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Abstract

We consider packet networks and make use of the “adversarial queuing
theory” model [10]. We are interested in the question of guaranteeing that all
packets are actually delivered to destination, and of having an upper bound
on the delivery times of all packets. Whether this is possible against all ad-
versarial queuing theory rate-1 adversaries was previously posed as an open
question [13, 10].

Among other things, we give a queuing policy that guarantees bounded
delivery time whenever the rate-1 adversary injects a sequence of packets
for which there exists a schedule with a finite upper bound on the delivery
times of all packets, and adheres to certain additional conditions. On the
negative side we show that there exist rate-1 sequences of packets for which
there is no schedule with a finite upper bound on the delivery times of all
packets. We thus answer an open question posed by Gamarnik [13]. We
further show that deliveringall packets while maintaining stability (we coin
the term “reliability” for this property) can be done by an offline scheduler
whenever the injection of packets is done at rate of at most1. But, on the
other hand, we also show that there is no online protocol (even centralized)
that can achieve that property against all rate-1 adversaries. We thus answer
an open question of Borodin et al. [10].

∗An early version of this paper appeared in the proceedings of the 16th SPAA, 2004.
†Dept. of Computer Science, Technion, Haifa 32000, Israel. e-mail: adiro@cs.technion.ac.il.
‡Dept. of Computer Science, Technion, Haifa 32000, Israel. e-mail: misha@cpan.org.

0



1 Introduction

The analysis of packet networks under adversarial injection of traffic received in-
creasing attention in recent years (see e.g., [10, 5, 15, 3, 13, 14, 4, 12, 17, 9, 11]).
Much of this work makes use of the model of “adversarial queuing theory”, in-
troduced by Borodin et al. [10]. This model can be briefly described as follows.
Time proceeds in discrete steps. In each step, packets are injected into the net-
work with their routes. Each packet traverses its respective route hop by hop in
a store-and-forward manner. In each time step, one packet may cross each link,
and all other packets waiting for that link are stored in a queue at the tail of that
link. The behavior of the system is determined by the employedqueuing policy,
which chooses, at each time step, for each link, which of the competing packets
is forwarded over that link. In the framework of adversarial queuing theory, the
injection of packets into the network is modeled as being done by anadversary.
The adversary is characterized by arate at which packets are injected. Intuitively,
the rate of injection is said to ber if for every link e in the network, the average
number of packets requiringe injected by the adversary per time step, is at mostr
(a formal definition of the model is given in Section 2).

When analyzing the system one is interested in two main questions. Whether
upper bounds on the queue sizes can be given, and whether upper bounds on the
delivery times (a.k.a. delays) of the packets can be given. In particular, the ques-
tion of stability received considerable attention in the literature. The system is said
to be stable when there is a finite upper bound on the size of the queues, as opposed
to their sizes growing to infinity as time proceeds. A considerable number of im-
portant results have been obtained in analyzing under what conditions stability can
be achieved (see e.g., [10, 5, 15, 13, 12, 9]). The question of upper bounds on
packet delays received less of direct attention, and results pertaining to this quan-
tity were usually given in conjunction with results on queue sizes. In fact, when
the injection rate into the network is strictly less than1, and a greedy (i.e., work
conserving) queuing policy is used, stability implies certain bounds on the delay of
the packets [10, 5]. Greedy protocols that achieve stability on any network topol-
ogy when the injection rate is bounded away from1 (i.e., r < 1) are known (e.g.,
Longest-In-System) [5], and thus upper bounds on packet delays can be given in
this case. However, the resulting bounds depend on the injection rate, and grow as

1
1−r grows. Gamarnik showed that there are greedy protocols that achieve stability
as long as the injection rate does not exceed the link capacity (i.e., for any injection
rater ≤ 1) [13], with bounds on queue size that do not depend on the injection rate
r. However, all protocols that are presently known to preserve stability against any
rater ≤ 1 adversary suffer from the drawback that they cannot guarantee that all
packets eventually arrive to their destinations (i.e., some packets may be left unde-
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livered forever). In fact, Gamarnik [13] gave a scenario with injection rate1, such
that when applying the Nearest-To-Origin protocol some packets never reach their
destinations (This scenario can be modified to suit the similar Furthest-To-Go pro-
tocol). Clearly, guaranteeing that all packets are delivered, and preferably with an
upper bound on the delivery times of all packets, is a desirable property. Gamarnik
thus posed the open problem“whether there exists a policy with bounded delivery
time for every packet whenr = 1” [13]. Borodin et al. slightly rephrased the
question and asked“if there is a scheduling rule ... that can guarantee bounded or
at least finite delivery time with respect to deterministic rate 1 adversaries”[10].
This is the starting point of our work.

We show that there are sequences of packets injected at rater = 1 such that
there is no finiteM such that all packets can be delivered (even by a centralized,
clairvoyant scheduler) withinM time steps from their injection time. Therefore,
a protocol as suggested in the open question of Gamarnik does not exist, and we
answer in the negative his question. We then turn to the question whether there
is a protocol that can deliverall packets to their destinations (not leaving in the
network any packet undelivered forever) wheneverr ≤ 1. To treat this question we
coin, in parallel to the term stability, the termreliability. Reliability is a stronger
notion than stability, guaranteeing that all packets are actually delivered, while
stability is maintained. We first show that for any sequence of packets injected at
rater ≤ 1, an offline scheduler can maintain reliability. It follows that a sequence
of packets has a schedule that maintains reliability if and only if it has a schedule
that maintains stability (those sequences characterized by [13, 18]). But we also
show that, as opposed to stability, there are network topologies on which there
is no online protocol (even centralized) that achieves reliability against all rate-1
adversaries. Thus we answer in the negative the open question posed by Borodin et
al. [10], whether stability and finite delivery times for all packets can be achieved
against all adversaries of rater = 1.1

As discussed above, we show that for some sequences of packets injected at
rater = 1, it is impossible (even by an offline scheduler) to have a finite upper
bound on the delivery times of all packets. That is, an adversary that is committed
to have itself a schedule for the packets such that there is some finite bound on the
delivery times of all packets, is a weaker adversary than the rate-1 adversary. We
call this adversary abounded delivery time adversary. The aim is thus to design
protocols that will have a finite upper bound on the delivery times of all packets
against such adversaries. We show a class of network topologies, and a protocol
that on this class of topologies achieves bounded delivery time against any bounded

1We note that it is easy to guarantee that all packets are delivered if stability is not in question,
e.g., by using FIFO or LIS.
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delivery time adversary. We then design a new protocol, calledEstimated-Rare
First (ERF), thaton any network topologyachieves bounded delivery time against
any adversary in a class that is somewhat weaker than the class of all bounded
delivery time adversaries.

Summary of results First, we coin the termreliability to be the property that all
packets are delivered to their destinations while stability is maintained (Definition
3). We give the following results concerning reliability.

