Diagrammatic sets and rewriting in weak higher categories

Amar Hadzihasanovic
IRIF, Université de Paris

GeoCat 2020
5 July 2020
There is a draft, but I am rewriting it from scratch. Some definitions have changed. Some results I will mention do not hold with the old definitions. The new version should be out before the end of the month.
In homotopy theory, algebraic geometry, ...:
Higher categories for all

In homotopy theory, algebraic geometry, ...:

- There is a familiar world of spaces/∞-groupoids/homotopy types in the background.
Higher categories for all

In homotopy theory, algebraic geometry, ...:

- There is a familiar world of spaces/∞-groupoids/homotopy types in the background.
- Everything must be weak. n-categories in this world are (∞, n)-categories.
In homotopy theory, algebraic geometry, ...:

- There is a familiar world of spaces/∞-groupoids/homotopy types in the background.
- Everything must be weak. n-categories in this world are (∞, n)-categories.
- Do we really need to work in a specific model?
In homotopy theory, algebraic geometry, ...:

- There is a familiar world of spaces/∞-groupoids/homotopy types in the background.
- Everything must be weak. n-categories in this world are (∞, n)-categories.
- Do we really need to work in a specific model?
- If we do, it should feel familiar.
Higher categories for all

In homotopy theory, algebraic geometry, ...:

- There is a familiar world of spaces/\(\infty\)-groupoids/homotopy types in the background.
- Everything must be weak. \(n\)-categories in this world are \((\infty, n)\)-categories.
- Do we really need to work in a specific model?
- If we do, it should feel familiar.

\(\implies\) Segal spaces, complicial sets... pick your favourite.
In rewriting, applied category theory, ...:
In rewriting, applied category theory, ...:

- We work with *presented* (monoidal, higher, ...) categories.
In rewriting, applied category theory, ...:

- We work with *presented* (monoidal, higher, ...) categories.
- Diagrammatic reasoning is the tool of the trade.
In rewriting, applied category theory, ...:

- We work with *presented* (monoidal, higher, ...) categories.
- Diagrammatic reasoning is the tool of the trade.
- We need “rigidity” to avoid hidden steps, hidden complexity.
In rewriting, applied category theory, ...:

- We work with *presented* (monoidal, higher, ...) categories.
- Diagrammatic reasoning is the tool of the trade.
- We need “rigidity” to avoid hidden steps, hidden complexity.
- *(Up to dimension 2...)* Diagrammatic proofs are justified because Mac Lane bla bla coherence bla bla Joyal Street
Higher categories for all

In rewriting, applied category theory, ...:

- We work with presented (monoidal, higher, ...) categories.
- Diagrammatic reasoning is the tool of the trade.
- We need “rigidity” to avoid hidden steps, hidden complexity.
- *(Up to dimension 2...)* Diagrammatic proofs are justified because Mac Lane bla bla coherence bla bla Joyal Street
- *(In higher dimensions...)*?
In rewriting, applied category theory, ...:

- We work with presented (monoidal, higher, ...) categories.
- Diagrammatic reasoning is the tool of the trade.
- We need “rigidity” to avoid hidden steps, hidden complexity.
- *(Up to dimension 2...)* Diagrammatic proofs are justified because Mac Lane bla bla coherence bla bla Joyal Street
- *(In higher dimensions...)* ?
Bialgebra equation
Bialgebra equation
An interaction of \textit{planar} (2d) diagrams, producing a transformation of 3d diagrams (a 4d diagram)
An interaction of *planar* (2d) diagrams, producing a transformation of 3d diagrams (a 4d diagram)

How do we interpret this?
Pasting theorems

The foundation of diagrammatic reasoning is a pasting theorem:
The foundation of diagrammatic reasoning is a **pasting theorem**: the statement that we can univocally interpret a certain class of diagrams in a certain model of higher categories.
The foundation of diagrammatic reasoning is a pasting theorem:

the statement that we can univocally interpret
a certain class of diagrams
in a certain model of higher categories.

There is a lack of pasting theorems
for models of weak higher categories.
2014
2014
2013
2012
2011
2014
2013
2012
2011
2010
2009
2008
2014
2013
2012
2011
2010
2009
2008
1993
The golden age of strict ω-categories

- **1987**: Ross Street’s *The algebra of oriented simplexes* is out, sparking an interest in the combinatorics of higher-dimensional categorical diagrams.
The golden age of strict ω-categories

- **1987**: Ross Street’s *The algebra of oriented simplexes* is out, sparking an interest in the combinatorics of higher-dimensional categorical diagrams.

Then several works on the combinatorics of *pasting diagrams* and their *pasting theorems* in strict n-categories:

- **1988**: John Power
- **1989**: Michael Johnson
- **1991**: Ross Street, John Power
- **1993**: Richard Steiner
We can associate to a cell complex its face poset...
Directed complexes

We can associate to a cell complex its face poset...

and to a pasting diagram its oriented face poset.
An orientation on a finite poset P is an edge-labelling $o : \mathcal{H}P_1 \to \{+, -\}$ of its Hasse diagram.
An orientation on a finite poset P is an edge-labelling $o : \mathcal{H}P_1 \to \{+, -\}$ of its Hasse diagram.

