Ri(e) < b+ 1 =1)(e).

Considere € V' that has parents. Clearly the level@is bigger than that of
each of its parents. Thus, by the induction hypotheBjs,f) < (f) for each
parentf of e. By (3) we have

Rie) <b+14+ > (f)=1v(e).
(f.e)eE’

U

Now, we can use First-In-First-Out (FIF®Yo show that on directed almost-
acyclic graphs there is a protocol that achieves reliability whenever traffic allows

SFIFO is an online, local control protocol that serves the packets in each queue according to their
arrival time to the queue.

13

reliability. The relevant property of FIFO is the fact that FIFO does not starve any
packet. More formally, for every edge every packep that arrives to the queue

of e, eventually crosses Clearly, when a non-starving protocol is used, there are
no eternal packets in the system. Since FIFO is non-starving and greedy, together
with Theorem 16, we have that on directed almost-acyclic graphs FIFO achieves
reliability whenever the traffic allows reliability. Thus we have the following.

Theorem 20: For any directed almost-acyclic graph and any sequence of pack-
etso given by an(r, b) adversary for < 1, (G, 0, FIFO) is reliable.

4 Bounded delivery time

We now turn to consider the question of having bounded delivery time for all pack-
ets. That s, the requirement is that there is a fifite< oo such that each packet is
delivered withinM time steps from its injection time (rather than just being even-
tually delivered, as required by the reliability property). We first show that there
are sequences of packets given(byb) adversaries; = 1, b = 0, such that there

is no schedule with bounded delivery time. We then turn to the question of achiev-
ing bounded delivery time by protocols, whenever traffic allows bounded delivery
time.

4.1 Sequences that allow bounded delivery time

We start by considering the following question. For which sequeadeshere a
scheduleS such that{ G, o,) has bounded delivery time. The following observa-
tion in [10] implies that for any grapbr, the set of such sequences isubsenf
the set of sequences that allow stability.

Observation 21: If no packet is delayed more thdd time steps, then the maxi-
mum queue size is at moaf .

We now show that for any unidirectional cycle of length> 2, Cy, the set
of sequences for which there is a schedulg such that Cy, o, S) has bounded
delivery time is aproper subsebdf the set of sequences that allow stability. In
particular, on such graphs, there are sequences that allow stability, but there is no
finite M such that all packets can be delivered withihtime steps.

Theorem 22: For any unidirectional cycle of lengtV > 2, Cy, there are se-
quences that can be given by afr, b) adversaryr = 1, b = 0, such that there is
no scheduleS for which (C'y, o, S) has bounded delivery time.

14

We observe that the sequences guaranteed by Theorem 22 are such that, for any
integerw and for any interval ofv time steps, there are at mastpackets injected
in that time interval, that require any given edge (becausel andb = 0). Thus,
these sequence can be given(by) adversaries as considered sometimes in the
literature (e.g. [10]).

To prove Theorem 22, given a unidirectional cy€le, N > 2, we build the
following sequence. (A sequence built on similar ideas was used in [10] to show
the instability of FIFO on the cycle with = 1).

Denote the nodes of the cyalg to vy_1, and denote the edge emanating from
v; by e;. In any time step one packet of len@tledges is injected. A packet injected
at nodev; is calleda types packet The sequence is given in phases, starting with
phase numbet that starts at timé. The duration of each phage> 1 is k time
steps. In phasg, the packets that are injected are of tyfpenod N) (recall that
in each time step one packet is injected).

We now show that there is no schedule that maintains bounded delivery time
for this sequence. We start with the following lemma.

Lemma 23: Let S be a schedule such that'y, o, S) has bounded delivery time,
and let0 < M < oo be the maximum delivery time. Then for eagh> 0, at the
end of phasé/ + j there are at leagt packets of typé (M + j) mod N) stored
at their injection point.

Proof: The proof is by induction orj. The base of the induction is trivial for
j=0.

