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CW complexes and polygraphs

Higher categories as directed spaces

Top ωCat

classical model structure LMW model structure
cofibrants are CW complexes cofibrants are polygraphs

gluing map ∂x : ∂Dn → X (n−1) boundaries ∂+x , ∂−x ∈ X (n−1)

cartesian product tensor product

n-polygraph ⊗ k-polygraph = (n + k)-polygraph
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Tensor products and universal algebra

mX mY

Distributive laws of monads
=

maps Mon ⊗Mon→ Cat



A problem with strictness

The equations of bialgebras can be found in a quotient of
Mon ⊗Mon (a kind of smash product)...

=

but the obvious “quotient by a subspace” leads to degeneracy!

Cells with degenerate boundaries are ill-behaved in strict
ω-categories
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A related problem

Tensor products are hard to calculate with the algebra of strict
ω-categories

A link between the two problems:

(Makkai-Zawadowski)

Polygraphs and cellular maps do not form a presheaf category

Find a shape category for a class of polygraphs that

1 is “expressive enough”

2 has easily computed tensor products
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Incidence posets

Tensor products are easily computed for spaces characterised by
their oriented incidence poset
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CW posets

Two combinatorial criteria (Björner, Wachs):

1 Thinness  the space is locally manifold-like

2 Dual CL-shellability  the space is globally sphere or
disk-like

We need stronger conditions in the directed case: both input and
output k-boundaries must be homeomorphic to k-disks, for all k
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Globular posets

1. Oriented thinness: all length-2 intervals [x , y ] are of the form

y

z1 z2

x

α1 α2

β1 β2

with α1β1 = −α2β2



Globular posets

U ⊆ X pure, closed, n-dimensional, α ∈ {+,−}

∆αU := {x ∈ U | dim(x) = n − 1 and, for all y ∈ U,

if y −→ x , then y
α−→ x}

∂αU := cl(∆αU), ∂U := ∂+U ∪ ∂−U

We define when U is a globe, inductively on dimension and
number of maximal elements
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Globular posets

U = {x} is a 0-dimensional globe

U is an n-dimensional globe when ∂+U, ∂−U are
(n − 1)-dimensional globes, and either

U has a single n-dimensional element (atomic globe), or

U = U1 ∪ U2 (non-trivially), U1,U2 are n-dimensional globes,
and

U1 ∩ U2 = ∂αU1 ∩ ∂−αU2

is an (n − 1)-dimensional globe
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2. Globularity: for all x ∈ X , cl{x} is a globe

Globular poset

An oriented poset satisfying oriented thinness and globularity
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Results on globular posets

Theorem

X n-globe, α ∈ {+,−}. Then

∂α(∂+X ) = ∂α(∂−X ).



Results on globular posets

Theorem

The underlying poset of a globular poset X is the incidence poset
of a regular CW complex.

'

for all n-globes U, |U| is an n-disk, and |∂U| an (n − 1)-sphere



Results on globular posets

Theorem

If X ,Y are globular posets, X ⊗ Y is a globular poset.

(The underlying poset of X ⊗ Y is just X × Y .)



A couple of open questions

A candidate for the shape category: globes (one per isomorphism
class) and inclusions of sub-globes. Presheaves are called regular
polygraphs

Recursive enumeration of isomorphism classes of globes?

Conjecture

Globular posets are directed complexes (as in Steiner 1993)

 Translation into algebra of ω-categories
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Bridging the gap with string diagrams

Two ways of looking at string diagrams:

 

1 Duals of pasting diagrams

2 Pasting diagrams filled up with (possibly weak) unit cells
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Weakness via representability

Coherence via universality (Hermida): weak higher algebraic
structure is subsumed by cells satisfying universal properties

For compositions, overlap with opetopic higher categories
(Baez-Dolan); but units need a different approach!

Worked out in low dimensions, with algebraic strict composition of
2-cells (regular poly-bicategories)
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Saavedra units

(For simplicity: “multicategorical”, one-sided version)

1x : x → x is a unit if for all a : x → y , b : z → x , there exist

x

x

y

1x a

a

la

,

z

x

x

b 1x

b

rb

that exhibit a as both 1x ⊗ a and 1x(a, and b as both b ⊗ 1x
and b›1x

Leads to the correct bicategorical units (triangle equations, etc.)



From equivalences to units

e : x → x ′ is left divisible if, for all a : x → y , a′ : x ′ → y , there
exist

x

x ′

y

e e(a

a

eRe,a

,

x

x ′

y

e a′

e ⊗ a′

te,a′

that exhibit a as e ⊗ (e(a) and a′ as e((e ⊗ a′)



From equivalences to units

e : x → x ′ is right divisible if, for all b : z → x , b′ : z → x ′, there
exist

z

x

x ′

b′›e e

b′

eLe,b′

,

z

x

x ′

b e

b ⊗ e

tb,e

that exhibit b′ as (b′›e)⊗ e and b as (b ⊗ e)›e



From equivalences to units

e : x → x ′ is divisible if it is right and left divisible.

 a notion of equivalence independent of the existence of units

(similar, but not the same as universal 1-cells in opetopic sets)
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From equivalences to units

Theorem

The following are equivalent in a regular poly-bicategory:

for all 0-cells x , there exists a unit 1x : x → x ;

for all 0-cells x , there exist 0-cells x , x and divisible 1-cells
e : x → x , e ′ : x → x .

If enough equivalences exist, units exist!
(Relation with Univalence?)
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What is to be done?

Work in progress: representability in arbitrary dimensions

Elucidate the combinatorics of shapes and of divisibility to obtain
better semi-strictification theorems