1. We characterize the sequences of packets that allow reliability (i.e., sequences
for which there exists a schedule that maintains reliability). Specifically, we
show that the set of sequences that allow reliability is equal to the set of
sequences that can be injected by rate1 adversaries (Theorem 5).

2. We characterize the set of network topologies on which there is any online
protocol (centralized or not) which achieves reliability whenever reliability
can be maintained by an offline scheduler (i.e., whenever the adversary in-
jects a sequence of packets for which reliability can be maintained). We
show that on networks that contain simple cycles of lengthN > 2 there is
no online protocol (even centralized) that achieves reliability against all rate
r ≤ 1 adversaries (Theorem 12). And for networks not containing simple
cycles of lengthN > 2 we demonstrate a protocol that achieves reliability
against all rater ≤ 1 adversaries (Theorem 20).

For bounded delivery timewe give the following results.

1. We show that (on certain networks) the set of sequences of packets for which
there exists a schedule with a finite upper bound on the delivery times of all
packets, is aproper subsetof the set of sequences given by rater ≤ 1 ad-
versaries (Theorem 22 and Observation 21). We thus coin the termbounded
delivery time adversaryfor the adversary which is committed to have itself
such a schedule for the injected packets (Definition 24).

2. We give a set of network topologies (networks that do not contain simple
cycles of lengthN > 2) for which there is a protocol that achieves bounded
delivery time against any bounded delivery time adversary, and demonstrate
such a protocol. We design a new protocol, calledEstimated-Rare First
(ERF), which achieves bounded delivery time,on any network topology,
whenever the sequence of packets is given by a bounded delivery time ad-
versary, which is also a “frequent adversary”, a term that we define in the
sequel (Theorem 36).
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Organization The rest of the paper is organized as follows. In Section 2 we
formally define the model and give several other preliminary definitions. In Section
3 we give our results for reliability, and in Section 4 we give our results for bounded
delivery time. We close the paper in Section 5 with a discussion and open problems.

2 Model and Preliminaries

We model the network as a directed graphG = (V,E), where the nodes repre-
sent switches, and the edges represent communication links. We denote byd the
length of the longest simple path inG. At the tail of each edge there is abuffer(we
sometimes use the termqueueinstead). Packets of uniform size areinjectedinto
the network over time with a prescribedsimple pathto follow from their respective
source to their respective destination. The system is synchronous, and time pro-
ceeds indiscrete time stepst ∈ {0, 1, 2, 3, . . .}. Each time step is divided into two
sub-steps. In the first sub-step, for each edge, at most one packet is extracted from
the buffer associated with the edge and is sent across that edge. In the second sub-
step each packet sent in the first sub-step arrives to the node on the other end of the
edge; the packet is absorbed (i.e., eliminated from the network) if this node is its
destination; otherwise, the packet is placed in the buffer at the tail of the next edge
on its path. In addition, new packets are injected into the network in the second
sub-step, and are then placed in the buffer at the tail of the first edge on their path.
We assume that at timet = 0 the buffers of all edges are empty; then the adversary
injects packets into the network starting at timet = 1. Our proofs will go through
with minor changes for the case that the system may start with non-empty buffers.

A protocol is an online, and typically local control, algorithm which, at each
time stept, and for each edgee, selects a packet to cross edgee from among the
packets in the buffer ofe (or decides to leave the link idle). A protocol is said to be
greedyif it does not leave an edgee idle unless the buffer ofe is empty.

The injection of packets into the network is modeled as being done by anad-
versary. Following [10, 5], we use the following parameterized definition for the
adversary.

Definition 1: LetA be an adversary.A is called an(r, b) adversary, forr ≥ 0 and
b ≥ 0, if for each edgee ∈ E and for each time intervalI = (t1, t2], the number of
packets injected byA duringI with paths that includee is at mostr(t2 − t1) + b.

For a given sequence of packets,σ, ascheduleis a specification for the movement
of all the packets inσ. A schedule isvalid if (1) at most one packet is sent across
each edge in each time step; (2) a packet is sent across any given edge on its path
only once, and only after it arrives to the tail of that edge, according to the same
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schedule. We note that a protocol generates, in an online and typically local control
manner, a schedule for the injected packets.

We define anetwork systemas the tuple(G, σ, S) whereG is a directed graph,
σ a sequence of packets, andS a valid schedule forσ. Following [10] we define
the notion ofstabilityas follows.

Definition 2: A network system(G, σ, S) is stableif there existsB < ∞ such
that the number of packets in the network at any given time is at mostB.

As noted by Gamarnik [13] even when a system is stable some packets may stay
in the network indefinitely, and never reach their destinations. We therefore define
the notions of eternal packets and of reliability, as follows.

Definition 3: Let (G, σ, S) be a network system. A packetp is eternalin (G, σ, S)
if it never arrives to its destination in(G, σ, S). The system(G, σ, S) is said to be
reliable if it is stable and there are no eternal packets in(G, σ, S).

We further give the following definition for bounded delivery time, which is a
stronger notion than reliability.

Definition 4: A network system(G, σ, S) hasbounded delivery timeif there exists
M <∞ such that each packet arrives in(G, σ, S) to its destination withinM time
steps from its injection time. We callM themaximum delivery time.

In the sequel we sometimes say that asequenceσ allows reliability (resp. allows
bounded delivery time). By this we mean that there exists a scheduleS such that
the network system(G, σ, S) is reliable (resp. has bounded delivery time). We
also sometimes abuse notation and for a protocolP write (G, σ, P ), instead of
(G, σ, SP (σ)), whereSP (σ) is the schedule generated byP for σ. We further say
that a graphG is universally stable against all rater = 1 adversaries, if for anyσ
given by a(1, b) adversary, and any greedy protocolP , (G, σ, P ) is stable.

3 Reliability

We now study reliability. We start with the following question: for which se-
quences of packets is there a schedule that actually deliversall packets, while us-
ing buffers of bounded size, i.e., while maintaining stability. We then study the
question of the existence of a protocol that can generate such a schedule, whenever
such a schedule exists.
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3.1 Sequences that allow reliability

In this section we show that the set of sequences that allow reliability is equal to the
set of sequences that allow stability. This set, in turn, is known to be equal to the
set of sequences that can be injected by(1, b) adversaries [13, 18]. More formally,
we show the following theorem.

Theorem 5: A sequenceσ has a reliable schedule if and only if it has a stable
schedule.

One direction of the proof is trivial. To prove the second direction we start with the
following.

Observation 6: Let (G, σ, S) be a stable system. The number of eternal packets
in (G, σ, S) is at mostB, whereB is the maximum number of packets present at
any given time in(G, σ, S).

Proof: Assume towards a contradiction that there are more thanB eternal pack-
ets in (G, σ, S). Let t be the time step whenB + 1 eternal packets have been
injected. Since an eternal packet never arrives to its destination, allB + 1 eternal
packets are in the network at timet. A contradiction.

We now build forσ a scheduleS′ that maintains reliability, based on (any)
scheduleS such that(G, σ, S) is stable. Informally,S′ will mimic S until all
eternal packets of(G, σ, S) stop moving in(G, σ, S); then it will deliver all the
eternal packets while blocking all other packets in the network; and then resume
the behavior ofS, delayed by a certain number of time steps. To defineS′ formally,
letE be the set of eternal packets in(G, σ, S). Observe that for every eternal packet
p ∈ E there is a time stepTp <∞ such that afterTp − 1 p does not cross any edge
in (G, σ, S). If p does not cross any edge at all in(G, σ, S) we defineTp such that
Tp − 1 is the injection time ofp. Let T = maxp∈E Tp, so that atT all eternal
packets are already injected, and starting atT no eternal packet crosses an edge in
(G, σ, S). Note thatT <∞. LetD = |E| · d.

The scheduleS′ is defined as follows. If(G, σ, S) is reliable itself, thenS′ is
equal toS. In what follows we assume that(G, σ, S) is not reliable, and we build
a scheduleS′ which is different fromS.

1. For0 ≤ t < T , S′ is identical toS. That is, at any0 ≤ t < T , S′ sends
across each edgee ∈ E the same packet that crosses the edgee at timet in
(G, σ, S) .

2. ForT ≤ t < T +D, S′ schedules the packets inE according to an arbitrary
greedy schedule. No other packets are sent across any edge in the network.
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3. ForT +D ≤ t, for each edgee and timet, S′ sends a packetp acrosse at t
if and only if S sends the packetp acrosse at t−D.

We now give the following theorem.

Theorem 7: S′ is a valid schedule forσ. (G, σ, S′) is reliable.

The theorem follows from Lemmas 9 and 11 that we prove below. Informally,
the validity and stability ofS′ follow from the fact that it mimicsS (although
sometimes at a finite delayD). The reliability follows from the fact that all the
eternal packets of(G, σ, S) are delivered during the second phase ofS′ (using
Observation 6), and that all non-eternal packets are delivered at a delay of at most
D time steps relative toS. We note that scheduleS′ is not necessarily greedy.

We now give a formal proof of the above theorem. We first claim the following.

Lemma 8: For anyt ≥ T + D − 1, any packetp /∈ E that is at nodev at t − D
in (G, σ, S), is in the same nodev at t in (G, σ, S′). In particular, forv being the
destination node ofp, if p leaves the system(G, σ, S) by timet−D, it leaves the
system(G, σ, S′) by timet.

Proof: We prove the lemma by induction ont. The base of the induction for
t = T+D−1 follows from the fact that before timeT all packets move identically
according toS andS′. For the induction step, lett ≥ T +D. There are three cases,
according to the location ofp at t−D in (G, σ, S):

1. p is injected in nodev at timet−D.
SinceS does not sendp by time t − D, S′ does not sendp by time t, and
thereforep is still in v in (G, σ, S′) at t.

2. p is in nodev in (G, σ, S) at timet−D − 1.
By the induction hypothesis,p is in v at t − 1 in (G, σ, S′). ClearlyS does
not sendp at time t − D, and thereforeS′ does not sendp at time t. We
conclude thatp is still in v in (G, σ, S′) at t.

3. p is in a nodeu 6= v in (G, σ, S) at timet−D − 1.
By the induction hypothesis,p is in u at t − 1 in (G, σ, S′). So thatp is in
v at t−D in (G, σ, S), S must sendp across(v, u) at timet. Therefore, by
the definition ofS′, p arrives atv in (G, σ, S′) at t.

We now claim the following.

Lemma 9: S′ is a valid schedule.
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Proof: First, we note that0 < T < ∞, by Observation 6. Now observe that
until timeT − 1, S andS′ behave identically. ForT ≤ t < T +D, S′ is valid by
construction.

ForT +D ≤ t, we note thatS′ sends at most one packet across each edge at
any time. By Lemma 8, we have that each packet thatS′ has to send across an edge
e at some timet is indeed at the tail ofe at the beginning of that time step.

In the following we prove the desired properties ofS′.

Lemma 10: (G, σ, S′) is stable.

Proof: Since(G, σ, S) is stable, there exists someB < ∞ such that there are
at mostB packets in(G, σ, S) at any given time. By Lemma 8, each non-eternal
packet leaves(G, σ, S′) with a delay of at mostD time steps compared to(G, σ, S).
Sinceσ can inject at mostB + D|E| packets duringD time steps, we conclude
that the number of packets in(G, σ, S′) at any timet may exceed the number of
packets in(G, σ, S) at timet−D by at mostB +D|E|. Since(G, σ, S) is stable
the lemma follows.

Lemma 11: (G, σ, S′) is reliable.

Proof: First note that(G, σ, S′) is stable by Lemma 10. We now claim that there
are no eternal packets in(G, σ, S′).

Consider an arbitrary packetp in σ. If p ∈ E , p is injected in(G, σ, S′) by time
T −1. During the time interval[T, T +D), only packets inE are sent across edges
by a greedy schedule. SinceD = |E|d, all these packets arrive to their destinations
by T +D.

If p /∈ E , there are two cases:

1. p leaves the system(G, σ, S) at some timet < T . SinceS andS′ behave
identically fort < T , p is not eternal in(G, σ, S′).

2. p leaves the system(G, σ, S) by time t, for t ≥ T . By Lemma 8,p leaves
the system(G, σ, S′) by timet+D.

3.2 Achieving reliability by protocols

We now consider the question of the existence of an online protocol that achieves
reliability whenever the sequence of packets allows reliability. As we show in the
previous section, the set of sequences that allow reliability is equal to the set of
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sequences that can be injected by(1, b) adversaries. We now show that on certain
networks (namely, cycles of length greater than2) there is no online protocol (even
centralized) that achieves reliability against all(1, b) adversaries. On the other
hand, we show that for any network that does not contain simple cycles of length
greater than2, there are protocols (online and local control) that achieve reliability
whenever the sequence of packets allows reliability. Thus we characterize the net-
work topologies on which reliability is achievable by an online protocol, and give
a protocol that achieves reliability on these networks. We start with the negative
result.

Theorem 12: For any unidirectional cycle of lengthN > 2, there is no online
protocol (even centralized) that achieves reliability against all(1, b) adversaries.

To prove the theorem, given a unidirectional cycle of lengthN > 2, CN , and
an arbitrary online protocolP , we build the following adversaryA of rater ≤ 1.
Denote the nodes of the cyclev0 to vN−1, and denote the edge emanating from
vi by ei. In each time step the adversary injects one packet of length2 edges.
ThereforeA is an(r, b) adversary forr ≤ 1 andb = 0. A packet that is injected
at nodevi (and has path(vi, vi+1, vi+2)) is calleda type-i packet. The adversary
proceeds in phases, starting with phase number1 that starts at time stept = 1. In
phase1 the adversary injects one packet of type1, the phase immediately ends and
phase2 starts at time stept = 2. In phasek > 1, the adversary injects in each time
step one packet of type(k mod N). The phase ends at the end of the first time
step in whichP does not hold in its buffers packets of any type other than type
(k mod N). (Note that this rule applies also for phase number1). Phasek + 1
starts at the time step immediately after the end of phasek. Note that the actions of
the adversary, in particular the length of each phase, are determined as a function
of the actions of the online protocolP .

Let Tk be the first time step of phasek. If the adversary does not reach phase
k we setTk = ∞.

Lemma 13: If P is reliable then for anyk ≥ 1, Tk <∞.

Proof: The proof is by induction onk. For k = 1, by definition, the adversary
starts in phase1, and thereforeT1 = 1. Fork = 2, by definition, phase1 ends at
time1, and thereforeT2 = 2.

Fork > 2, by the induction hypothesis we have thatTk−1 < ∞. Consider the
set of packetsFk−1 that are present in the network at timeTk−1 − 1, i.e. at the end
of the last time step of phasek−2. SinceP is reliable, there are no eternal packets
and therefore each of the packets inFk−1 eventually arrives to its destination. Let

9



T be thelast time step when a packet fromFk−1 arrives at its destination. Since
Fk−1 is finiteT <∞.

If phasek−1 ends before timeT , we are done sinceTk ≤ T <∞. Otherwise,
all the packets present in the network at timeT (if any) were injected during phase
k − 1, and therefore they are all of type((k − 1) mod N). Therefore phasek − 1
ends at timeT andTk = T + 1 <∞.

Lemma 14: Phasek lasts at leastk time steps. If the phase ends, then at the end
of phasek there are at leastk packets of type(k mod N) present at their injection
point.

Proof: The proof is by induction on the phase numberk. The base of the
induction is fork = 1. By definition, one type-1 packet is injected in nodev1,
and the adversary immediately switches to phase2. Therefore this packet is still in
nodev1 at the end of phase1. This phase lasts exactly one time step.

We now prove the claim fork > 1. Assume w.l.o.g. that((k−1) mod N) = 0,
so by the induction hypothesis, at the end of phasek − 1 there are at leastk − 1
type-0 packets in nodev0. To ease the presentation of the proof, we call these
packetsred packets.

We note that when phasek ends, at timeTk+1 − 1, there are no type-0 packets
in the network. This means that at leastk − 1 red packets which were present
in the network at the end of time stepTk − 1, must traverse edgee1 during time
interval [Tk, Tk+1 − 1]. Further, we note that at the end of time stepTk − 1, all
red packets are at nodev0. Therefore, no red packet traverses edgee1 at time
stepTk, since red packets cannot reach this edge at this time. We conclude that
(Tk+1 − 1)− Tk ≥ k − 1, i.e.,

Tk+1 − Tk ≥ k . (1)

Therefore, the length of phasek is at leastk.
We now argue that at the end of phasek there are at leastk type-1 packets at

v1. Observe that during phasek, the adversary injectsTk+1 − Tk type-1 packets
at nodev1. We note that at the beginning of the first time step of the phase,Tk,
there are no type-1 packets in the network, therefore no type-1 packet traverses
e1 at Tk

2. Therefore, all type-1 packets that leave nodev1 by the end of phase
k, must traverse edgee1 at a time step which is on the one hand in time interval
[Tk + 1, Tk+1 − 1], and on the other hand a time step not used by a red packet to
crosse1. As noted above no red packet can traversee1 at Tk and when phasek

2Recall that packets traverse edges in the first sub-step, while new packets are injected in the
second sub-step of a time step.
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ends (at timeTk+1−1) there are no red packets in the network (since the phase can
end only when there are no type-0 packets in the network). This means that at least
k − 1 red packets must traverse edgee1 during time interval[Tk + 1, Tk+1 − 1].
Thus, the number of type-1 packets that do not leave their injection node by time
Tk+1 − 1 is at least

Nk ≥ (Tk+1 − Tk)−max{0, (Tk+1 − 1− (Tk + 1) + 1)− (k − 1)} .

Using (1) we have,

Nk ≥ (Tk+1 − Tk)− ((Tk+1 − Tk − 1)− (k − 1)) = k .

We can now conclude the proof of Theorem 12.
Proof of Theorem 12: Assume towards a contradiction thatP is reliable. Then
it is stable and there existsB < ∞ such that there are at mostB packets in the
network at any time. By Lemma 13,TB+2 < ∞. In particular, the number of
packets in the network at timeTB+2 is at mostB. But, by Lemma 14, at the end of
phaseB + 1 there are at leastB + 1 packets of type((B + 1) mod N) stored at
their injection point. A contradiction.

We note that the adversary used in the proof of Theorem 12 is an(r, b) ad-
versary withr = 1, b = 0. Therefore, for any integerw and during any interval
of w time steps, the adversary injects at mostw packets that require any given
edge. Thus, our negative results hold also against(w, r) adversaries as considered
sometimes in the literature (e.g. [10]).

We now proceed to show that on any network that does not contain any simple
cycle of length greater than2, there is a local control protocol that achieves reli-
ability whenever traffic allows reliability (i.e., for any sequence given by an(r, b)
adversary forr ≤ 1).

Definition 15: We call a directed graph adirected almost-acyclic graphif it has
no directed simple cycles of lengthN > 2.

In particular, any directed acyclic graph (DAG) is a directed almost-acyclic graph
(hence the name). We show that all directed almost-acyclic graphs are universally
stable against all rater = 1 adversaries. We use in our proof the fact that all
packet paths are simple (and therefore no packet path uses both edges of a cycle).
Our proof is an extension of the proof of [10] that any directed acyclic graph is
universally stable against all rater = 1 adversaries.

Theorem 16: LetG be an arbitrary directed almost-acyclic graph,P an arbitrary
greedy protocol, andσ a sequence of packets given by an(r, b) adversary forr ≤ 1.
Then(G, σ, P ) is stable.
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Proof: For the purpose of the proof we define the dual graphG′ of G.

Definition 17: Given a directed almost-acyclic graphG = (V,E), its dual di-
rected graphG′ = (V ′, E′) is defined as follows:V ′ = E, and for eache1, e2 ∈ E
there is an edge(e1, e2) ∈ E′ if and only if there is a simple path inG which
includes the sequence(e1, e2) (i.e., if and only if(e1, e2) is a simple path inG). If
there is an edge(e1, e2) in G′ we say thate1 is a parentof e2.

Observation 18: The dualG′ of a directed almost-acyclic graphG is a DAG.

Proof: Let G = (V,E) be a directed almost-acyclic graph, and letG′ =
(V ′, E′) be its dual graph.

First note that by construction,G′ does not contain any self-loops.
Now, assume towards a contradiction that there is a cycle inG′,

π′ = (e1, e2, . . . , ei, ei+1, . . . , eN , e1), forN > 1, ei ∈ V ′.
Recall that a node inV ′ corresponds to an edge inE. We can therefore denote

an edge onπ′ as(ei = (vi, ui), ei+1 = (vi+1, ui+1)), for 1 ≤ i ≤ N − 1, vk, uk ∈
V (and similarly(eN = (vN , uN ), e1 = (v1, u1))). By construction ofG′ we
have thatui = vi+1 for any1 ≤ i ≤ N − 1 (and similarlyuN = v1). Therefore
the existence of the cycleπ′ in G′ implies the existence of a cycleπ in G where
π = (v1, v2, . . . , vi, vi+1, . . . , vN−1, vN , v1).