We now prove the claim foj > 0. LetT; be the first time step of phage
fori > 1. Assume w.l.o.g. that(M + j — 1) mod V) = 0, so by the induction
hypothesis, at the end of pha&&+ j — 1 (at the end of time stepy,4; — 1) there
are at leasj — 1 type-0 packets in node.

We note that the duration of phasdé + j is M + j > M, therefore all packets
present in the network when this phase begins must leave the network during this
phase. This means that at legagdype-0 packets which are stored & at the end
of time stepl’y/4; — 1, must traverse edgg by timeT/4 ;1. Note that no such
packet can traversg at time stedl,/; since they cannot reach this edge by this
time. Further note that no typepacket injected during phade + j can traverse
e1 attime stefd /45, since the first such packet is injected only at time Stgp_;

5. Now, to count the number of typepackets stored at; at the end of phase

“We note that while this sequence has similarities to the sequence used in the proof of Theorem
12, here we use a single fixed sequence, which is not a function of the action of any online protocol.

SRecall that packets traverse edges in the first sub-step, while new packets are injected in the
second sub-step of a time step.

15

M + j, we observe thad/ + j such packets are injected during this phase. For
such a packet not to be at at the end of the phase, it must trave¢seBut it can
traversee; only during time intervalTy,4; + 1, Th4;41 — 1], and at time steps
where no type packet traverses this edge. We have that the number ofltype-
packets thatlo notleave their injection node by tiniEy, ;.1 is at least

Nuvtj 2 Tasjar — Ty — max{0, Tyryjyr — 1 — (T +1) +1— 5}

Since the duration of phagé +j is M +j, we havel yr4j1—Tv4+; = M+5 > 7,
and therefore,

Natj 2 Tt = Ty — (Tajor =Ty —1—j) =4+ 1.

U

We now conclude the proof of the main theorem of this section.
Proof of Theorem 22: Leto be as defined above. Assume towards a contradic-
tion that there exists a schedulesuch that{ Cy, o, S) has bounded delivery time,
and letM < oo be the maximum delivery time. Lgt= M + 1. By Lemma 23,
the number of typé{ M/ + j) mod N) packets at their injection point at the end of
phaseM + j =2M + 1is at leastj = M + 1. At this time, again by Lemma 23,
all of these packets are in the same queue at egge) moq n- A contradiction
to Observation 21.]

4.2 Achieving bounded delivery time by protocols

Since we saw thatot all sequences that allow stability (and reliability), also allow
bounded delivery time, the natural question that arises is whether we can devise
a protocol that guarantees bounded delivery time whenever traffic allows bounded
delivery time. As noted in Observation 21 bounded delivery time implies stability.

To consider the sequences of packets for which it could at all be possible to
achieve bounded delivery time, we define Hmnded delivery time adversaag
follows.

Definition 24: A bounded delivery time adversary with paramefgrcalled the
maximum delay, is an adversary that can inject any sequence of packets as long
as it can itself deliver each packet withihtime steps after the packet'’s injection
time.

Observation 25: A bounded delivery time adversary with maximum defayis
also an(r, b) adversary withr = 1 andb = D.

16

Proof: We claim that any sequence of packets injected by a bounded delivery
time adversary with parametéris such that for any edge the number of packets
that usec that are injected in any time intervigh , ¢2] is at most(ta—t¢;)+D. To see

that observe that if for some edgand some intervalt, t3] the adversary injects
more than(t, — t1) + D packets that use then at the end of time stepthere are
more tharD packets requiring in the network. At least one of these packets will
not be delivered within the nesf? time steps, and therefore such sequence cannot
be injected by a bounded delivery time adversary with paranigter Ll

We note that if one employs FIFO, then when stability is achieved, bounded
delivery time is guaranteed. Therefore, using Observation 25 and Theorem 16,
we have that FIFO on a directed almost-acyclic graph has bounded delivery time
against any bounded delivery time adversary. Thus we have a class of network
topologies for which, using FIFO, bounded delivery time is achieved whenever
possible.