An oriented graded poset is a finite graded poset with an orientation.
Technical interlude #1: Directed complexes

- An orientation on a finite poset P is an edge-labelling $o : \mathcal{HP}_1 \to \{+, -\}$ of its Hasse diagram.

- An oriented graded poset is a finite graded poset with an orientation.

- If $U \subseteq P$ is (downward) closed, $\alpha \in \{+, -\}$, $n \in \mathbb{N}$,

$$\Delta^\alpha_n U := \{x \in U \mid \text{dim}(x) = n \text{ and if } y \in U \text{ covers } x, \text{ then } o(y \to x) = \alpha\},$$

$$\partial^\alpha_n U := \text{cl}(\Delta^\alpha_n U) \cup \{x \in U \mid \text{for all } y \in U, \text{ if } x \leq y, \text{ then } \text{dim}(y) \leq n\},$$

$$\Delta_n U := \Delta^+_n U \cup \Delta^-_n U, \quad \partial_n U := \partial^+_n U \cup \partial^-_n U.$$
If U is a closed subset of P, then U is a *molecule* if either

- U has a greatest element, in which case we call it an *atom*, or
- there exist molecules U_1 and U_2, both properly contained in U, and $n \in \mathbb{N}$ such that $U_1 \cap U_2 = \partial^n U_1 = \partial^n U_2$ and $U = U_1 \cup U_2$.
Technical interlude #1: Directed complexes

If \(U \) is a closed subset of \(P \), then \(U \) is a *molecule* if either

- \(U \) has a greatest element, in which case we call it an *atom*, or
- there exist molecules \(U_1 \) and \(U_2 \), both properly contained in \(U \), and \(n \in \mathbb{N} \) such that \(U_1 \cap U_2 = \partial^+_n U_1 = \partial^-_n U_2 \) and \(U = U_1 \cup U_2 \).

An oriented graded poset \(P \) is a *directed complex* if, for all \(x \in P \) and \(\alpha, \beta \in \{+, -\} \), if \(n = \dim(x) \),

1. \(\partial^\alpha x \) is a molecule, and
2. \(\partial^\alpha (\partial^\beta x) = \partial^\alpha_{n-2} x \).
Directed complexes

Steiner 1993 (rephrased)

Every molecule in a directed complex is the oriented face poset of a pasting diagram.
Directed complexes

Steiner 1993 (rephrased)

Every molecule in a directed complex is the oriented face poset of a pasting diagram.

Under certain conditions, the pasting diagram can be uniquely reconstructed from its oriented face poset.
Directed complexes

Steiner 1993 (rephrased)

Every molecule in a directed complex is the oriented face poset of a pasting diagram.

Under certain conditions, the pasting diagram can be uniquely reconstructed from its oriented face poset.

All directed complexes present ω-categories — fewer present polygraphs, that is, ω-categories that are freely generated by some of their cells.
Directed complexes

Let P, Q be oriented graded posets. We can take their cartesian product as posets.
Directed complexes

Let P, Q be oriented graded posets. We can take their cartesian product as posets.

We can give it an orientation as in the tensor product of chain complexes.

A variant of this was used to define the Gray product of ω-categories (Steiner 2004, Ara-Maltsiniotis 2017).
Let P, Q be oriented graded posets.
We can take their cartesian product as posets.

We can give it an orientation
as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex
$P \otimes Q$, the (lax) Gray product of P and Q.
Directed complexes

Let P, Q be oriented graded posets. We can take their cartesian product as posets.

We can give it an orientation as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex $P \otimes Q$, the (lax) Gray product of P and Q.

If P has dim n and Q has dim k, $P \otimes Q$ has dim $n + k$.
Directed complexes

Let P, Q be oriented graded posets. We can take their cartesian product as posets.

We can give it an orientation as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex $P \otimes Q$, the (lax) Gray product of P and Q.

If P has dim n and Q has dim k, $P \otimes Q$ has dim $n + k$.

A variant of this was used to define the Gray product of ω-categories (Steiner 2004, Ara-Maltsiniotis 2017)
1993
1994
1995
1996
1993
1994
1995
1996
1997
1993
1994
1995
1996
1997
1998
1999
.
.
2010
2011
2012
2013
2014
2015
2016
Gray products and diagrammatic algebra

Around this time, I start seeing Gray products everywhere in diagrammatic algebra

$$2d + 2d = 4d$$
Gray products and diagrammatic algebra

$2d + 2d = 4d$

Around this time, I start seeing Gray products everywhere in diagrammatic algebra

(Fortunately I was not the only one)
Example: Biunitary equations

Used by Jamie Vicary and Mike Stay to unify quantum and encrypted communication protocols. They are models of a Gray product of 2-categories.
Example: Distributive laws of monads

They are models in \textbf{Cat} of a Gray product of 2-categories.
The original example is not simply a Gray product.
The original example is not simply a Gray product.

monoidal category \rightsquigarrow 2-category with one 0-cell
The original example is not simply a Gray product.

\textbf{monoidal category} \rightsquigarrow 2-category with one 0-cell
\textbf{PRO} \rightsquigarrow 2-cat with one 0-cell, one 1-generator

These are naturally pointed objects in ω-Cat. With pointed objects, it is natural to take smash products \wedge.

