A combinatorial-topological shape category for polygraphs

Amar Hadzihasanovic

University of Oxford

Oxford, 8 September 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Top ωCat

Top classical model structure ω Cat LMW model structure

・ロト・西ト・西ト・西ト・日・

Top classical model structure cofibrants are CW complexes ω**Cat** LMW model structure cofibrants are polygraphs

Top classical model structure cofibrants are CW complexes gluing map $\partial x : \partial D^n \to X^{(n-1)}$ ω **Cat** LMW model structure cofibrants are polygraphs boundaries $\partial^+ x, \partial^- x \in X^{(n-1)}$

Top classical model structure cofibrants are CW complexes gluing map $\partial x : \partial D^n \to X^{(n-1)}$ cartesian product ωCat LMW model structure cofibrants are polygraphs boundaries $\partial^+ x, \partial^- x \in X^{(n-1)}$ tensor product

Top classical model structure cofibrants are CW complexes gluing map $\partial x : \partial D^n \to X^{(n-1)}$ cartesian product ω **Cat** LMW model structure cofibrants are polygraphs boundaries $\partial^+ x, \partial^- x \in X^{(n-1)}$ tensor product

n-polygraph \otimes k-polygraph = (n + k)-polygraph

Tensor products are omnipresent in (higher-dimensional) universal algebra

(QPL, HDRA 2016; Chapter 2 of my thesis)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tensor products are omnipresent in (higher-dimensional) universal algebra

(QPL, HDRA 2016; Chapter 2 of my thesis)

Tensor products are omnipresent in (higher-dimensional) universal algebra

(QPL, HDRA 2016; Chapter 2 of my thesis)

Tensor products and universal algebra

A quotient of $I \otimes I \otimes I \otimes I$

(日)、

Tensor products and universal algebra

Distributive laws of monads

maps $\mathit{Mon} \otimes \mathit{Mon} \rightarrow \mathbf{Cat}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The equations of **bialgebras** can be found in a quotient of $Mon \otimes Mon$ (a kind of smash product)...

The equations of **bialgebras** can be found in a quotient of $Mon \otimes Mon$ (a kind of smash product)...

but the obvious "quotient by a subspace" leads to degeneracy!

The equations of **bialgebras** can be found in a quotient of $Mon \otimes Mon$ (a kind of smash product)...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

but the obvious "quotient by a subspace" leads to degeneracy!

Cells with degenerate boundaries are ill-behaved in strict $\omega\text{-categories}$

A related problem

Tensor products are hard to calculate with the algebra of strict $\omega\text{-}\mathsf{categories}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Tensor products are hard to calculate with the algebra of strict $\omega\text{-}\mathsf{categories}$

A link between the two problems:

(Makkai-Zawadowski)

Polygraphs and cellular maps do not form a presheaf category

Tensor products are hard to calculate with the algebra of strict $\omega\text{-}categories$

A link between the two problems:

(Makkai-Zawadowski)

Polygraphs and cellular maps do not form a presheaf category

Find a shape category for a class of polygraphs that

1 is "expressive enough"

Tensor products are hard to calculate with the algebra of strict $\omega\text{-}\mathsf{categories}$

A link between the two problems:

(Makkai-Zawadowski)

Polygraphs and cellular maps do not form a presheaf category

Find a shape category for a class of polygraphs that

- 1 is "expressive enough"
- 2 has easily computed tensor products

Tensor products are easily computed for spaces characterised by their oriented incidence poset

(日)、

э

Tensor products are easily computed for spaces characterised by their oriented incidence poset

In the undirected case: regular CW complexes

Two combinatorial criteria (Björner, Wachs):

1 Thinness \rightsquigarrow the space is locally manifold-like

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two combinatorial criteria (Björner, Wachs):

- **1** Thinness \rightsquigarrow the space is locally manifold-like
- 2 Dual CL-shellability ~>> the space is globally sphere or disk-like

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two combinatorial criteria (Björner, Wachs):

- **1** Thinness \rightsquigarrow the space is locally manifold-like
- 2 Dual CL-shellability ~> the space is globally sphere or disk-like

We need stronger conditions in the directed case: both input and output k-boundaries must be homeomorphic to k-disks, for all k

1. Oriented thinness: all length-2 intervals [x, y] are of the form

with $\alpha_1\beta_1 = -\alpha_2\beta_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $U \subseteq X$ pure, closed, *n*-dimensional, $\alpha \in \{+, -\}$

$$\Delta^{lpha}U := \{x \in U \mid \dim(x) = n-1 \text{ and, for all } y \in U,$$

if $y \longrightarrow x$, then $y \stackrel{lpha}{\longrightarrow} x\}$

 $U \subseteq X$ pure, closed, *n*-dimensional, $\alpha \in \{+, -\}$

$$\Delta^{lpha}U := \{x \in U \mid \dim(x) = n-1 \text{ and, for all } y \in U\}$$

if $y \longrightarrow x$, then $y \stackrel{lpha}{\longrightarrow} x\}$

$$\partial^{\alpha}U := \operatorname{cl}(\Delta^{\alpha}U), \qquad \partial U := \partial^{+}U \cup \partial^{-}U$$