For general topologies we define a class of adversaries that is somewhat weaker
than the class of all bounded delivery time adversaries, and design a protocol that
achieves bounded delivery time against any adversary in this class.

Let A, (t1,t2) be the number of packets injected during time intefva)¢o]
and use path. Let A, (t) = A, (0,1).

Definition 26: An adversaryA is afrequent adversarywith parameters > 0,
called the period, and > 0, called the peak, if for each path one of the following
holds.

e AdversaryA injects at least one packet that useis eachr time steps. That
is, for anyty — t1 > 7, Ax(t1,t2) > 0.

e AdversaryA injects at most packets that use, overall. That is, for alk,
Ax(t) < z.

We call the paths of the first kinlequent pathsand the paths of the second kind
rare paths

We note that this class of adversaries is a generalization of the class of “path-
wise constant arrival rates” adversaries as defined by Gamarnik [14].

Definition 27: We say that the network hasith-wise constant arrival rataégfor
each pathr there exists; > 0, such that, for somé&, and for allt > 0

Ar(t) <7t + b 4
and in addition, for som&_ > 0 and for allt > 0

Aw(t) > rat — bér) (5)

17

We consider here path-wise constant arrival rates adversaries that are, &jso
adversaries for < 1 (contrary to [14] which only considers adversaries of rate
r < 1). By simple calculation it is easy to see that a path-wise constant arrival
rates adversary is also a frequent adversary, by setting the appropriate parameters
7 andz for the the frequent adversary. For a pathf r, = 0 then the path is a
rare path, and if; > 0 then the path is a frequent path. We also note that there
are sequences of packets that can be injected by a frequent adversary but not by a
path-wise constant arrival rates adversary, for example, a sequence where a packet
is injected every second time step, and in addition a packet is injected every time
stepn?, forn > 1.

We now present an online, local control protocol ERSt{mated-Rare Firgt
that has bounded delivery time on any topology and for any sequence given by a
bounded delivery time adversary that is also a frequent adversary.

We first give a general description of the protocol and an intuitive idea why
it works. First observe that on frequent paths, the protocol FTG will guarantee
bounded delivery time. Therefore, if we knew for each patthether it is frequent
or rare, we could give priority to the packets of the rare paths and apply FTG to
the packets of the frequent paths. However, we do not have a way to distinguish
a priori between frequent and rare paths. The protocol therefore estimates at any
point in time, and for each path, whether the path is rare or frequent, based on the
number of packets injected on that path until that time. This is done at the source
node of each path, and as we prove in the sequel, this can be done in such a way
that the estimation stabilizes to the correct value in finite time. If the protocol was
centralized, this would be enough. However, since we build a distributed protocol,
we use control packets in order to convey changes in the estimation to the nodes
along the path. In the sequel, we show how this can be done in such a way that the
control packets do not overload the network, and do not interfere with the bounded
delivery time property.

Protocol ERF

The protocol labels all the packets wittpgority label. Each packet is labeled as
eitherhigh priority, or low priority. At each time step, and for each edgeERF
selects a packet to send acresss follows:

e If there is any high priority packet in the queue«ERF sends an arbitrary
high priority packet.

e Otherwise, ERF selects the packet to send from the quea@adording to
the Furthest-To-Go (FTG) rule (i.e., the packet that has the longest remaining
path to its destination is selected). Ties are broken according to the FIFO rule

18

(i.e., according to the order of arrival to the queue).

We now describe how the priority labels are managed. In order to manage
the labels, the protocol creates at tinoesitrol packetgo which it itself assigns a
path and introduces them to a queue at their creation node. These packets are then
forwarded by the protocol together with the data pacRets

At the tail of each edge, for each simple path such that is the first edge on
7, ERF keeps the curresstimatiorfor whetherr is a frequent path or a rare path.
This estimation is in fact a function of . (¢). At any timet, ERF estimates that
is a rare path ifd, (t) < [t'/2|,7 and that it is a frequent path, otherwise. When a
packet is injected, itis labeled as high priority if the path for this packet is estimated
at the injection time to be rare; the packet is labeled low priority, otherwise.