$\text{PRO} \wedge \text{PRO} \rightsquigarrow 4$-cat with one 0-cell

Morally this should be a braided monoidal category. But in strict ω-categories, it is a commutative monoidal category. This breaks everything.
Gray products and diagrammatic algebra

The original example is not simply a Gray product.

\[\text{monoidal category} \rightsquigarrow 2\text{-category with one 0-cell} \]
\[\text{PRO} \rightsquigarrow 2\text{-cat with one 0-cell, one 1-generator} \]

These are naturally pointed objects in \(\omega\text{Cat} \).
With pointed objects, it is natural to take smash products \(\wedge \).
The original example is not simply a Gray product.

monoidal category \leadsto 2-category with one 0-cell

PRO \leadsto 2-cat with one 0-cell, one 1-generator

These are naturally pointed objects in ωCat.
With pointed objects, it is natural to take smash products \wedge.

PRO \wedge PRO \leadsto 4-cat with one 0-cell, one 2-generator
Gray products and diagrammatic algebra

The original example is not simply a Gray product.

monoidal category \rightsquigarrow 2-category with one 0-cell

PRO \rightsquigarrow 2-cat with one 0-cell, one 1-generator

These are naturally pointed objects in ωCat.

With pointed objects, it is natural to take smash products \wedge.

PRO \wedge PRO \rightsquigarrow 4-cat with one 0-cell, one 2-generator

Morally this should be a *braided monoidal category*.

But in strict ω-categories, it is a *commutative monoidal category*.

This breaks everything.
2016
2016
2015
2014
2013
2012
2011
2010

...
1991: Mikhail Kapranov and Vladimir Voevodsky publish ∞-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.
1991: Mikhail Kapranov and Vladimir Voevodsky publish \(\infty \)-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.

1998: Carlos Simpson proves that the result is false (without pointing to a specific mistake).
1991: Mikhail Kapranov and Vladimir Voevodsky publish \(\infty \)-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.

1998: Carlos Simpson proves that the result is false (without pointing to a specific mistake).

The core of the argument relies on the fact that “doubly monoidal” degenerates to “commutative” in strict 3-categories (strict Eckmann-Hilton).
...still contained some good ideas

Good takeaway #1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models with weak units

- **2006**: André Joyal and Joachim Kock in dim 3
...still contained some good ideas

Good takeaway #1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models with weak units

- **2006**: André Joyal and Joachim Kock in dim 3
- **2017**: Simon Henry and I come up independently with the *regularity* constraint as a way of avoiding the pitfall of strict Eckmann-Hilton
...still contained some good ideas

Good takeaway #1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models with weak units

- **2006**: André Joyal and Joachim Kock in dim 3
- **2017**: Simon Henry and I come up independently with the *regularity* constraint as a way of avoiding the pitfall of strict Eckmann-Hilton
- **2018**: Henry proves the homotopy hypothesis for “regular \(\omega\)-groupoids”.
Diagrams with spherical boundary

Regularity: only n-diagrams with spherical boundary have a composite
Diagrams with spherical boundary

Regularity: only n-diagrams with *spherical boundary* have a composite

These are the ones whose face poset is the face poset of a regular CW n-ball of the appropriate dimension
Regularity: only \(n \)-diagrams with spherical boundary have a composite

These are the ones whose face poset is the face poset of a regular CW \(n \)-ball of the appropriate dimension

\(\sim \) “are homeomorphic to \(n \)-balls”
Diagrams with spherical boundary

but not
An n-dimensional molecule U in a directed complex has spherical boundary if, for all $k < n$,

$$\partial_k^+ U \cap \partial_k^- U = \partial_{k-1} U.$$
An \(n \)-dimensional molecule \(U \) in a directed complex has **spherical boundary** if, for all \(k < n \),

\[
\partial_k^+ U \cap \partial_k^- U = \partial_{k-1} U.
\]

A directed complex is **regular** if all atoms have spherical boundary.
An \(n \)-dimensional molecule \(U \) in a directed complex has spherical boundary if, for all \(k < n \),

\[
\partial_k^+ U \cap \partial_k^- U = \partial_{k-1} U.
\]

A directed complex is regular if all atoms have spherical boundary.

- The geometric realisation* of a regular directed complex \(P \) is a regular CW complex with one cell for each atom of \(P \).
An n-dimensional molecule U in a directed complex has spherical boundary if, for all $k < n$,

$$\partial_k^+ U \cap \partial_k^- U = \partial_{k-1} U.$$

A directed complex is regular if all atoms have spherical boundary.

- The geometric realisation* of a regular directed complex P is a regular CW complex with one cell for each atom of P.

* simplicial nerve of poset + realisation of simplicial sets
More in general, let C be a class of molecules closed under isomorphism, boundaries, and inclusion of atoms, and included in the class S of (regular) molecules with spherical boundary.
More in general, let C be a class of molecules closed under isomorphism, boundaries, and inclusion of atoms, and included in the class S of (regular) molecules with spherical boundary.

- A C-directed complex is a directed complex whose atoms are all in C.

...and more good ideas

Good takeaway #2 from Kapranov-Voevodsky:

Diagrammatic sets
Kapranov-Voevodsky pass from spaces to ω-categories through an intermediate notion of "spaces locally modelled on combinatorial pasting diagrams", they call diagrammatic sets.
...and more good ideas

Good takeaway #2 from Kapranov-Voevodsky:

Diagrammatic sets
...and more good ideas

Good takeaway #2 from Kapranov-Voevodsky:

Diagrammatic sets

Kapranov-Voevodsky pass from spaces to ω-categories through an intermediate notion of “spaces locally modelled on combinatorial pasting diagrams”, they call diagrammatic sets.
Diagrammatic sets

- **2019**: Kapranov-Voevodsky’s equivalence of “Kan diagrammatic sets” and spaces is “morally correct”
2019: Kapranov-Voevodsky’s equivalence of “Kan diagrammatic sets” and spaces is “morally correct”

...except they chose the wrong class of combinatorial diagrams, not closed under most of the operations they perform.
Kapranov-Voevodsky’s equivalence of “Kan diagrammatic sets” and spaces is “morally correct”

...except they chose the wrong class of combinatorial diagrams, not closed under most of the operations they perform.

Regular molecules with spherical boundary works.
But we take a more axiomatic approach.
A map $f : P \to Q$ of C-directed complexes is a function that satisfies

$$\partial_n^\alpha f(x) = f(\partial_n^\alpha x)$$

for all $x \in P$, $n \in \mathbb{N}$, and $\alpha \in \{+, -\}$.
A map $f : P \to Q$ of C-directed complexes is a function that satisfies
\[\partial_n^\alpha f(x) = f(\partial_n^\alpha x) \]
for all $x \in P$, $n \in \mathbb{N}$, and $\alpha \in \{+, -\}$.

A map factors essentially uniquely as a surjection followed by an inclusion.
A map $f : P \to Q$ of C-directed complexes is a function that satisfies

$$\partial_n^\alpha f(x) = f(\partial_n^\alpha x)$$

for all $x \in P$, $n \in \mathbb{N}$, and $\alpha \in \{+, -\}$.

A map factors essentially uniquely as a surjection followed by an inclusion.

Let $f : P \to Q$ be a map. Then f is a closed, order-preserving, dimension-non-increasing function of the underlying posets.
A \textit{\(C\)-functor} \(f : P \leftrightarrow Q\) of \(C\)-directed complexes is a function \(f : \mathcal{C}\ell(P) \to \mathcal{C}\ell(Q)\) such that

1. \(f\) preserves all unions and binary intersections,
2. \(\partial_n^\alpha f(\text{cl}\{x\}) = f(\partial_n^\alpha x)\), and
3. \(f(\text{cl}\{x\})\) is a \(C\)-molecule

for all \(x \in P\), \(n \in \mathbb{N}\), and \(\alpha \in \{+, -\}\).
A \mathcal{C}-functor $f : P \leftrightarrow Q$ of \mathcal{C}-directed complexes is a function $f : \mathcal{C}\ell(P) \to \mathcal{C}\ell(Q)$ such that:

1. f preserves all unions and binary intersections,
2. $\partial_n^\alpha f(\text{cl}\{x\}) = f(\partial_n^\alpha x)$, and
3. $f(\text{cl}\{x\})$ is a \mathcal{C}-molecule

for all $x \in P$, $n \in \mathbb{N}$, and $\alpha \in \{+, -\}$.

A class \mathcal{C} is algebraic if \mathcal{C}-functors compose. We assume that \mathcal{C} is algebraic.
A \mathcal{C}-functor $f : P \leftrightarrow Q$ of \mathcal{C}-directed complexes is a function $f : \mathcal{C}\ell(P) \to \mathcal{C}\ell(Q)$ such that

1. f preserves all unions and binary intersections,
2. $\partial_n^\alpha f(\text{cl}\{x\}) = f(\partial_n^\alpha x)$, and
3. $f(\text{cl}\{x\})$ is a \mathcal{C}-molecule

for all $x \in P$, $n \in \mathbb{N}$, and $\alpha \in \{+, -\}$.

A class \mathcal{C} is algebraic if \mathcal{C}-functors compose. We assume that \mathcal{C} is algebraic.

A \mathcal{C}-functor factors e.u. as a subdivision followed by an inclusion.
Technical interlude #3a: Morphisms of directed complexes

A span of inclusions of subcategories:

\[\text{DCpx}^C_{\text{in}} \quad \exists \quad \text{DCpx}^C \quad \exists \quad \text{DCpx}^C_{\text{fun}} \]
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:

1. C contains \bullet;

The class S is convenient!
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:

1. C contains \bullet;
2. if $U \in C$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in C$;
Technical interlude #3b: Convenient classes

Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:

1. C contains \bullet;
2. if $U \in C$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in C$;
3. if $U, V \in C$ and $U \Rightarrow V$ is defined, then $U \Rightarrow V \in C$;
4. if $U_1, U_2 \in C$ and the pasting $U_1 \cup U_2$ along $V \subset \partial U_2$ is defined, then $U_1 \cup U_2 \in C$;
5. if $U \in C$ and $V \subseteq \partial U$ is a closed subset, then $O_1 \otimes U / \sim V \in C$;
6. if $U, V \in C$, then $U \otimes V \in C$ and $U \star V \in C$.