 $U \subseteq X$ pure, closed, *n*-dimensional, $\alpha \in \{+, -\}$

$$\Delta^{lpha}U := \{x \in U \mid \dim(x) = n-1 \text{ and, for all } y \in U,$$

if $y \longrightarrow x$, then $y \stackrel{lpha}{\longrightarrow} x\}$

$$\partial^{\alpha}U := \operatorname{cl}(\Delta^{\alpha}U), \qquad \partial U := \partial^{+}U \cup \partial^{-}U$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

We define when U is a **globe**, inductively on dimension and number of maximal elements

$U = \{x\}$ is a 0-dimensional globe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $U = \{x\}$ is a 0-dimensional globe
- *U* is an *n*-dimensional globe when $\partial^+ U$, $\partial^- U$ are (n-1)-dimensional globes, and either
 - U has a single *n*-dimensional element (**atomic** globe), or

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $U = \{x\}$ is a 0-dimensional globe

U is an *n*-dimensional globe when $\partial^+ U$, $\partial^- U$ are (n-1)-dimensional globes, and either

- U has a single n-dimensional element (atomic globe), or
- $U = U_1 \cup U_2$ (non-trivially), U_1, U_2 are *n*-dimensional globes, and

$$U_1 \cap U_2 = \partial^{\alpha} U_1 \cap \partial^{-\alpha} U_2$$

(日) (同) (三) (三) (三) (○) (○)

is an (n-1)-dimensional globe

Globular poset

An oriented poset satisfying oriented thinness and globularity

Globular poset

An oriented poset satisfying oriented thinness and globularity

Globular poset

An oriented poset satisfying oriented thinness and globularity

Globular poset

An oriented poset satisfying oriented thinness and globularity

Globular poset

An oriented poset satisfying oriented thinness and globularity

Results on globular posets

Theorem

X n-globe, $\alpha \in \{+, -\}$. Then

$$\partial^{lpha}(\partial^+X)=\partial^{lpha}(\partial^-X).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results on globular posets

Theorem

The underlying poset of a globular poset X is the incidence poset of a regular CW complex.

 \simeq

for all *n*-globes U, |U| is an *n*-disk, and $|\partial U|$ an (n-1)-sphere

Results on globular posets

Theorem

If X, Y are globular posets, $X \otimes Y$ is a globular poset.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(The underlying poset of $X \otimes Y$ is just $X \times Y$.)

A candidate for the shape category: globes (one per isomorphism class) and inclusions of sub-globes. Presheaves are called **regular polygraphs**

Recursive enumeration of isomorphism classes of globes?

A candidate for the shape category: globes (one per isomorphism class) and inclusions of sub-globes. Presheaves are called **regular polygraphs**

Recursive enumeration of isomorphism classes of globes?

Conjecture

Globular posets are directed complexes (as in Steiner 1993)

 \rightsquigarrow Translation into algebra of $\omega\text{-categories}$

Two ways of looking at string diagrams:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1 Duals of pasting diagrams

Two ways of looking at string diagrams:

- 1 Duals of pasting diagrams
- 2 Pasting diagrams filled up with (possibly weak) unit cells

Coherence via universality (Hermida): weak higher algebraic structure is subsumed by cells satisfying universal properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coherence via universality (Hermida): weak higher algebraic structure is subsumed by cells satisfying universal properties

For **compositions**, overlap with opetopic higher categories (Baez-Dolan); but <u>units</u> need a different approach!

Worked out in low dimensions, with algebraic strict composition of 2-cells (*regular poly-bicategories*)

(For simplicity: "multicategorical", one-sided version)

 $1_x: x \to x$ is a **unit** if for all $a: x \to y$, $b: z \to x$, there exist

that exhibit a as both $1_x \otimes a$ and $1_x \multimap a$, and b as both $b \otimes 1_x$ and $b \multimap -1_x$

Leads to the correct bicategorical units (triangle equations, etc.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

that exhibit a as $e\otimes (e{\,\multimap\,} a)$ and a' as $e{\,\multimap\,} (e\otimes a')$

that exhibit b' as $(b' \circ - e) \otimes e$ and b as $(b \otimes e) \circ - e$

$e: x \rightarrow x'$ is **divisible** if it is right and left divisible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$e: x \rightarrow x'$ is **divisible** if it is right and left divisible.

\rightsquigarrow a notion of equivalence independent of the existence of units

(similar, but not the same as universal 1-cells in opetopic sets)

Theorem

The following are equivalent in a regular poly-bicategory:

- for all 0-cells x, there exists a unit $1_x : x \to x$;
- for all 0-cells x, there exist 0-cells $\overline{x}, \underline{x}$ and divisible 1-cells $e: x \to \overline{x}, e': \underline{x} \to x$.

Theorem

The following are equivalent in a regular poly-bicategory:

- for all 0-cells x, there exists a unit $1_x : x \to x$;
- for all 0-cells x, there exist 0-cells $\overline{x}, \underline{x}$ and divisible 1-cells $e: x \to \overline{x}, e': \underline{x} \to x$.

If enough equivalences exist, units exist!

Theorem

The following are equivalent in a regular poly-bicategory:

- for all 0-cells x, there exists a unit $1_x : x \to x$;
- for all 0-cells x, there exist 0-cells $\overline{x}, \underline{x}$ and divisible 1-cells $e: x \to \overline{x}, e': \underline{x} \to x$.

If enough equivalences exist, units exist! (Relation with Univalence?)

Work in progress: representability in arbitrary dimensions

Elucidate the combinatorics of shapes and of divisibility to obtain better semi-strictification theorems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <