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CW complexes and polygraphs

Higher categories as directed spaces

Top wCat
classical model structure LMW model structure
cofibrants are CW complexes cofibrants are polygraphs
gluing map dx : D" — X("=1) | boundaries 9t x, 9 x € X("—1)
cartesian product tensor product

n-polygraph ® k-polygraph = (n+ k)-polygraph
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Tensor products and universal algebra

mx my

(

Distributive laws of monads

maps Mon ® Mon — Cat
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A problem with strictness

The equations of bialgebras can be found in a quotient of
Mon @ Mon (a kind of smash product)...

but the obvious “quotient by a subspace” leads to degeneracy!

Cells with degenerate boundaries are ill-behaved in strict
w-categories
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A related problem

Tensor products are hard to calculate with the algebra of strict
w-categories

A link between the two problems:

(Makkai-Zawadowski)

Polygraphs and cellular maps do not form a presheaf category

Find a shape category for a class of polygraphs that
is “expressive enough”

has easily computed tensor products
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Incidence posets

Tensor products are easily computed for spaces characterised by
their oriented incidence poset

T

N

<

In the undirected case: regular CW complexes

b
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CW posets

Two combinatorial criteria (Bjorner, Wachs):
Thinness ~~ the space is locally manifold-like

Dual CL-shellability ~~ the space is globally sphere or
disk-like

We need stronger conditions in the directed case: both input and
output k-boundaries must be homeomorphic to k-disks, for all k



Globular posets

1. Oriented thinness: all length-2 intervals [x, y] are of the form

RN
V4 Vip)
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with a181 = —anfo
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Globular posets

U C X pure, closed, n-dimensional, a € {+, —}

AU = {x € U] dim(x) = n—1and, for all y € U,

if y — x, then y %5 x}

U = cl(A*V), oU:=otuuo U

We define when U is a globe, inductively on dimension and
number of maximal elements
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Globular posets

U = {x} is a 0-dimensional globe

U is an n-dimensional globe when 97U, 0~ U are
(n — 1)-dimensional globes, and either

m U has a single n-dimensional element (atomic globe), or

m U = Ui U U, (non-trivially), Uy, Uy are n-dimensional globes,
and
UnNnlU,=0U N0 Uy

is an (n — 1)-dimensional globe
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Globular posets

2. Globularity: for all x € X, cl{x} is a globe

Globular poset

An oriented poset satisfying oriented thinness and globularity

W




Results on globular posets

X n-globe, oo € {+,—}. Then

9% X) = 0*(9™ X).



Results on globular posets

The underlying poset of a globular poset X is the incidence poset
of a regular CW complex.

~

for all n-globes U, |U| is an n-disk, and |OU| an (n — 1)-sphere



Results on globular posets

If X,Y are globular posets, X ® Y is a globular poset.

(The underlying poset of X ® Y is just X x Y.)



A couple of open questions

A candidate for the shape category: globes (one per isomorphism
class) and inclusions of sub-globes. Presheaves are called regular

polygraphs
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Recursive enumeration of isomorphism classes of globes?



A couple of open questions

A candidate for the shape category: globes (one per isomorphism
class) and inclusions of sub-globes. Presheaves are called regular

polygraphs

I ——
Recursive enumeration of isomorphism classes of globes?

Conjecture

Globular posets are directed complexes (as in Steiner 1993)

~> Translation into algebra of w-categories
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Bridging the gap with string diagrams

Two ways of looking at string diagrams:

o—>e

RN

Duals of pasting diagrams
Pasting diagrams filled up with (possibly weak) unit cells
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Coherence via universality (Hermida): weak higher algebraic
structure is subsumed by cells satisfying universal properties



Weakness via representability

Coherence via universality (Hermida): weak higher algebraic
structure is subsumed by cells satisfying universal properties

I ——
For compaositions, overlap with opetopic higher categories
(Baez-Dolan); but units need a different approach!

Worked out in low dimensions, with algebraic strict composition of
2-cells (regular poly-bicategories)



Saavedra units

(For simplicity: “multicategorical”, one-sided version)

ly:x > xisaunitifforalla: x — vy, b:z— x, there exist

that exhibit a as both 1, ® a and 1,——a, and b as both b® 1,
and bo—1,

Leads to the correct bicategorical units (triangle equations, etc.)



From equivalences to units

e : x — x' is left divisible if, for all a: x — y, a : X’ — y, there

exist
X a y X e®a y
° ° ° ®
/yrega /w\le Ed
@ e—oga @
[ ] 1 [
x!' x!

that exhibit a as e ® (e—a) and &’ as e— (e ® &')



From equivalences to units

e : x — x' is right divisible if, for all b: z — x, b’ : z — X/, there

exist
z b x b®e
[ ] [ ]
/w\eé’b/ b e
bo—e €
[ 1]
X

that exhibit b’ as (b'o—e) @ e and b as (b ® e)o—e



From equivalences to units
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From equivalences to units

|
e : x — x' is divisible if it is right and left divisible.

~> a notion of equivalence independent of the existence of units

(similar, but not the same as universal 1-cells in opetopic sets)
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From equivalences to units

The following are equivalent in a regular poly-bicategory:

m for all O-cells x, there exists a unit 1, : x — x;

m for all O-cells x, there exist 0-cells X, x and divisible 1-cells
e:x—Xx, €e:x—x.

If enough equivalences exist, units exist!
(Relation with Univalence?)



What is to be done?

Work in progress: representability in arbitrary dimensions

|
Elucidate the combinatorics of shapes and of divisibility to obtain
better semi-strictification theorems