The class S is convenient!
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:

1. C contains \bullet;

2. if $U \in C$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in C$;

3. if $U, V \in C$ and $U \Rightarrow V$ is defined, then $U \Rightarrow V \in C$;

4. if $U_1, U_2 \in C$ and the pasting $U_1 \cup U_2$ along $V \subseteq \partial^\alpha U_2$ is defined, then $U_1 \cup U_2 \in C$;

5. if $U \in C$ and $V \subseteq \partial U$ is a closed subset, then $O_1 \otimes U / \sim V \in C$;

6. if $U, V \in C$, then $U \otimes V \in C$ and $U \star V \in C$.

The class S is convenient!
Technical interlude #3b: Convenient classes

Let $\mathcal{C} \subseteq \mathcal{S}$ be an algebraic class of molecules with spherical boundary.

We say that \mathcal{C} is a \textit{convenient} if it satisfies the following axioms:

1. \mathcal{C} contains \bullet;
2. if $U \in \mathcal{C}$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in \mathcal{C}$;
3. if $U, V \in \mathcal{C}$ and $U \Rightarrow V$ is defined, then $U \Rightarrow V \in \mathcal{C}$;
4. if $U_1, U_2 \in \mathcal{C}$ and the pasting $U_1 \cup U_2$ along $V \subseteq \partial^\alpha U_2$ is defined, then $U_1 \cup U_2 \in \mathcal{C}$;
5. if $U \in \mathcal{C}$ and $V \subseteq \partial U$ is a closed subset, then $O^1 \otimes U/\sim_V \in \mathcal{C}$;

The class \mathcal{S} is convenient!
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a *convenient* if it satisfies the following axioms:

1. C contains \bullet;
2. if $U \in C$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in C$;
3. if $U, V \in C$ and $U \Rightarrow V$ is defined, then $U \Rightarrow V \in C$;
4. if $U_1, U_2 \in C$ and the pasting $U_1 \cup U_2$ along $V \subseteq \partial^\alpha U_2$ is defined, then $U_1 \cup U_2 \in C$;
5. if $U \in C$ and $V \subseteq \partial U$ is a closed subset, then $O^1 \otimes U/\sim_V \in C$;
6. if $U, V \in C$, then $U \otimes V \in C$ and $U \star V \in C$.

The class S is convenient!
Let $C \subseteq S$ be an algebraic class of molecules with spherical boundary.

We say that C is a convenient if it satisfies the following axioms:

1. C contains \bullet;
2. if $U \in C$ and $J \subseteq \mathbb{N} \setminus \{0\}$, then $D_J U \in C$;
3. if $U, V \in C$ and $U \Rightarrow V$ is defined, then $U \Rightarrow V \in C$;
4. if $U_1, U_2 \in C$ and the pasting $U_1 \cup U_2$ along $V \subseteq \partial^\alpha U_2$ is defined, then $U_1 \cup U_2 \in C$;
5. if $U \in C$ and $V \subseteq \partial U$ is a closed subset, then $O^1 \otimes U/\sim_V \in C$;
6. if $U, V \in C$, then $U \otimes V \in C$ and $U \star V \in C$.

The class S is convenient!
We fix a convenient class of molecules \mathcal{C}.
We fix a convenient class of molecules \mathcal{C}.

We write \mathcal{C} for a skeleton of the full subcategory of $\mathbf{DCpx}^\mathcal{C}$ on the atoms of every dimension.
Diagrammatic sets

We fix a convenient class of molecules \mathcal{C}.

We write \mathcal{C}_{\bullet} for a skeleton of the full subcategory of $\text{DCpx}^\mathcal{C}$ on the atoms of every dimension.

- A *diagrammatic set* X is a presheaf on \mathcal{C}_{\bullet}.
Diagrammatic sets

We fix a convenient class of molecules \mathcal{C}.

We write \mathcal{C} for a skeleton of the full subcategory of $\mathbf{DCpx}^\mathcal{C}$ on the atoms of every dimension.

- A *diagrammatic set* X is a presheaf on \mathcal{C}.

The Yoneda embedding $\mathcal{C} \hookrightarrow \mathcal{C}\text{Set}$ extends to an embedding $\mathbf{DCpx}^\mathcal{C} \hookrightarrow \mathcal{C}\text{Set}$.
Diagrammatic sets

We fix a convenient class of molecules \mathcal{C}.

We write \mathcal{O} for a skeleton of the full subcategory of $\mathbf{DCpx}^\mathcal{C}$ on the atoms of every dimension.

- A diagrammatic set X is a presheaf on \mathcal{O}.

The Yoneda embedding $\mathcal{O} \hookrightarrow \mathcal{O}\mathbf{Set}$ extends to an embedding $\mathbf{DCpx}^\mathcal{C} \hookrightarrow \mathcal{O}\mathbf{Set}$.

- A diagram in X is a morphism $x : U \rightarrow X$ where U is a molecule.
Diagrammatic sets

We fix a convenient class of molecules \mathcal{C}.

We write \otimes for a skeleton of the full subcategory of \mathbf{DCpx}^C on the atoms of every dimension.

- A *diagrammatic set* X is a presheaf on \otimes.

The Yoneda embedding $\otimes \hookrightarrow \otimes \mathbf{Set}$ extends to an embedding $\mathbf{DCpx}^C \hookrightarrow \otimes \mathbf{Set}$.

- A *diagram* in X is a morphism $x : U \to X$ where U is a molecule.

