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Abstract

We consider two models commonly used in the literature to model adversarial in-

jection of packets into a packet switching network. We establish the relation between

these two types of models, and between them and the set of sequences of packets that

allow stability. We also consider the adaptive setting in which packets are injected

with only their source and destination but without a prescribed path to follow.

1 Introduction

The study of the behavior of packet switching networks against adversarial injection of
packets has received considerable attention in recent years. See, for example, [5, 2, 1, 7, 6, 3].
In such networks, as modeled in the literature, packets are injected into the network in a

continuous manner, and are transmitted between adjacent switches (nodes) in discrete time
steps. Each link, connecting two adjacent nodes, can transmit a single packet in each time
step. The packets travel to their destinations in a \store-and-forward" manner, being stored
in bu�ers at intermediate switches. Since the bandwidth of the links is limited, two natural
questions arise in this setting: what are the sizes of the bu�ers in the network and what are

the delays incurred by the packets. In particular, the question of stability is of importance:

is there a (�nite) bound on the size of the bu�ers which is independent of the length of
time the network is active ? Or does the number of packets that are in the network grow to
in�nity as time advances ? Naturally, the answers to these questions depend on the network

topology, on the sequence of packets injected, and on the protocol used to route and schedule

the packets.
Most of the recent work analyzing scenarios along the above lines with no probabilistic

assumptions makes use of one of two frameworks in order to de�ne the set of sequences of
packets to be considered. Both frameworks model the sequences of packets as being given by

an adversary, but use di�erent parameters, and a di�erent de�nition, in order to de�ne the

set of sequences that a particular adversary can inject into the network. One was introduced
by Borodin et al. [5], and is referred here as the \Adversarial Queuing Theory" model, and
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the other was introduced in this context by Andrews et al. [2], and is referred here as the

\Leaky Bucket" model. Some confusion exists in the literature concerning the relative power

of these adversaries, and concerning necessary and su�cient conditions to have stability. This

short note is intended to formally establish the relationship between the two models, and

necessary and su�cient conditions for stability.

2 De�nitions

In what follows we assume a given network, modeled as a directed graph G = (V;E), jV j = n,

jEj = m. All of the de�nitions and claims in the sequel are given for a speci�c network.

A packet is identi�ed by (s; d; �), where s 2 V is the source node, d 2 V is the destination

node, and � is a simple path leading from s to d. Any packet p = (s; d; �) is injected at some
time step t into its source node s, and has to follow � in order to reach d.

We �rst de�ne the two models of adversaries common in the literature. The �rst one is
used, e.g., in [5, 7, 6, 1], and the second one in, e.g., [2, 3].

De�nition 1: An AQT (w; r) adversary, for w � 1, r � 1, is an adversary that is allowed
to inject any sequence of packet into the network, as long as the following condition holds.
Consider any w consecutive time steps, and all the packets injected in these times steps.
Then, the total load created by the paths associated with these packets, on any edge e 2 E,
is at most wr.

De�nition 2: An LB(b; r) adversary, for b � 0, r � 1, is an adversary that is allowed to
inject any sequence of packet into the network, as long as the following condition holds. For

any T � 1, consider any T consecutive time steps, and all the packets injected in these times
steps. Then, the total load created by the paths associated with these packets, on any edge
e 2 E, is at most Tr + b.

We now de�ne sets of sequences. By � we denote a sequence of packets.

De�nition 3:

� AQT (r < 1) = f� : � can be given by AQT (w; r); for some w � 1; r < 1g.

� AQT (r � 1) = f� : � can be given by AQT (w; r); for some w � 1; r � 1g.

� LB(r < 1) = f� : � can be given by LB(b; r); for some b � 0; r < 1g.

� LB(r � 1) = f� : � can be given by LB(b; r); for some b � 0; r � 1g.

We now de�ne the set of sequences of packets for which stability is possible.

De�nition 4: The set ST is the set of all (�nite and in�nite) sequences of packets for

which there exist a feasible schedule for the packets and a constant B < 1, such that at

any time step t � 1, the number of packets present in the network at time t, is at most B.

1



3 Relation between the models

In this section we establish the following:

LB(r < 1) = AQT (r < 1)�
6=AQT (r � 1)�

6=LB(r � 1) = ST :

Fact 1: LB(r < 1) = AQT (r < 1).

Proof:

AQT (r < 1) � LB(r < 1): Let � be a sequence of packets injected by an AQT (w; r) ad-

versary, for some w � 1, and some r < 1. Let b0 = wr, and r0 = r. Then a LB(b0; r0)

adversary can also inject �. To see that let T � 1, and consider time interval I of T

consecutive time steps. Let k and t0 � w be integers such that T = kw + t0. Then,
since � is given by AQT (w; r), for any e 2 E the number of packets that require e and
are injected in I is at most (k + 1)wr. Therefore � can also be injected by LB(b0; r0), as
Tr0 + b0 = (kw + t0)r0 + wr � (k + 1)wr.
LB(r < 1) � AQT (r < 1): Let � be a sequence of packets injected by an LB(b; r) adversary,

for some b � 0, and some r < 1. For any 0 < � < 1 let w0 = b

(1�r)� , and r0 = r + (1 � r)�.