Now consider any two consecutive nodes alongπ, and denote themv andv′.
We claim thatv andv′ must be distinct nodes inV . This is because(v, v′) is a
node onπ′, and by construction ofG′ a self-loop inG is an isolated node inG′.

Now consider any3 consecutive nodes alongπ, and denote themv,v′, andv′′.
We claim thatv andv′′ must be distinct nodes inV . To see this observe that(v, v′)
and(v′, v′′) are two consecutive nodes onπ′. But, by construction ofG′ this means
that the path (denoted by its edges)(v, v′), (v′, v′′) is asimplepath inG. Therefore,
v andv′′ cannot be the same node.

It follows that cycleπ in G does not contain simple cycles of length1 or 2 as
a sub-path. Sinceπ is a cycle, it must contain a simple cycle of length at least3, a
contradiction to the assumption thatG is a directed almost-acyclic graph.

We now define a function on the edges ofG, making use of the graphG′ in the
definition.

Definition 19: Given an(r, b) adversary, a directed almost-acyclic graphG = (V,E),
and its dualG′ = (E′, V ′), we define a functionψ(e), for anye ∈ E. Fore ∈ E
which is a source (i.e., has in-degree0) in the DAGG′ we defineψ(e) = b + 1.
Fore ∈ E which is not a source inG′ we defineψ(e) = b+ 1 +

∑
(f,e)∈E′ ψ(f).
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Note that since the dual graph is a DAG,ψ is well defined.
We now show that any directed almost-acyclic graph is universally stable against

all rater = 1 adversaries.
For an edge ofG, e ∈ E, letQt(e) denote the number of packets in the queue

at the tail of edgee at the end of time stept, and letRt(e) denote the number of
packets present in the network at the end of time stept and havee on the remainder
of their path. We claim that, for allt ≥ 0 and alle ∈ E,

Rt(e) ≤ ψ(e) . (2)

The theorem will then follow, since
∑

e ψ(e) gives an upper bound on the number
of packets in the network.

For an arbitrarye ∈ E = V ′ and t ≥ 0, let t′ ≤ t be the last time step
beforet such thatQt′(e) = 0 (note that such time exists since the system starts
with empty buffers at timet = 0). SinceQt′(e) = 0, it follows thatRt′(e) ≤∑

(f,e)∈E′ Rt′(f). Sinceσ is given by an(r, b) adversary forr ≤ 1, the number of
packets injected in(t′, t] and requiree is at mostt − t′ + b. On the other hand,P
is greedy, and since the queue ofe is not empty at the end of each time step in the
interval(t′, t) at leastt− t′ − 1 packets crosse during(t′ + 1, t]. Thus at the end
of time stept,

Rt(e) ≤ Rt′(e) + t− t′ + b− (t− t′ − 1)

≤ b+ 1 +
∑

(f,e)∈E′

Rt′(f) . (3)

Denote byle the levelof e ∈ V ′, that we define to be the length of the longest path
leading toe in G′. The proof of Inequality (2) now proceeds by induction onle.
The base of the induction forle = 0 is for a sourcee ∈ V ′. Since it has no parents,
we haveψ(e) = b+ 1 and by (3)Rt(e) ≤ b+ 1 = ψ(e).

Considere ∈ V ′ that has parents. Clearly the level ofe is bigger than that of
each of its parents. Thus, by the induction hypothesis,Rt′(f) ≤ ψ(f) for each
parentf of e. By (3) we have

Rt(e) ≤ b+ 1 +
∑

(f,e)∈E′

ψ(f) = ψ(e) .

Now, we can use First-In-First-Out (FIFO)3 to show that on directed almost-
acyclic graphs there is a protocol that achieves reliability whenever traffic allows

3FIFO is an online, local control protocol that serves the packets in each queue according to their
arrival time to the queue.
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reliability. The relevant property of FIFO is the fact that FIFO does not starve any
packet. More formally, for every edgee, every packetp that arrives to the queue
of e, eventually crossese. Clearly, when a non-starving protocol is used, there are
no eternal packets in the system. Since FIFO is non-starving and greedy, together
with Theorem 16, we have that on directed almost-acyclic graphs FIFO achieves
reliability whenever the traffic allows reliability. Thus we have the following.

Theorem 20:For any directed almost-acyclic graphG, and any sequence of pack-
etsσ given by an(r, b) adversary forr ≤ 1, (G, σ, FIFO) is reliable.

4 Bounded delivery time

We now turn to consider the question of having bounded delivery time for all pack-
ets. That is, the requirement is that there is a finiteM <∞ such that each packet is
delivered withinM time steps from its injection time (rather than just being even-
tually delivered, as required by the reliability property). We first show that there
are sequences of packets given by(r, b) adversaries,r = 1, b = 0, such that there
is no schedule with bounded delivery time. We then turn to the question of achiev-
ing bounded delivery time by protocols, whenever traffic allows bounded delivery
time.

4.1 Sequences that allow bounded delivery time

We start by considering the following question. For which sequencesσ is there a
scheduleS such that(G, σ, S) has bounded delivery time. The following observa-
tion in [10] implies that for any graphG, the set of such sequences is asubsetof
the set of sequences that allow stability.

Observation 21: If no packet is delayed more thanM time steps, then the maxi-
mum queue size is at mostM .

We now show that for any unidirectional cycle of lengthN > 2, CN , the set
of sequencesσ for which there is a scheduleS such that(CN , σ, S) has bounded
delivery time is aproper subsetof the set of sequences that allow stability. In
particular, on such graphs, there are sequences that allow stability, but there is no
finiteM such that all packets can be delivered withinM time steps.

Theorem 22: For any unidirectional cycle of lengthN > 2, CN , there are se-
quencesσ that can be given by an(r, b) adversary,r = 1, b = 0, such that there is
no scheduleS for which (CN , σ, S) has bounded delivery time.
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We observe that the sequences guaranteed by Theorem 22 are such that, for any
integerw and for any interval ofw time steps, there are at mostw packets injected
in that time interval, that require any given edge (becauser = 1 andb = 0). Thus,
these sequence can be given by(w, r) adversaries as considered sometimes in the
literature (e.g. [10]).

To prove Theorem 22, given a unidirectional cycleCN , N > 2, we build the
following sequenceσ. (A sequence built on similar ideas was used in [10] to show
the instability of FIFO on the cycle withr = 1).

Denote the nodes of the cyclev0 to vN−1, and denote the edge emanating from
vi by ei. In any time step one packet of length2 edges is injected. A packet injected
at nodevi is calleda type-i packet. The sequence is given in phases, starting with
phase number1 that starts at time1. The duration of each phasek ≥ 1 is k time
steps. In phasek, the packets that are injected are of type(k mod N) (recall that
in each time step one packet is injected).4

We now show that there is no schedule that maintains bounded delivery time
for this sequence. We start with the following lemma.