- It is *composable* if $U \in \mathcal{C}$, and a *cell* if U is an atom.
Fixing half of KV’s proof

- A Kan diagrammatic set has fillers of all “horns of atoms”.

[9x247]Fixing half of KV’s proof

[165x190]A Kan diagrammatic set has fillers of all “horns of atoms”.
Fixing half of KV’s proof

- A *Kan diagrammatic set* has fillers of all “horns of atoms”.
- There is a combinatorial notion of homotopy groups of a pointed Kan diagrammatic set.
A Kan diagrammatic set has fillers of all “horns of atoms”.

There is a combinatorial notion of homotopy groups of a pointed Kan diagrammatic set.

The geometric realisation of DCpx^C extends to a realisation $|−|$ of $\mathcal{C}\text{Set}$, with a left adjoint S.
Fixing half of KV’s proof

- A *Kan diagrammatic set* has fillers of all “horns of atoms”.
- There is a combinatorial notion of homotopy groups of a pointed Kan diagrammatic set.
- The geometric realisation of \mathbf{DCpx}^C extends to a realisation $|−|$ of $\mathcal{O}\mathbf{Set}$, with a left adjoint S.
- For all spaces X, the diagrammatic set SX is Kan.
Fixing half of KV’s proof

- A Kan diagrammatic set has fillers of all “horns of atoms”.
- There is a combinatorial notion of homotopy groups of a pointed Kan diagrammatic set.
- The geometric realisation of DCpx^C extends to a realisation $|__|$ of $\mathcal{C}\text{Set}$, with a left adjoint S.
- For all spaces X, the diagrammatic set SX is Kan.

There is a realisation of Kan diagrammatic sets that is surjective on homotopy types, together with natural isomorphisms between the homotopy groups of a pointed Kan diagrammatic set and those of its realisation.
2019
2019
2018
2017
2016
2019
2018
2017
2016
2015
2014
2013
...

1999
1998
1997
1996
1995
1994
1993
2019
2018
2017
2016
2015
2014
2013
...
...
1999
1998
1993: Albert Burroni’s *Higher-dimensional word problems* proposes the theory of polygraphs as an arena to “unify all rewriting theories”
The silver age of strict ω-categories

- **1993**: Albert Burroni’s *Higher-dimensional word problems* proposes the theory of polygraphs as an arena to “unify all rewriting theories”

This started the French school of rewriting with polygraphs (Yves Lafont, Philippe Malbos, Yves Guiraud, Samuel Mimram...) and related work on ω-categories (François Métayer, Georges Maltsiniotis, Dimitri Ara...)
The silver age of strict ω-categories

- **1993**: Albert Burroni’s *Higher-dimensional word problems* proposes the theory of polygraphs as an arena to “unify all rewriting theories”

This started the French school of rewriting with polygraphs (Yves Lafont, Philippe Malbos, Yves Guiraud, Samuel Mimram...) and related work on ω-categories (François Métayer, Georges Maltsiniotis, Dimitri Ara...) which brought me to Paris.
The silver age of strict ω-categories

Many of the core ideas in polygraphic rewriting rest on an analogy between

polygraphs and *CW complexes*,
“presented ω-categories” and “presented spaces”.
The silver age of strict ω-categories

Many of the core ideas in polygraphic rewriting rest on an analogy between

polygraphs and CW complexes,
“presented ω-categories” and “presented spaces”.

This analogy is limited by the fact that strict ω-categories do not model all spaces.
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc.
2. "Essential" separation between diagrams and cells.
3. Analogy with CW complexes becomes a functor.
4. Diagrams can be interpreted in models of all homotopy types for rewriting homotopies.
5. Gray products and joins are easily defined and computed.
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc.
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc.
2. “Essential” separation between diagrams and cells.
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc
2. “Essential” separation between diagrams and cells
3. Analogy with CW complexes becomes a functor
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc
2. “Essential” separation between diagrams and cells
3. Analogy with CW complexes becomes a functor
4. Diagrams can be interpreted in models of all homotopy types, for rewriting homotopies
A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1. Better combinatorial grip on rewriting operations like substitution, surgery of diagrams, etc
2. “Essential” separation between diagrams and cells
3. Analogy with CW complexes becomes a functor
4. Diagrams can be interpreted in models of all homotopy types, for rewriting homotopies
5. Gray products and joins are easily defined and computed
A suggestion: rewriting in diagrammatic sets

The smash product of pointed diagrammatic sets produces this equation, the way it should.
Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.
Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

- There is a natural coinductive definition of equivalence diagram in a diagrammatic set.
Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

- There is a natural coinductive definition of equivalence diagram in a diagrammatic set.

- A diagrammatic set where every composable diagram is connected by an equivalence to a single cell — its “weak composite” — is a reasonable notion of weak ω-category.
Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

- There is a natural coinductive definition of equivalence diagram in a diagrammatic set.

- A diagrammatic set where every composable diagram is connected by an equivalence to a single cell — its “weak composite” — is a reasonable notion of weak ω-category.

If $C = S$, we can interpret every regular diagram and compose every diagram with spherical boundary.
Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

- There is a natural coinductive definition of equivalence diagram in a diagrammatic set.
- A diagrammatic set where every composable diagram is connected by an equivalence to a single cell — its “weak composite” — is a reasonable notion of weak ω-category.

If $C = S$, we can interpret every regular diagram and compose every diagram with spherical boundary.

“Stuff” a diagram with units and it becomes regular.
If \((x_1, x_2) \Rightarrow [x_1, x_2]\) exhibits \([x_1, x_2]\) as a weak composite:

\[
\forall \ y
\]

And this equivalence should be witnessed by 3-dimensional equivalence diagrams...
If \((x_1, x_2) \Rightarrow [x_1, x_2]\) exhibits \([x_1, x_2]\) as a weak composite:

\[
\forall \quad y
\]

\[
\xymatrix{ & y \\
 x_1 \ar[ur] & x_2 \ar[ur] \\
 & x_1 \ar[ur] & x_2 \ar[ur]
}
\]

And this equivalence should be witnessed by 3-dimensional equivalence diagrams... whose definition involves 4-dimensional equivalence diagrams, etc.
Equivalences and weak composites

If \((x_1, x_2) \Rightarrow [x_1, x_2]\) exhibits \([x_1, x_2]\) as a weak composite:

\[
\forall y \exists z
\]

And this equivalence should be witnessed by 3-dimensional equivalence diagrams, etc.
If \((x_1, x_2) \Rightarrow \lfloor x_1, x_2 \rfloor\) exhibits \([x_1, x_2]\) as a weak composite:

\[
\forall y \exists z \sim [x_1, x_2]
\]

And this equivalence should be witnessed by 3-dimensional equivalence diagrams... whose definition involves 4-dimensional equivalence diagrams, etc.
If \((x_1, x_2) \Rightarrow [x_1, x_2]\) exhibits \([x_1, x_2]\) as a weak composite:

And this equivalence should be witnessed by \textbf{3-dimensional equivalence diagrams}...
If \((x_1, x_2) \Rightarrow \lfloor x_1, x_2 \rfloor\) exhibits \([x_1, x_2]\) as a weak composite:

\[
\forall \quad \exists
\]

And this equivalence should be witnessed by \textbf{3-dimensional equivalence diagrams}...

whose definition involves 4-dimensional equivalence diagrams, etc
Properties of equivalences:

- All *degenerate* composable diagrams are equivalences.
Equivalences and weak composites

Properties of equivalences:

- All _degenerate_ composable diagrams are equivalences.
- Equivalences are closed under higher equivalence.
Properties of equivalences:

- All *degenerate* composable diagrams are equivalences.
- Equivalences are closed under higher equivalence.
- The relation “$x \simeq y$ iff there is an equivalence $e : x \Rightarrow y$” is an equivalence relation.
Equivalences and weak composites

Properties of equivalences:

■ All *degenerate* composable diagrams are equivalences.
■ Equivalences are closed under higher equivalence.
■ The relation “$x \simeq y$ iff there is an equivalence $e : x \Rightarrow y$” is an equivalence relation.
■ Equivalences coincide with *weakly invertible* diagrams.
Equivalences and weak composites

Properties of equivalences:

- All *degenerate* composable diagrams are equivalences.
- Equivalences are closed under higher equivalence.
- The relation “\(x \simeq y \) iff there is an equivalence \(e : x \Rightarrow y \)” is an equivalence relation.
- Equivalences coincide with *weakly invertible* diagrams.
- Morphisms of diagrammatic sets preserve equivalences.
Properties of equivalences:

- All *degenerate* composable diagrams are equivalences.
- Equivalences are closed under higher equivalence.
- The relation “$x \simeq y$ iff there is an equivalence $e : x \Rightarrow y$” is an equivalence relation.
- Equivalences coincide with *weakly invertible* diagrams.
- Morphisms of diagrammatic sets preserve equivalences.
- In a Kan diagrammatic set, all composable diagrams are equivalences.
A semistrict algebraic model

In the span

\[
\begin{array}{ccc}
\text{DCpx}^C_{in} & \xleftarrow{\quad} & \text{DCpx}^C_{fun} \\
\text{DCpx}^C & \xleftarrow{\quad} &
\end{array}
\]

the two functors preserve the set Γ of colimit diagrams containing the initial object and all pushouts of inclusions.
A semistrict algebraic model

In the span

\[
\begin{array}{ccc}
\text{Set} & \xrightarrow{\text{DCpx}_{\text{in}}^{C}} & \text{DCpx}_{\text{fun}}^{C} \\
\downarrow & & \downarrow \\
\text{DCpx}^{C} & \xleftarrow{} & \text{DCpx}^{C}
\end{array}
\]

the two functors preserve the set Γ of colimit diagrams containing the initial object and all pushouts of inclusions.

\[\text{Set}\] is equivalent to the category $\text{PSh}_{\Gamma}(\text{DCpx}_{\text{fun}}^{C})$ of Γ-continuous presheaves on DCpx^{C}.
Applying $PSh_{Γ}(-)$, we obtain a cospan

PolC is a category of “combinatorial C-polygraphs” (only faces, no units or compositions)

ωCat is a category of “non-unital C-$ω$-categories” (only faces and compositions, no units)
Applying $\text{PSh}_\Gamma(-)$, we obtain a cospan

$$
\begin{array}{ccc}
\text{Pol}^C & \xleftarrow{\otimes \text{Set}} & \text{Set} \\
\downarrow & & \downarrow \\
\omega \text{Cat}_{nu} & \xrightarrow{\omega \text{Cat}_{nu}^C} & \omega \text{Cat}_{nu}^C
\end{array}
$$

of restriction functors, where $\text{Pol}^C := \text{PSh}_\Gamma(\text{DCpx}_{in}^C)$ and $\omega \text{Cat}_{nu}^C := \text{PSh}_\Gamma(\text{DCpx}_{fun}^C)$.
A semistrict algebraic model