When the estimation far changes from a frequent path to a rare path, ERF:

1. Labels as high priority all packets (if any) in the queue tiat user.

2. Creates a new control packet with the path, since the last creation of a
control packet onr, the adversary injected at least one new packet that uses
. All control packets are labeled high priority.

When a control packet that uses patlrrives at some node, ERF labels high
priority all packets present in this node that use the samerpath

We now proceed to prove the properties of ERF. The following is immediate
from the definition of ERF.

Observation 28: For any timet and any pathr, the number of control packets
created by ERF on path by time¢ is at most the number of packets injected by
timet on.

The following claims shows that ERF eventually correctly identifies each fre-
guent path as such, and each rare path as such.

Claim 29: Let A be a frequent adversary, and febe its period. Then for any
t > 72 and for any frequent path, at timet ERF correctly estimates to be a
frequent path. Further, no control packet that uséscreated by ERF at time

Proof: Consider a frequent path A injects at least one packet that uses the
pathr in eachr time steps. Therefore, the total number of packets that use the path
7 injected by the adversary lyis at leastA(¢t) > [t/7]. Thus for anyt > 72,

A (t) > [t'/?| and ERF estimates to be a frequent path. O

8In this sense, the protocol is not greedy, since sometimes it sends a control packet and not a
packet injected by the adversary.
"Any other functionf (t) = o(t) could also be used instead.

19

Claim 30: Let A be a frequent adversary, and tebe its peak. Then for any
t > (z + 1)2, and for any rare path, at timet ERF correctly estimates to be a
rare path.

Proof: Sincer is a rare path, there are at maspackets ever injected on.
Therefore fort > (z + 1)% we haveA,(t) < z < [t'/2]. Thus, fort > (z + 1)?,
ERF correctly estimates to be a rare path. Ll

In what follows we assume a given arbitrary directed gr&pk- (V, E), and
a given arbitrary packet sequenecénjected by a bounded delivery time adversary
with maximum delayD, which is also a frequent adversary with periodnd peak
z. We further assume that the network is controlled by ERF. We start by proving
the stability of the system. This property will be later used to prove that the system
has bounded delivery time. In what follows we do not attempt to prove tight bounds
on the number of packets in the network or on the delivery times of the packets.
Rather, we only prove the existence of finite bounds for these quantities, which
yields the required properties of stability and bounded delivery time.

Lemma 31: The overall number of packets that are ever labeled high priority is at
mostH = O(|E|4(7? + D + z)).

Proof: First consider a frequent path By Claim 29, at anyt > 72 ERF
correctly estimates to be a frequent path. Therefore all packets thatuaed are
injected att > 72 are labeled low priority at injection. Furthermore, by Claim 29
no control packet that usesis created at any > 2. Since control packets have
priority over low priority packets, for a control packgbn = to arrive to a node
where there is a low priority packgton 7, p must be injected beforgis created.
Therefore no packet aof injected afterr? can ever be labeled high priority. We
conclude that all packets that use pathnd are at some time labeled high priority
must be injected by time? (or created by this time if they are control packets).
Using Observation 25 the adversary can inject at Mgt + D) packets by,
and as already noted, ERF may create at most as many control packets.

Now consider a rare path The adversary injects at maspackets that use,
and ERF can create at most as many control packets that use

Summing for both types of paths, we have that the total number of packets ever
labeled high priority is at most. < 2|E|(72+D)+2Nyz, whereNj is the number
of rare paths ir. Note thatV, < |E|°. O

Lemma 32: For any given timet, the number of packets labeled low priority
present in the network atis at mostC = O(|E|* (12 + D + 2)).