Lemma 23: Let S be a schedule such that(CN , σ, S) has bounded delivery time,
and let0 < M < ∞ be the maximum delivery time. Then for eachj ≥ 0, at the
end of phaseM + j there are at leastj packets of type((M + j) mod N) stored
at their injection point.

Proof: The proof is by induction onj. The base of the induction is trivial for
j = 0.

We now prove the claim forj > 0. Let Ti be the first time step of phasei,
for i ≥ 1. Assume w.l.o.g. that((M + j − 1) mod N) = 0, so by the induction
hypothesis, at the end of phaseM + j− 1 (at the end of time stepTM+j − 1) there
are at leastj − 1 type-0 packets in nodev0.

We note that the duration of phaseM + j isM + j > M , therefore all packets
present in the network when this phase begins must leave the network during this
phase. This means that at leastj type-0 packets which are stored atv0 at the end
of time stepTM+j − 1, must traverse edgee1 by timeTM+j+1. Note that no such
packet can traversee1 at time stepTM+j since they cannot reach this edge by this
time. Further note that no type-1 packet injected during phaseM + j can traverse
e1 at time stepTM+j , since the first such packet is injected only at time stepTM+j
5. Now, to count the number of type-1 packets stored atv1 at the end of phase

4We note that while this sequence has similarities to the sequence used in the proof of Theorem
12, here we use a single fixed sequence, which is not a function of the action of any online protocol.

5Recall that packets traverse edges in the first sub-step, while new packets are injected in the
second sub-step of a time step.
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M + j, we observe thatM + j such packets are injected during this phase. For
such a packet not to be atv1 at the end of the phase, it must traversee1. But it can
traversee1 only during time interval[TM+j + 1, TM+j+1 − 1], and at time steps
where no type-0 packet traverses this edge. We have that the number of type-1
packets thatdo notleave their injection node by timeTM+j+1 is at least

NM+j ≥ TM+j+1 − TM+j −max{0, TM+j+1 − 1− (TM+j + 1) + 1− j} .

Since the duration of phaseM+j isM+j, we haveTM+j+1−TM+j = M+j > j,
and therefore,

NM+j ≥ TM+j+1 − TM+j − (TM+j+1 − TM+j − 1− j) = j + 1 .

We now conclude the proof of the main theorem of this section.
Proof of Theorem 22: Let σ be as defined above. Assume towards a contradic-
tion that there exists a scheduleS such that(CN , σ, S) has bounded delivery time,
and letM < ∞ be the maximum delivery time. Letj = M + 1. By Lemma 23,
the number of type-((M + j) mod N) packets at their injection point at the end of
phaseM + j = 2M + 1 is at leastj = M + 1. At this time, again by Lemma 23,
all of these packets are in the same queue at edgee(M+j) mod N . A contradiction
to Observation 21.

4.2 Achieving bounded delivery time by protocols

Since we saw thatnot all sequences that allow stability (and reliability), also allow
bounded delivery time, the natural question that arises is whether we can devise
a protocol that guarantees bounded delivery time whenever traffic allows bounded
delivery time. As noted in Observation 21 bounded delivery time implies stability.

To consider the sequences of packets for which it could at all be possible to
achieve bounded delivery time, we define thebounded delivery time adversaryas
follows.

Definition 24: A bounded delivery time adversary with parameterD, called the
maximum delay, is an adversary that can inject any sequence of packets as long
as it can itself deliver each packet withinD time steps after the packet’s injection
time.

Observation 25: A bounded delivery time adversary with maximum delayD is
also an(r, b) adversary withr = 1 andb = D.
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Proof: We claim that any sequence of packets injected by a bounded delivery
time adversary with parameterD is such that for any edgee, the number of packets
that usee that are injected in any time interval(t1, t2] is at most(t2−t1)+D. To see
that observe that if for some edgee and some interval(t1, t2] the adversary injects
more than(t2 − t1) +D packets that usee, then at the end of time stept2 there are
more thanD packets requiringe in the network. At least one of these packets will
not be delivered within the nextD time steps, and therefore such sequence cannot
be injected by a bounded delivery time adversary with parameterD.

We note that if one employs FIFO, then when stability is achieved, bounded
delivery time is guaranteed. Therefore, using Observation 25 and Theorem 16,
we have that FIFO on a directed almost-acyclic graph has bounded delivery time
against any bounded delivery time adversary. Thus we have a class of network
topologies for which, using FIFO, bounded delivery time is achieved whenever
possible.

For general topologies we define a class of adversaries that is somewhat weaker
than the class of all bounded delivery time adversaries, and design a protocol that
achieves bounded delivery time against any adversary in this class.

Let Aπ(t1, t2) be the number of packets injected during time interval(t1, t2]
and use pathπ. LetAπ(t) = Aπ(0, t).

Definition 26: An adversaryA is a frequent adversary, with parametersτ > 0,
called the period, andz ≥ 0, called the peak, if for each pathπ, one of the following
holds.

• AdversaryA injects at least one packet that usesπ in eachτ time steps. That
is, for anyt2 − t1 ≥ τ ,Aπ(t1, t2) > 0.

• AdversaryA injects at mostz packets that useπ, overall. That is, for allt,
Aπ(t) ≤ z.

We call the paths of the first kindfrequent paths, and the paths of the second kind
rare paths.

We note that this class of adversaries is a generalization of the class of “path-
wise constant arrival rates” adversaries as defined by Gamarnik [14].

Definition 27: We say that the network haspath-wise constant arrival ratesif for
each pathπ there existsrπ ≥ 0, such that, for somebπ and for allt ≥ 0

Aπ(t) ≤ rπt+ bπ , (4)

and in addition, for someb′π ≥ 0 and for allt ≥ 0

Aπ(t) ≥ rπt− b′π , (5)
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We consider here path-wise constant arrival rates adversaries that are also(r, b)
adversaries forr ≤ 1 (contrary to [14] which only considers adversaries of rate
r < 1). By simple calculation it is easy to see that a path-wise constant arrival
rates adversary is also a frequent adversary, by setting the appropriate parameters
τ andz for the the frequent adversary. For a pathπ, if rπ = 0 then the path is a
rare path, and ifrπ > 0 then the path is a frequent path. We also note that there
are sequences of packets that can be injected by a frequent adversary but not by a
path-wise constant arrival rates adversary, for example, a sequence where a packet
is injected every second time step, and in addition a packet is injected every time
stepn2, for n ≥ 1.

We now present an online, local control protocol ERF (Estimated-Rare First)
that has bounded delivery time on any topology and for any sequence given by a
bounded delivery time adversary that is also a frequent adversary.

We first give a general description of the protocol and an intuitive idea why
it works. First observe that on frequent paths, the protocol FTG will guarantee
bounded delivery time. Therefore, if we knew for each pathπ whether it is frequent
or rare, we could give priority to the packets of the rare paths and apply FTG to
the packets of the frequent paths. However, we do not have a way to distinguish
a priori between frequent and rare paths. The protocol therefore estimates at any
point in time, and for each path, whether the path is rare or frequent, based on the
number of packets injected on that path until that time. This is done at the source
node of each path, and as we prove in the sequel, this can be done in such a way
that the estimation stabilizes to the correct value in finite time. If the protocol was
centralized, this would be enough. However, since we build a distributed protocol,
we use control packets in order to convey changes in the estimation to the nodes
along the path. In the sequel, we show how this can be done in such a way that the
control packets do not overload the network, and do not interfere with the bounded
delivery time property.

Protocol ERF

The protocol labels all the packets with apriority label. Each packet is labeled as
eitherhigh priority, or low priority. At each time step, and for each edgee, ERF
selects a packet to send acrosse as follows:

• If there is any high priority packet in the queue ofe, ERF sends an arbitrary
high priority packet.

• Otherwise, ERF selects the packet to send from the queue ofe according to
the Furthest-To-Go (FTG) rule (i.e., the packet that has the longest remaining
path to its destination is selected). Ties are broken according to the FIFO rule
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(i.e., according to the order of arrival to the queue).

We now describe how the priority labels are managed. In order to manage
the labels, the protocol creates at timescontrol packetsto which it itself assigns a
path and introduces them to a queue at their creation node. These packets are then
forwarded by the protocol together with the data packets6.

At the tail of each edgee, for each simple pathπ such thate is the first edge on
π, ERF keeps the currentestimationfor whetherπ is a frequent path or a rare path.
This estimation is in fact a function ofAπ(t). At any timet, ERF estimates thatπ
is a rare path ifAπ(t) < bt1/2c, 7 and that it is a frequent path, otherwise. When a
packet is injected, it is labeled as high priority if the path for this packet is estimated
at the injection time to be rare; the packet is labeled low priority, otherwise.

When the estimation forπ changes from a frequent path to a rare path, ERF:

1. Labels as high priority all packets (if any) in the queue ofe that useπ.

2. Creates a new control packet with the pathπ if, since the last creation of a
control packet onπ, the adversary injected at least one new packet that uses
π. All control packets are labeled high priority.

When a control packet that uses pathπ arrives at some node, ERF labels high
priority all packets present in this node that use the same pathπ.

We now proceed to prove the properties of ERF. The following is immediate
from the definition of ERF.

Observation 28: For any timet and any pathπ, the number of control packets
created by ERF on pathπ by time t is at most the number of packets injected by
time t onπ.

The following claims shows that ERF eventually correctly identifies each fre-
quent path as such, and each rare path as such.

Claim 29: Let A be a frequent adversary, and letτ be its period. Then for any
t ≥ τ2 and for any frequent pathπ, at timet ERF correctly estimatesπ to be a
frequent path. Further, no control packet that usesπ is created by ERF at timet.

Proof: Consider a frequent pathπ. A injects at least one packet that uses the
pathπ in eachτ time steps. Therefore, the total number of packets that use the path
π injected by the adversary byt is at leastAπ(t) ≥ bt/τc. Thus for anyt ≥ τ2,
Aπ(t) ≥ bt1/2c and ERF estimatesπ to be a frequent path.

6In this sense, the protocol is not greedy, since sometimes it sends a control packet and not a
packet injected by the adversary.

7Any other functionf(t) = o(t) could also be used instead.
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Claim 30: Let A be a frequent adversary, and letz be its peak. Then for any
t > (z + 1)2, and for any rare pathπ, at timet ERF correctly estimatesπ to be a
rare path.

Proof: Sinceπ is a rare path, there are at mostz packets ever injected onπ.
Therefore fort > (z + 1)2 we haveAπ(t) ≤ z < bt1/2c. Thus, fort > (z + 1)2,
ERF correctly estimatesπ to be a rare path.

In what follows we assume a given arbitrary directed graphG = (V,E), and
a given arbitrary packet sequenceσ injected by a bounded delivery time adversary
with maximum delayD, which is also a frequent adversary with periodτ and peak
z. We further assume that the network is controlled by ERF. We start by proving
the stability of the system. This property will be later used to prove that the system
has bounded delivery time. In what follows we do not attempt to prove tight bounds
on the number of packets in the network or on the delivery times of the packets.
Rather, we only prove the existence of finite bounds for these quantities, which
yields the required properties of stability and bounded delivery time.

Lemma 31: The overall number of packets that are ever labeled high priority is at
mostH = O(|E|d(τ2 +D + z)).

Proof: First consider a frequent pathπ. By Claim 29, at anyt ≥ τ2 ERF
correctly estimatesπ to be a frequent path. Therefore all packets that useπ and are
injected att ≥ τ2 are labeled low priority at injection. Furthermore, by Claim 29
no control packet that usesπ is created at anyt ≥ τ2. Since control packets have
priority over low priority packets, for a control packetq onπ to arrive to a nodev
where there is a low priority packetp onπ, p must be injected beforeq is created.
Therefore no packet ofπ injected afterτ2 can ever be labeled high priority. We
conclude that all packets that use pathπ and are at some time labeled high priority
must be injected by timeτ2 (or created by this time if they are control packets).
Using Observation 25 the adversary can inject at most|E|(τ2 +D) packets byτ2,
and as already noted, ERF may create at most as many control packets.

Now consider a rare pathπ. The adversary injects at mostz packets that useπ,
and ERF can create at most as many control packets that useπ.

Summing for both types of paths, we have that the total number of packets ever
labeled high priority is at mostH ≤ 2|E|(τ2+D)+2N0z, whereN0 is the number
of rare paths inσ. Note thatN0 < |E|d.

Lemma 32 : For any given timet, the number of packets labeled low priority
present in the network att is at mostL = O(|E|2d(τ2 +D + z)).
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Proof: We base our proof technique on the proof in [13] for the stability of
Furthest-To-Go, with several adaptations. We begin by introducing the following
notations, which deal with the low priority packets residing in the buffer of an edge
e at a certain timet.

LetXe(t) denote the set of low priority packets which are stored at the buffer
of edgee at the end of time stept. Let Le(p) denote the number of edges which
a packetp, stored at the buffer of edgee, must still traverse before reaching its
destination. LetXi

e(t) be the following set:

Xi
e(t) = {p|p ∈ Xe(t) andLe(p) ≥ i} .

By the definition of ERF, whenever there are no high priority packets in the buffer
of e at the end of time stept, andXe(t) 6= ∅, then at timet + 1 the packetp,
p ∈ Xe(t), that is forwarded one is such that

∀p′ ∈ Xe(t), Le(p) ≥ Le(p′) .

Now define the following sequence of constants:

ki =
{

0 if i > d
|E|(ki+1 +D +H+ 1) if 1 ≤ i ≤ d

Note, for later use, that for1 ≤ i ≤ d, ki = (D +H+ 1)|E| |E|d+1−i−1
|E|−1 .