Then an AQT (w0; r0) adversary can also inject �. To see that consider any interval I of
consecutive w0 time steps. Since � is given by LB(b; r), for any e 2 E, the number of packets
that require e and are injected in I is at most w0r + b = b

(1�r)�
� r + b. Therefore � can also

be injected by AQT (w0; r0), as w0r0 = b

(1�r)� � (r + (1� r)�) = b

(1�r)� � r + b.

Fact 2: LB(r � 1) = ST .

Proof:

LB(r � 1) � ST : The protocols Furthest-To-Go and Nearest-To-Origin are stable for any

adversary LB(b; r), b � 0, r � 1, and any network [2, 7]. The claim then follows.
ST � LB(r � 1): Let � be a (in�nite) sequence of packets for which there is a feasible

schedule and a constant B < 1 such that at any time at most B packets are present in
the network. Now observe that for any time interval I of T � 1 consecutive time steps, and
for any e 2 E, the sequence � can have at most T + B packets that are injected in I and

request e. Otherwise, since e can transmit at most T packets during I, there would be at the

end of I more than B packets in the network. Therefore � can be given by a LB(B; r = 1)
adversary.

Fact 3: AQT (r < 1) 6= AQT (r � 1).

Proof:

A sequence of packets that is in AQT (r = 1) but not in AQT (r < 1) is the sequence of

packets all requiring a single edge, being injected one packet per time step.
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Fact 4: AQT (r � 1)�
6=LB(r � 1)

Proof:

The fact that AQT (r � 1) � LB(r � 1) follows from the same arguments used to prove

AQT (r < 1) � LB(r < 1) in the proof of Fact 3 (These arguments did not use r < 1).

To see that AQT (r � 1) 6= LB(r � 1) observe that any of the following two types of

sequences are in LB(r � 1) but not in AQT (r � 1). In both cases all the packets have to

cross the same single edge. (a) In time step 1 two packet are injected; in any later time step,

one packet is injected. (b) The sequence is composed of phases i � 0. Phase i is composed

of a �rst time step where two packets are injected, then i time steps with one packet per

time step, and then one time step with no packet being injected.

4 The adaptive case

A variation of the setting considered in the previous section is the setting where the packets
are injected with no prescribed path to follow. Only the source and the destination are given,
and the protocol is free to chose the path for every packet. These need not even be simple
paths. The question of stability in this setting is considered e.g. in [1, 7].

A schedule for a sequence of packets in this setting speci�es for each packet when to move

(as in the non-adaptive case), and in addition, over which edge.
The necessary and su�cient conditions for a sequence of the non-adaptive case to allow

stability can be translated to the adaptive setting. That is, a sequence of packets in the
adaptive case allows stability if and only if one can associate with each packet a path such
that the resulting instance of the non-adaptive case allows stability. More formally,

Fact 5: Consider a sequence of packets for the adaptive case, (si; di), i � 1. Then, there is
a feasible schedule for that sequence and a constant B <1 such that at any time there are

at most B packets in the network, if and only if there is a sequence of paths �i, i � 1, one

path for each packet, such that the instance (si; di; �i), i � 1, is in ST .

Proof:

One direction is trivial: if the created instance is in ST then the paths, schedule and
bound B guaranteed by it being in ST can be applied in the adaptive case to guarantee that

at most B packets are present in the network at any time.

For the second direction observe that if at any time there are at most B packets present
in the network, then all but at most B packets reach their destination according to the

schedule. We now de�ne paths for all the packets in the sequence. For each packet that
reaches its destination, pi, de�ne its path �i to be the path it followed according to the

schedule of the adaptive case, eliminating any cycles. For any other packet (i.e., a packet

that never reaches its destination) de�ne its path to be an arbitrary path from its source to
its destination. The non-adaptive instance created by associating these paths to the packets

is in ST since it has a feasible schedule and a bound B < 1 on the number of packets in
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the network: the schedule is the schedule of the adaptive case for all packets that reach their

destination (eliminating from the schedule any cycles in the original path), and an empty

schedule for packets that do not reach their destination (i.e., these packets never leave their

source nodes). The same bound B on the number of packets present in the network at any

given time applies.

We note that for the non-adaptive case it is known that for any sequence in ST , a

schedule that maintains stability can be computed by an on-line and distributed protocol

[2, 7]. For the adaptive case, if a sequence of packets is such that an adversary can associate

paths with the packets such that the resulting sequence is in AQT (r < 1) (and hence in

LB(r < 1)), then a schedule that maintains stability can be computed by an on-line and

distributed protocol [1]. Gamarnik [7] shows that an on-line, but centralized, algorithm

can compute a schedule that maintains stability for any sequence of packets that satisfy

the following condition: an adversary can associate fractional paths with the packets, such
that the created sequence is in AQT (r < 1). Gamarnik also shows [8] that the distributed
protocol of [1] can be applied to such sequences albeit with worse performance (in terms
of the parameters of the adversary). 1 For the special case where all packets have the
same node as the destination node, Awerbuch et al. [4] recently showed an algorithm that

maintains stability for any sequence such that the adversary can associate paths with the
packets so that the resulting sequence is in AQT (r � 1). For the general case (i.e., arbitrary
destinations) the question of whether there is an on-line, distributed or not, algorithm that
computes a schedule that maintains stability given any instance of the adaptive problem for
which stability is possible 2, remains open.
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