20

Proof: ~ We base our proof technique on the proof in [13] for the stability of
Furthest-To-Go, with several adaptations. We begin by introducing the following
notations, which deal with the low priority packets residing in the buffer of an edge
e at a certain time.

Let X.(¢) denote the set of low priority packets which are stored at the buffer
of edgee at the end of time step Let L.(p) denote the number of edges which
a packetp, stored at the buffer of edge must still traverse before reaching its
destination. LetX’(¢) be the following set:

X(t) = {plp € Xc(t) andL¢(p) > i} .

By the definition of ERF, whenever there are no high priority packets in the buffer
of e at the end of time step, and X.(¢) # 0, then at timet + 1 the packefp,
p € Xc(t), that is forwarded om is such that

vp' € Xe(t), Le(p) = Le(p,) .

Now define the following sequence of constants:

=40 if i > d
Tk +D+HA41) if1<i<d

Note, for later use, thatfar <i¢ <d, k; = (D+ H + 1)\E\%.
The lemma will follow from the following claim.

Claim 33: For all ¢, k; > >, |X.(¢)|. Thatis, the number of low priority
packets in the network at any timtewhich are at least hops away from their
destinations is at mogt.

Proof: We prove the claim by decreasing induction onSince there are no
simple paths of length longer thahin G, the claim trivially holds for al > d

at all times. Assume that the claim holds for ahy> 4, and consider a certain
edgee € E. Lett > 0 such thatX!(t) # (), and denote by the latest time prior

to + which satisfiesX’(#') = 0 (note that such time exists since the system starts
with empty buffers at time = 0). We note that ERF never changes the packet
label from high priority to low priority. Therefore the packets &f(¢) can be
partitioned into the following two disjoint sets.

1. Low priority packets which are injected into the network no earlier than time
t' + 1. Using Observation 25, we can bound the number of these packets by
(t—t)+D.

21

2. Low priority packets which were already active in the system at time
Sincet’ is chosen such thaX(¢) = (), we conclude that at the end of
time stept’ these packets are all stored in buffers other than that Bjpon
arrival ate’s buffer (at some time betweehandt), these packets still require
at leasti hops. We thus conclude that at the end of time stéjpey are still
at least + 1 hops away from their destination. By the induction hypothesis,
we can bound the number of these packetghy.

Also, by the choice of’, we know that at the end of each of the time steps in the
interval (¢, t) the buffer ofe contains at least one low priority packet requiring
at leasti hops. By the definition of ERF, either a high priority packet, or a low
priority packet requiring at leagthops, crosses at each of the time steps in the
interval (¢’ + 1, ¢].

Since by Lemma 31 at mo#t packets are ever labeled high priority, we have
that

IXit)] < (t—t)+D+kip1—(t—t —1—H)

< ki +D+1+H,

and therefore,

Z IXi(t)| < |E|(kiy1 +D+14+H) =k; .
eck
]

The number of low priority packets in the network at a given titrean be
expressed a¥_, 5 | X2 (¢)|. Therefore by Claim 33 we have that the number of
low priority packets present in the network at any given time is at most

L<k =O0(EP (> +D+2).

U

Using Lemmas 32 and 31, we can now bound the number of packets (of all
types) present in the network at any given time to be at astt = O(|E|??(m%+
D + z)). Thus(G, o0, ERF) is stable. We now proceed to consider the delivery
times of the packets.

Claim 34: Let p be a packet labeled at tinteas high priority. Packet leaves the
network by timet + Hd.

Proof: Recall that ERF always sends a high priority packet if present. Therefore
beginning at time stefy and untilp is absorbed in its destination node, at least one

22

high priority packet will cross some edge in each time step. By Lemma 31 there
is a finite numbef{ of high priority packets. Each of them has to cross at most
edges to arrive at its destination. Therefprarrives to its destination in at most
‘Hd time steps front. Ll

Since control packets are labeled high priority at creation, we have the follow-
ing.
Corollary 35: Every control packet leaves the network witltifal time steps after
its creation.