The lemma will follow from the following claim.

Claim 33: For all t, ki ≥
∑

e∈E |Xi
e(t)|. That is, the number of low priority

packets in the network at any timet which are at leasti hops away from their
destinations is at mostki.

Proof: We prove the claim by decreasing induction oni. Since there are no
simple paths of length longer thand in G, the claim trivially holds for alli > d
at all times. Assume that the claim holds for anyj > i, and consider a certain
edgee ∈ E. Let t ≥ 0 such thatXi

e(t) 6= ∅, and denote byt′ the latest time prior
to t which satisfiesXi

e(t
′) = ∅ (note that such time exists since the system starts

with empty buffers at timet = 0). We note that ERF never changes the packet
label from high priority to low priority. Therefore the packets ofXi

e(t) can be
partitioned into the following two disjoint sets.

1. Low priority packets which are injected into the network no earlier than time
t′ + 1. Using Observation 25, we can bound the number of these packets by
(t− t′) +D.
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2. Low priority packets which were already active in the system at timet′.
Sincet′ is chosen such thatXi

e(t
′) = ∅, we conclude that at the end of

time stept′ these packets are all stored in buffers other than that ofe. Upon
arrival ate’s buffer (at some time betweent′ andt), these packets still require
at leasti hops. We thus conclude that at the end of time stept′ they are still
at leasti+ 1 hops away from their destination. By the induction hypothesis,
we can bound the number of these packets byki+1.

Also, by the choice oft′, we know that at the end of each of the time steps in the
interval (t′, t) the buffer ofe contains at least one low priority packet requiring
at leasti hops. By the definition of ERF, either a high priority packet, or a low
priority packet requiring at leasti hops, crossese at each of the time steps in the
interval(t′ + 1, t].

Since by Lemma 31 at mostH packets are ever labeled high priority, we have
that

|Xi
e(t)| ≤ (t− t′) +D + ki+1 − (t− t′ − 1−H)

≤ ki+1 +D + 1 +H ,

and therefore, ∑
e∈E

|Xi
e(t)| ≤ |E|(ki+1 +D + 1 +H) = ki .

The number of low priority packets in the network at a given timet can be
expressed as

∑
e∈E |X1

e (t)|. Therefore by Claim 33 we have that the number of
low priority packets present in the network at any given time is at most

L ≤ k1 = O(|E|2d(τ2 +D + z)) .

Using Lemmas 32 and 31, we can now bound the number of packets (of all
types) present in the network at any given time to be at mostL+H = O(|E|2d(τ2+
D + z)). Thus(G, σ,ERF ) is stable. We now proceed to consider the delivery
times of the packets.

Claim 34: Let p be a packet labeled at timet as high priority. Packetp leaves the
network by timet+Hd.

Proof: Recall that ERF always sends a high priority packet if present. Therefore
beginning at time stept, and untilp is absorbed in its destination node, at least one
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high priority packet will cross some edge in each time step. By Lemma 31 there
is a finite numberH of high priority packets. Each of them has to cross at mostd
edges to arrive at its destination. Thereforep arrives to its destination in at most
Hd time steps fromt.

Since control packets are labeled high priority at creation, we have the follow-
ing.

Corollary 35: Every control packet leaves the network withinHd time steps after
its creation.

We conclude this section with the following theorem.

Theorem 36: (G, σ,ERF ) has bounded delivery timeM = O(z2 + |E|2dτ(τ2 +
D + z)).

Proof: First, consider a rare pathπ. Let p be a packet using pathπ that is
injected at timetp. There are two cases fortp.

1. If at tp the estimation forπ was rare,p is labeled high priority and by Claim
34,p leaves the network bytp +Hd.

2. If at time tp the estimation forπ was wrong (i.e.,π was estimated to be a
frequent path), it follows from Claim 30 thattp ≤ (z + 1)2. Using Claim 30
again, we have that the estimation forπ becomes accurate at some timetq
such thattp ≤ tq ≤ (z+1)2. Thus, ifp is still at its injection point at the end
of time steptq, p is labeled high priority and it arrives at its destination by
tq +Hd. Otherwise (ifp leaves its injection point by timetq) at timetq ERF
creates a control packetq for π. By Corollary 35,q arrives to its destination
by timetq +Hd. Therefore, eitherp leaves the network bytq +Hd, or it is in
a node along its path whenq reaches that node. Packetp will then be labeled
high priority, and will leave the network within anotherHd time steps. In
all, p arrives at its destination bytq + 2Hd.

We conclude that the delivery time for packetp that uses a rare path is at most
M0 ≤ (z + 1)2 + 2Hd.

Now consider a frequent pathπ. No packet ofπ changes its label to high
priority after timeτ2 + Hd. This is because by Claim 29 after timeτ2 no such
packet is labeled high priority at its injection point, and by Corollary 35 after time
τ2 + Hd there are no control packets onπ in the network. Therefore, by Claim
34, all high priority packets that use the pathπ leave the network by timeT ≤
τ2 + 2Hd.

Consider the system at the end of time stept ≥ T . All packets of a frequent
pathπ present in the network att must be low priority packets. They are served
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according to FTG with ties broken by FIFO. Since all of them use the same path,
they move in the network in FIFO order among themselves. By Lemma 32, the
total number of low priority packets in the network at any time is at mostL. After
time T , at least one low priority packet that uses the pathπ is injected everyτ
time steps, and no low priority packets become high priority. Therefore, each such
packet must leave the network withinτL time steps, otherwise there would be more
thanL low priority packets in the network. A packet that uses a frequent path is
therefore delivered withinM1 ≤ T + τL time steps.

We have that the maximum delivery time in the system is

M = max(M0,M1)
≤ max((z + 1)2 + 2Hd, τ2 + 2Hd+ τL)
= O(z2 + |E|2dτ(τ2 +D + z)) .

5 Conclusions and open problems

In this paper we study the problems of having a finite upper bound on the deliv-
ery times of all packets, and of even only eventually delivering all packets while
maintaining stability. We study both the mere existence of schedules (generated
by the adversary or by an offline scheduler) that achieve these requirements, and
the existence of online protocols that achieve these requirements whenever such a
schedule exists.

Among other things, we show that there exist sequences of packets injected by
(1, b) adversaries, such that there is no finiteM with a schedule that delivers all
packets withinM times steps from their injection times. We thus coin the term
“bounded delivery time adversary” for the adversary that is committed to be able
itself to schedule the injected packets with some finite upper bound on the delivery
times of all packets. We show a class of network topologies and a protocol that
maintains bounded delivery time, on this class of topologies, against any bounded
delivery time adversary. We further give a protocol that achieves bounded delivery
time, on any network topology, against a class of adversaries somewhat weaker
than the class of all bounded delivery time adversaries.

In this paper we answer open questions posed by Gamarnik and by Borodin et
al. [13, 10]. Our work leaves however open the question whether there exists a
protocol that achieves bounded delivery time, on any network topology, against all
bounded delivery time adversaries.
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