Applying $\text{PSh}_\Gamma(-)$, we obtain a cospan

$$\begin{array}{ccc}
\text{Set} & \overset{\text{Pol}^C}{\longrightarrow} & \text{ωCat}_{nu}^C \\
\downarrow & & \downarrow \\
\text{Pol}^C & \overset{\text{ωCat}_{nu}^C}{\longleftarrow} & \text{ωCat}_{nu}^C
\end{array}$$

of restriction functors, where $\text{Pol}^C := \text{PSh}_\Gamma(\text{DCpx}_{in}^C)$ and $\text{ωCat}_{nu}^C := \text{PSh}_\Gamma(\text{DCpx}_{fun}^C)$.

- Pol^C is a category of “combinatorial \mathcal{C}-polygraphs” (only faces, no units or compositions)
A semistrict algebraic model

Applying $\text{PSh}_\Gamma(-)$, we obtain a cospan

$$
\begin{array}{ccc}
\text{Pol}^C & \xleftarrow{\odot \text{Set}} & \omega\text{Cat}^C_{nu} \\
\text{Pol}^C & \xrightarrow{\omega\text{Cat}^C_{nu}} & \text{Pol}^C
\end{array}
$$

of restriction functors, where $\text{Pol}^C := \text{PSh}_\Gamma(\text{DCpx}^C_{in})$ and $\omega\text{Cat}^C_{nu} := \text{PSh}_\Gamma(\text{DCpx}^C_{fun})$.

- Pol^C is a category of “combinatorial C-polygraphs” (only faces, no units or compositions)
- ωCat^C_{nu} is a category of “non-unital C-ω-categories” (only faces and compositions, no units)
Units and compositions interact nicely *separately* with faces. If they are let to interact fully with each other, they produce strict Eckmann-Hilton.
Units and compositions interact nicely separately with faces. If they are let to interact fully with each other, they produce strict Eckmann-Hilton.

- Idea: put them together with only a modicum of interaction.
A semistrict algebraic model

A *diagrammatic* ω-*category* has a separate “diagrammatic set” and “non-unital ω-category” structure on the same underlying combinatorial polygraph, with a compatibility condition ensuring that certain composites of units are units on composites.
A semistrict algebraic model

A *diagrammatic* ω-category has a separate “diagrammatic set” and “non-unital ω-category” structure on the same underlying combinatorial polygraph, with a compatibility condition ensuring that certain composites of units are units on composites.

- $\otimes \text{Cat}$, $\otimes \text{Set}$, ωCat_{nu}^C are all Eilenberg-Moore categories of finitary monads on Pol^C, and all the restriction functors have left adjoints.
A semistrict algebraic model

A *diagrammatic ω-category* has a separate “diagrammatic set” and “non-unital ω-category” structure on the same underlying combinatorial polygraph, with a compatibility condition ensuring that certain composites of units are units on composites.

- ⊗Cat, ⊗Set, ωCat_{nu} are all Eilenberg-Moore categories of finitary monads on Pol^{C}, and all the restriction functors have left adjoints.
- The underlying diagrammatic set of a diagrammatic ω-category has weak composites.
A semistrict algebraic model

A *diagrammatic* ω-*category* has a separate “diagrammatic set” and “non-unital ω-*category*” structure on the same underlying combinatorial polygraph, with a compatibility condition ensuring that certain composites of units are units on composites.

- $\mathcal{O} \mathbf{Cat}$, $\mathcal{O} \mathbf{Set}$, $\omega \mathbf{Cat}^C_{nu}$ are all Eilenberg-Moore categories of finitary monads on \mathbf{Pol}^C, and all the restriction functors have left adjoints.

- The underlying diagrammatic set of a diagrammatic ω-*category* has weak composites.

Idea: take a unit on a composable diagram, and fully compose the boundary only on one side.
A semistrict algebraic model

Say that C is *algebraically free* if all C-directed complexes present polygraphs.
A semistrict algebraic model

Say that C is *algebraically free* if all C-directed complexes present polygraphs.

If C is algebraically free, then ωCat embeds as a full subcategory into $\otimes\text{Cat}$.
Two conjectures

1. Conjecture: If X is a diagrammatic set with weak composites, its inclusion in the free diagrammatic ω-category on X is a weak equivalence.
Two conjectures

1. Conjecture: If X is a diagrammatic set with weak composites, its inclusion in the free diagrammatic ω-category on X is a weak equivalence.

2. Conjecture: Every convenient class C is algebraically free.
Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.
Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.
Higher-dimensional rewriting is packed with notions suggestive of a *directed homotopy theory*.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link between rewriting and homotopy theory tighter, on our way to figuring out what the right notions are.
Directed homotopy theory: a tinkerer’s approach

Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link between rewriting and homotopy theory tighter, on our way to figuring out what the right notions are.

Work in progress:
a model of computation in diagrammatic sets based on a “directed homotopy extension property”.
Thanks for listening!