We conclude this section with the following theorem.

Theorem 36: (G, o, ERF) has bounded delivery tim&/ = O(z2 + |E|*7 (7% +
D + z)).

Proof: First, consider a rare path. Let p be a packet using path that is
injected at timet,,. There are two cases foy.

1. If att, the estimation forr was rarep is labeled high priority and by Claim
34, p leaves the network b, + Hd.

2. If at timet, the estimation forr was wrong (i.e.;r was estimated to be a
frequent path), it follows from Claim 30 thag < (z + 1)2. Using Claim 30
again, we have that the estimation fobecomes accurate at some time
suchthat, <t, < (z+ 1)2. Thus, ifp is still at its injection point at the end
of time stept,, p is labeled high priority and it arrives at its destination by
tq + Hd. Otherwise (ifp leaves its injection point by timg) at timet, ERF
creates a control packetfor . By Corollary 35,q arrives to its destination
by timet, +Hd. Therefore, eithep leaves the network by, +Hd, oritisin
a node along its path whegreaches that node. Packewill then be labeled
high priority, and will leave the network within anoth&fd time steps. In
all, p arrives at its destination by + 27Hd.

We conclude that the delivery time for packethat uses a rare path is at most
My < (2 +1)% + 2Hd.

Now consider a frequent path. No packet ofr changes its label to high
priority after timer2? 4 Hd. This is because by Claim 29 after timé no such
packet is labeled high priority at its injection point, and by Corollary 35 after time
72 + Hd there are no control packets anin the network. Therefore, by Claim
34, all high priority packets that use the patHeave the network by tim& <
72 + 2Hd.

Consider the system at the end of time step T. All packets of a frequent
path present in the network atmust be low priority packets. They are served

23

according to FTG with ties broken by FIFO. Since all of them use the same path,
they move in the network in FIFO order among themselves. By Lemma 32, the
total number of low priority packets in the network at any time is at ndosAfter
time T, at least one low priority packet that uses the patis injected everyr
time steps, and no low priority packets become high priority. Therefore, each such
packet must leave the network withitf time steps, otherwise there would be more
than £ low priority packets in the network. A packet that uses a frequent path is
therefore delivered withid4, < T 4+ 7L time steps.

We have that the maximum delivery time in the system is

M = max(MO,Ml)
< max((z+1)% 4+ 2Hd, 7% + 2Hd + 7L)
O(Z2+ |EPYr(r2 + D +2)) .

5 Conclusions and open problems

In this paper we study the problems of having a finite upper bound on the deliv-
ery times of all packets, and of even only eventually delivering all packets while
maintaining stability. We study both the mere existence of schedules (generated
by the adversary or by an offline scheduler) that achieve these requirements, and
the existence of online protocols that achieve these requirements whenever such a
schedule exists.

Among other things, we show that there exist sequences of packets injected by
(1,b) adversaries, such that there is no finltewith a schedule that delivers all
packets within) times steps from their injection times. We thus coin the term
“bounded delivery time adversary” for the adversary that is committed to be able
itself to schedule the injected packets with some finite upper bound on the delivery
times of all packets. We show a class of network topologies and a protocol that
maintains bounded delivery time, on this class of topologies, against any bounded
delivery time adversary. We further give a protocol that achieves bounded delivery
time, on any network topology, against a class of adversaries somewhat weaker
than the class of all bounded delivery time adversaries.

In this paper we answer open questions posed by Gamarnik and by Borodin et
al. [13, 10]. Our work leaves however open the question whether there exists a
protocol that achieves bounded delivery time, on any network topology, against all
bounded delivery time adversaries.

24

References

[1] M. Adler and A. Ro€n, Tight Bounds for the Performance of Longest-In-
System on DAGSs, IProc. of 19th International Symposium on Theoretical
Aspects of Computer Scien&TACS), pp. 88-89, 2002.

[2] W. Aiello, E. Kushilevitz, R. Ostrovsky, A. R@n. Adaptive packet Routing
for Bursty Adversarial TrafficJournal of Computer and System Sciences
Vol. 60, No. 3, pp. 482-509, 2000.

[3] C.Alvarez, M.J. Blesa, M.J. Serna, Universal Stability of Undirected Graphs
in the Adversarial Queueing Model. Proc. of 14th Ann. ACM Symposium
on Parallel Algorithms and ArchitecturdSPAA), pp. 183-197, 2002

[4] M. Andrews, Instability of FIFO in Session Oriented Networks.Rroc.
of the 11th Ann. ACM-SIAM Symposium on Discrete Algorit(BQDA),
pp.440-447, 2000.

[5] M. Andrews, B. Awerbuch, A. Feidndez, J. Kleinberg, T. Leighton, and
Z. Liu, Universal Stability Results for Greedy Contention-Resolution Proto-
cols, JACM 48(1), pp. 39-69, 2001.

[6] M. Andrews, A. Fernandez, A. Goel, and L. Zhang. Source Routing and
Scheduling in Packet Networks. Rroc. of the 42nd Ann. IEEE Symposium
on Foundations of Computer Scien€¢CS), pp. 168-177, 2001

[7] M. Andrews, and L. Zhang, The Effects of Temporary Sessions on Network
PerformanceSIAM Jour. on Computing/ol. 33, No. 3, pp. 659-673, 2004.

[8] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler, Simple Rout-
ing Strategies for Adversarial Systems Rroc. of the 42nd Ann. IEEE Sym-
posium on Foundations of Computer Scie(l€®CS), pp. 158-167, 2001.

[9] R. Bhattacharjee, A. Goel, and Z. Lotker, Instability of FIFO at Arbitrarily
Low Rates in the Adversarial Queueing Mod8IAM Jour. on Computing
\Vol. 34, No. 2, pp. 318-332, 2005.

[10] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Wiliamson, Adver-
sarial Queuing Theory, JACM 48(1), pp. 13-38, 2001.

[11] A. Borodin, R. Ostrovsky, and Y. Rabani, Stability Preserving Transforma-
tions: Packet Routing Networks with Edge Capacities and SpeeBsotrof
the 12th Ann. ACM-SIAM Symposium on Discrete Algorit(B@DA), pp.
601-610, 2001.

25

[12] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis, and D. Thi-
likos, Stability and non-Stability of the FIFO Protocol. Rmoc. of 13th Ann.
ACM Symposium on Parallel Algorithms and Architectui@BAA), pp. 48-

52, 2001.

[13] D. Gamarnik, Stability of Adaptive and non-Adaptive Packet Routing Poli-
cies in Adversarial Queuing Networks. Rroc. of the 31st Ann. ACM Sym-
posium on Theory of Computif§TOC), pp. 206-214, 1999.

[14] D. Gamarnik, Using Fluid Models to Prove Stability of Adversarial Queueing
Networks. INIEEE Transactions on Automatic Contrdlol. 45, No. 4, pp.
741-747, 2000.

[15] A. Goel. Stability of Networks and Protocols in the Adversarial Queueing
Model for Packet RoutingNetworks 37(4):219-224, 2001

[16] D. Koukopoulos, S. E. Nikoletseas, P. G. Spirakis, The Range of Stability
for Heterogeneous and FIFO Queueing NetwoBEdectronic Colloquium on
Computational ComplexitfeCCC TR01-099), 2001.

[17] Z. Lotker, B. Patt-Shamir, and A. Res, New Stability Results for Adversar-
ial Queuing.SIAM Jour. on Computing/ol. 33, No. 2, pp. 286-303, 2004.

[18] A. Ro£n, A Note on Models for Non-Probabilistic Analysis of Packet-
Switching NetworksIPL, Vol. 84, No. 5, pp. 237-240, 2002.

26

